
Robust Risk-Aware Model Predictive Control of
Linear Systems with Bounded Disturbances

Yulong Gao, Changxin Liu, and Karl H. Johansson

Abstract—We propose a robust risk-aware model predictive
control (MPC) algorithm for linear discrete-time systems with
bounded disturbances. The MPC problem is formulated to
maximize the size of the predicted disturbance sets (which
are subsets of the maximal disturbance sets) at each time
step, under state and control constraints and a reachability
specification. It is shown that the proposed scheme has the
following properties: i) its feasible state set (i.e., the set of
states starting from which the MPC problem is feasible) is
as large as that of the MPC problem for the corresponding
undisturbed system; ii) it maintains recursive feasibility if the
conventional robust MPC problem is feasible. The proposed
controller enlarges the feasible state set, at the expense of the
risk of possible constraint violation that is quantified by the
optimal solution of the problem. When the sets are represented
as zonotopes, we further provide a computationally tractable
reformulation and design an online implementation algorithm
with adaptive prediction horizon. We illustrate the effectiveness
of the proposed methods using a simulated example.

I. INTRODUCTION

Model predictive control (MPC) has attracted great at-
tention in recent decades since it enables state and input
constraint-handling in controller synthesis [1], [2]. The basic
operations of MPC include: solving a finite-horizon opti-
mization problem at each time step, obtaining a sequence
of optimal control inputs, only implementing the first control
input in this sequence, and repeating this procedure. MPC has
been successfully applied to disparate systems, e.g., process
control systems [3] and robotic systems [4], [5]; for an
overview of MPC the readers are referred to [6], [7], [8],
[9].

Both robust and stochastic MPC have been developed
for efficiently handling the uncertainties. Robust MPC [10]
is concerned with hard constraint satisfaction against all
the possible realizations of uncertainties, while stochastic
MPC [11] allows the constraint violation with prescribed
probability. Many research efforts have been made to develop
computationally efficient ways to solve robust or stochas-
tic MPC problems. Tube-based method is one of the most
popular approaches in the literature; see [12], [13] and [14],
[15]. Despite these efforts, existing methods still suffer from
some degree of conservatism in handling uncertainties, i.e.,
a shrinked feasible state set in comparison with that of MPC
for deterministic systems.

In this paper, we study the robust risk-aware MPC for
linear discrete-time systems with bounded disturbances. Mo-
tivated by the fact that the worst-case realizations of the
disturbances may not frequently occur in practice, we formu-
late the MPC problem to maximize the size of the predicted

disturbance sets (that are subsets of the maximal disturbance
sets) at each time step, under state and control constraints
and a reachability specification. That is, instead of finding
a controller that can tolerate all possible realizations of
the disturbances as in robust MPC, our formulation aims
at finding a controller that can robustly handle as large a
disturbance set as possible under the system constraints. The
risk in this paper is the possibility of constraint violation
when the encountered disturbances come beyond the pre-
dicted disturbance sets and can be quantified by using the
optimal solution of the problem. By taking this risk (i.e.,
allowing constraint violation), our formulation is able to
provide a larger feasible set, i.e., the set of states starting
from which the MPC problem is feasible, than robust MPC
and thereby reduce the inherent conservativeness of robust
MPC. The main contributions are summarized as follows.

1) We propose a robust risk-aware MPC algorithm for
linear system with additive disturbances. Different from
standard robust MPC, where worst-case disturbance
realizations are assumed in prediction, the proposed
approach maximizes the size of predicted disturbance
sets under the system constraints. That is, the proposed
algorithm gives priority to feasibility while taking the
risk that future disturbance realization may exceed the
predicted disturbance set.

2) We prove that the proposed scheme enjoys the following
properties: i) its feasible state set is as large as that of
the MPC problem for undisturbed systems; ii) it remains
feasible recursively if the corresponding robust MPC
problem is feasible. That is, it provides a natural bridge
between MPC problem for deterministic systems and
robust MPC problem for uncertain systems.

3) When the sets are represented as zonotopes, we show
that the original robust risk-aware MPC problem can be
reformulated as a linear program using the properties of
zonotopes, which enables efficient implementation. Fur-
thermore, we design an online implementation algorithm
with adaptive prediction horizon.

Related works Risk usually refers to the possibility that
something unexpected happens. The risk in our paper is
different from the common risk notions in the existing work,
which are usually defined in the stochastic setting. There is
a large body of literature that incorporates risk into control
problems, e.g., risk-sensitive stochastic optimal control [16],
[17] and more recent risk-aware motion planning [18]. In
these works, conditional Value at Risk (CVaR) is a pop-
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ular measure used in motion planning [19]. In [20], the
risk-sensitive MPC has been studied by considering time-
consistent, dynamic risk evaluation of the cumulative cost as
the objective function, which is different from the formulation
of our paper. A recent work on automated car overtaking [21]
introduces a new notion of risk that quantifies the prob-
ability of collision between cars under a supermartingale
assumption. In the scenario-based optimization, the risk has
a different meaning and refers to the probability that the
optimal solution obtained from a given set of samples is not
feasible for a new sample [22]. The risk in our paper (i.e.,
the possibility of constraint violation when the encountered
disturbances come beyond the predicted disturbance sets)
has a close meaning to the risk in the scenario-based op-
timization [22]. Another related work is [23], where a robust
optimal control strategy is designed with adjustable uncer-
tainty sets. The differences between the proposed algorithm
and [23] include: i) we study the relation between robust
MPC and deterministic MPC in terms of the feasible state
set, and ii) we further provide a computationally tractable
reformulation based on zonotopes. Some recent extensions
of [23] can be found in [24], [25], [26].

The remainder of the paper is organized as follows. In Sec-
tion II, we recall the robust MPC problem. In Section III, we
formulate the robust risk-aware MPC problem and discuss its
connection to a few existing MPC schemes. In Section IV, we
provide a linear program reformulation using the properties
of zonotopes and design an online implementation algorithm.
In Section V, we illustrate the effectiveness of our approaches
with a numerical example. In Section VI, we conclude the
paper with a discussion about our current and future works.

Notations Let N denote the set of nonnegative integers
and R the set of real numbers. For some q, s ∈ N and q < s,
let N[q,s] = {r ∈ N | q ≤ r ≤ s}. For two sets X and Y,
X⊕Y = {x+ y | x ∈ X, y ∈ Y}. When ≤, ≥, <, and > are
applied to vectors, they are interpreted element-wise.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a discrete-time linear system with additive dis-
turbance in the form of

xk+1 = Axk +Buk + wk, (1)

where xk ∈ X ⊆ Rnx is the state, uk ∈ U ⊂ Rnu the
control input, and wk ∈ W ⊆ Rnx the disturbance. A, B are
matrices with appropriate dimensions. The disturbance set W
is assumed to contain the origin.

Consider a reachability specification for the system (1). Let
Xf ⊂ X be a target set (which may be not robustly invariant).
Given an initial state x0 ∈ X, the control objective is to find
a sequence of feedback control inputs uk(xk) ∈ U such that
the state xk stays in X and eventually reaches Xf , for all
possible realizations of wk ∈ W.

To address such reachability specification, many robust
MPC algorithms have been developed to suppress the worst-
case realization of the disturbance. In the following, we
review the basic formulation of robust MPC.

A. Robust MPC

Given the state xk at time step k, the robust MPC is by
and large formulated as an optimization problem:

min
u·|k

J(xk, uk|k, · · · , uk+Nk−1|k)

s.t : xk|k = xk,

∀i ∈ N[0,Nk−1] :

xk+i+1|k = Axk+i|k +Buk+i|k + wk+i|k

∀wk+i|k ∈ W :


uk+i|k ∈ U,
xk+i|k ∈ X,
xk+Nk|k ∈ Xf ,

where J denotes the cost function, uk+i|k and xk+i|k repre-
sent the predicted control input and state at time k + i, re-
spectively, and Nk stands for the prediction horizon. Without
loss of generality, the horizon Nk is time-dependent, which
facilitates the algorithm design with adaptive horizon. Upon
using the set-based formulation, the optimization problem,
denoted by PRobust(xk, Nk), can be equivalently expressed
by:

min
u·|k

J(xk, uk|k, · · · , uk+Nk−1|k)

s.t : Xk|k = {xk},
∀i ∈ N[0,Nk−1] :

Xk+i+1|k = AXk+i|k ⊕B{uk+i|k} ⊕W,
uk+i|k ∈ U,
Xk+i|k ⊆ X,
Xk+Nk|k ⊆ Xf ,

(2)

where Xk+i|k denotes the set of predicted states at time
k + i that can be reached from the initial state xk under the
control sequence {uk+j|k}i−1

j=0 and any possible disturbance
realizations from W. The set Xk+i|k can also be rewritten as

Xk+i|k =

Aixk +

i−1∑
j=0

Ai−1−jBuj

⊕
i−1⊕
j=0

AjW

 .

One observes that the size (or volume) of the set Xk+i|k
is monotonically increasing with the predict step i. If the
horizon Nk is too long or the disturbance set W is too large,
the terminal constraint Xk+Nk|k ⊆ Xf may not be satisfied.
On the other hand, if Nk is too short, the set of states xk for
which the above optimization problem is feasible is restricted.

Thus, considering the worst-case realization of the dis-
turbance to achieve robust constraint satisfaction leads to a
conservative design. Nevertheless, it may be rarely the case
in practice that the disturbance frequently takes its worst-
case realization. Motivated by this, we develop a robust risk-
aware MPC framework in the following, where the controller
optimizes its view on disturbance realizations in the future
while bearing a certain degree of risk.

III. ROBUST RISK-AWARE MPC

In this section, we detail the formulation of robust risk-
aware MPC and study its main properties.
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A. Formulation

Recall the assumption that the set W contains the origin,
which implies that αW ⊆ W, ∀α ∈ [0, 1]. Let us introduce
additional variables {αk+i|k ∈ [0, 1]}Nk−1

i=0 to tighten the
original disturbance set, i.e., αk+i|kW, and use the tightened
set in prediction, thereby enlarging the region of states from
which there exists a feasible controller. Moreover, being
optimistic about the disturbance in prediction introduces risk,
which is captured by

∑Nk−1
i=0 (1−αk+i|k). The corresponding

optimization problem of robust risk-aware MPC, denoted by
PRisk(xk, Nk), is formulated as

max
u·|k,α·|k

Nk−1∑
i=0

αk+i|k

s.t : Xk|k = {xk},
∀i ∈ N[0,Nk−1] :

Xk+i+1|k = AXk+i|k ⊕B{uk+i|k} ⊕ αk+i|kW,
uk+i|k ∈ U,
Xk+i|k ⊆ X,
αk+i|k ∈ [0, 1],

Xk+Nk|k ⊆ Xf ,

∀i ∈ N[0,Nk−2] :

αk+i|k ≥ αk+i+1|k.

(3)

Note that the prediction horizon Nk is time-varying in prob-
lem (3); how it evolves with respect to k will be explained in
Algorithm 1. The optimal solution to problem (3) is denoted
as u∗

k+i|k and α∗
k+i|k for i ∈ N[0,Nk−1]. The underlying idea

of problem (3) is to maximize the robustness of its solution
with the guarantee of its feasibility. The maximization of
the robustness can be observed from the objective function,
which is to maximize the sum of shrinking coefficients
αk+i|k, i.e., to maximize the size of the tolerated distur-
bance sets over the prediction horizon. The last constraint
αk+i|k ≥ αk+i+1|k promotes a smaller risk in the nearer
future. By doing so, a larger degree of robustness can be
obtained for the nearer future, driving the state to the target
set as close as possible.

The risk of problem (3) refers to that when αk+i|k < 1,
the solution to (3) has the limitation in dealing with the
disturbance w /∈ αk+i|kW, in comparison with the robust
MPC problem (2). More specifically, as the time moves one
step forward, the risk of the solution to the problem (3) is
the possibility of xk+1 /∈ X, when implementing the control
inputs u∗

k|k, due to wk ∈ W \αk|kW. Note that this risk can
be quantified by using the optimal solution of PRisk(xk, Nk)
if we have knowledge about the disturbance realizations. For
example, if the disturbance set W is affiliated with probability
measure µ, the risk of constraint violation, i.e., xk+1 /∈ X, can
be upper bounded by 1−

∫
α∗

k|kW
dµ, where α∗

k|k is obtained
from the optimal solution. A special case is that when the
encountered disturbance wk is uniformly sampled from W,
the risk is then upper bounded by 1− (α∗

k|k)
nx .

Remark III.1. The risk in the current paper is close to

that in the scenario-based optimization, which refers to the
probability that the optimal solution obtained from a given
set of samples is not feasible for a new sample [22]. How
to integrate the scenario optimization with our robust risk-
aware formulation and analytically quantify the risk is an
interesting problem, which we leave for future research.

Remark III.2. Another strategy to suppress the risk in the
nearer future is to introduce a fixed discount factor β ∈ (0, 1)
and a fixed shrinking coefficient α such that the dynamics in
PRisk(xk, Nk) becomes Xk+i+1|k = AXk+i|k⊕B{uk+i|k}⊕
βi−1αW. This will reduce the number of decision variables
in PRisk(xk, Nk) and thereby mitigate its computational
complexity.

Remark III.3. Note that the cost function J can be in-
corporated into the problem (3) to achieve a tradeoff be-
tween control performance and robustness. For example,
the objective function in (3) can be written as minimizing
J(xk, uk|k, · · · , uk+Nk−1|k) − γ

∑Nk−1
i=0 αk+i|k, where γ is

a positive scalar. Under such a formulation, the properties
in the next section still hold.

B. Feasibility

Let us first consider the feasible state set of the robust
risk-aware MPC problem in (3), which is denoted by

FRisk(Nk) = {xk ∈ X | PRisk(xk, Nk) is feasible}.

Similarly, denote the feasible state set of the robust MPC
problem in (2) by

FRobust(Nk) = {xk ∈ X | PRobust(xk, Nk) is feasible}.

Let us further consider the MPC problem of the deterministic
system, denoted by PDeter(xk, Nk), as follows:

max
u·|k

J(xk, uk|k, · · · , uk+Nk−1|k)

s.t : Xk|k = {xk},
∀i ∈ N[0,Nk−1] :

Xk+i+1|k = AXk+i|k ⊕B{uk+i|k},
uk+i|k ∈ U,
Xk+i|k ⊆ X,
Xk+Nk|k ⊆ Xf .

(4)

The feasible state set of PDeter(xk, Nk) is denoted by

FDeter(Nk) = {xk ∈ X | PDeter(xk, Nk) is feasible}.

Remark III.4. The feasible state set is consistent with the
notion of region of attraction. In this paper, we use the former
instead of the later, since there may exist some trajectories
with initial states belonging to the feasible state set that are
not admissible to the robust risk-aware MPC at succeeding
time instants.

The following proposition shows that the feasible state set
of the problem (3) is the same as that of the problem (4).
This implies that the new formulation admits a lager feasible
state set than the robust MPC problem.
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Proposition III.1. For any Nk ∈ N≥1,

FRobust(Nk) ⊆ FRisk(Nk) = FDeter(Nk).

Proof: The proof is straightforward and omitted for
brevity.

Remark III.5. The feasible state set FRobust(Nk) in our
work is defined in an open-loop control manner. Instead, a
larger feasible state set can be obtained by using a close-loop
controller, e.g., the tube MPC. In general, the feasible state
set under a closed-loop controller leverages the computation
of backward reachable sets [27].

The following proposition suggests that the feasibility of
the robust MPC problem PRobust(xk, Nk) ensures the recur-
sive feasibility of robust risk-aware MPC PRisk(xk, Nk).

Proposition III.2. Consider the state xk at the time step
k and a horizon Nk ∈ N. Suppose that the problem
PRobust(xk, Nk) is feasible. Then, there exists a sequence
{Nk − j}Nk−1

j=0 such that PRisk(xk+j , Nk − j) is feasible for
all j ∈ N[0,Nk−1].

Proof: Note that problem PRobust(xk, Nk) considers the
worst-case realization of disturbance. Thus, if it is feasible
at time k then PRobust(xk+j , Nk − j) is feasible for all
j ∈ N[0,Nk−1]. Upon using Proposition III.1, we have that
PRisk(xk+j , Nk − j) is also feasible for all j ∈ N[0,Nk−1].

Remark III.6. From Proposition III.2, one observes that
whenever PRobust(xk, Nk) is feasible, the optimization prob-
lem (3) is recursively feasible with a decreasing prediction
horizon. For initial conditions with which PRobust(xk, Nk)
is infeasible, the problem (3) may admit a feasible solution
by optimizing its view on future disturbance realizations.
This essentially enlarges the feasible state set. Indeed, in the
most optimistic case, PRisk(xk, Nk) has the same feasible
state set with the deterministic setup in (4), as illustrated by
Proposition III.1.

IV. IMPLEMENTATION ALGORITHM

In this section, we address the computational tractabil-
ity of the above optimizations using zonotopes, design the
receding-horizon algorithm for implementation, and explore
its properties.

A. Zonotope

Let us begin with some preliminaries on zonotopes.

Definition IV.1. A zonotope is a polytope that can be written
as an affine transformation of the unit box. That is,

Y = ⟨y, Y ⟩ = {z ∈ Rn | z = y +

p∑
i=1

biY
(i),−1 ≤ bi ≤ 1}.

Zonotopes have the following properties.

Lemma IV.1. [28], [29] Consider two zonotopes Y1 =
⟨y1, Y1⟩ and Y2 = ⟨y2, Y2⟩, where Y1 ∈ Rn×p1 and
Y2 ∈ Rn×p2 . The following statements hold:

i) Y1 ⊕ Y2 = ⟨y1 + y2, [Y1 Y2]⟩;
ii) LY1 = ⟨Ly1, LY1⟩ for any L ∈ Rl×n;

iii) Y1 ⊆ Y2 if there exist Γ ∈ Rp1×p1 and v ∈ Rp2 such
that 

Y1 = Y2Γ,

y2 − y1 = Y2v,

∥[Γ v]∥∞ ≤ 1.

B. Tractable Reformulation using Zonotopes

Denote by W = ⟨w,W ⟩, X = ⟨x,X⟩, Xf = ⟨xf , Xf ⟩,
and Xk+i|k = ⟨xk+i|k, Xk+i|k⟩, where w, x, xf , and xk+i|k
are vectors in Rn and W,X,Xf , and Xk+i|k are matrices
with appropriate dimensions. Assume that U = {z ∈ Rm |
Qz ≤ q}, where Q and q are a given matrix and vector with
appropriate dimensions, respectively.

Theorem IV.1. The following LP, denoted by P̂Risk(xk, Nk),
provides a suboptimal solution to the problem PRisk(xk, Nk):

max
u·|k,α·|k,Γ·|k,v·|k

Nk−1∑
i=0

αk+i|k

s.t : xk|k = xk, Xk|k = 0,

∀i ∈ N[0,Nk−1] :

Xk+i+1|k = [AXk+i|k αk+i|kW ]

xk+i+1|k = Axk+i|k +Buk+i|k + αk+i|kw,

Quk+i|k ≤ q,

Xk+i|k = XΓk+i|k,

x− xk+i|k = Xvk+i|k,

∥[Γk+i|k vk+i|k]∥∞ ≤ 1,

αk+i|k ∈ [0, 1],

Xk+Nk|k = XfΓk+Nk|k,

xf − xk+Nk|k = Xfvk+Nk|k,

∥[Γk+Nk|k vk+Nk|k]∥∞ ≤ 1,

∀i ∈ N[0,Nk−2] :

αk+i|k ≥ αk+i+1|k.

(5)

Proof: Given the zonotope representation of the sets
W, X, and Xf , it follows from the first two properties
in Lemma IV.1 that the set-valued dynamics in problem
(3), i.e., Xk+i+1|k = AXk+i|k ⊕ B{uk+i|k} ⊕ αk+i|kW,
can be written as Xk+i+1|k = [AXk+i|k αk+i|kW ] and
xk+i+1|k = Axk+i|k + Buk+i|k + αk+i|kw. According to
the third property, we have that the constraint Xk+i|k ⊆ X
holds if there exist Γk+i|k and vk+i|k such that

Xk+i|k = XΓk+i|k,

xk+i|k − x = Xvk+i|k,

∥[Γk+i|k vk+i|k]∥∞ ≤ 1.

Similarly, we can obtain that the last three constraints in (5)
are sufficient for Xk+Nk|k ⊆ Xf . Thus, we conclude that the
optimal solution to the problem P̂Risk(xk, Nk) in (5) is a
suboptimal solution to the problem PRisk(xk, Nk) in (3).
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Remark IV.1. If the convex uncertainty set is represented
in other forms, e.g., ball, ellipsoid, and rectangle, the opti-
mization problem PRisk(xk, Nk) in this paper can also be
reformulated as a tractable convex optimization problem by
following the idea of [23]. It is also of interest to consider
the disturbance-dependent affine control structure [23] in the
future work.

Before proceeding to an online implementation algorithm
in the next section, we turn to consider the determinis-
tic version, denoted by P̂Deter(xk, Nk), of the problem
P̂Risk(xk, Nk), where the decision variables αk+i|k are set
to be 0. Then, it reads:

max
u·|k,v·|k

0

s.t : xk|k = xk,

∀i ∈ N[0,Nk−1] :

xk+i+1|k = Axk+i|k +Buk+i|k,

Quk+i|k ≤ q,

xk+i|k − x = Xvk+i|k,

∥vk+i|k∥∞ ≤ 1,

Xk+Nk|k = XfΓk+Nk|k,

xk+Nk|k − xf = Xfvk+Nk|k,

∥vk+Nk|k∥∞ ≤ 1.

(6)

Define the feasible state set of the problem P̂Deter(xk, Nk)
as

F̂Deter(Nk) = {xk ∈ X | P̂Deter(xk, Nk) is feasible}.

C. Algorithm

Algorithm 1 details the MPC implementation with adaptive
horizon. Let Nmax be the maximal horizon that can be
specified in the optimization problems P̂Risk(xk, Nk) and
P̂Deter(xk, Nk). At the initialization phase (lines 2-10), we
first check if the initial state x0 ∈ F̂Deter(Nmax). If so,
we solve the problem P̂Risk(x0, N0) with N0 = Nmax and
implement the first optimal control input u∗

0|0; otherwise, we
stop running with the output Infeasible. In the online imple-
mentation phase (lines 12-31), we begin with checking if the
current state reaches the target set Xf (lines 15-17). If not,
we need to check if the risk-aware solution can tolerate the
injected disturbance, i.e., if wk−1 ∈ α∗

k−1|k−1W. If yes, we
can also gradually decrease the horizon, i.e., Nk = Nk−1−1.
Otherwise, we need to check if xk ∈ F̂Deter(L) for some L ∈
N[1,Nmax]. If so, it implies that the current state still belongs
to the feasible state set for some allowed horizon, for which
we reset Nk = Nk = min{L ∈ N[1,Nmax] | xk ∈ F̂Deter(L)}.
Otherwise, we stop running with the output Infeasible.

V. EXAMPLES

In this section, we demonstrate our method and perform
comparisons with tube MPC on one simulated example.
The numerical experiments are run in Matlab R2021b with
YALMIP toolbox [30] and MOSEK toolbox [31] on a Mac-
Book Pro laptop with Apple M1 chip and 8.0 GB Memory.

Algorithm 1 Robust Risk-Aware MPC Algorithm

1: Initialization:
2: Set k = 0 and TerInd = 1;
3: Let the maximal horizon be Nmax;
4: if x0 ∈ F̂Deter(Nmax) then
5: Let N0 = Nmax and solve the problem

P̂Risk(x0, N0);
6: Implement u∗

0|0; ▷ u∗
0|0 is obtained from the optimal

solution to P̂Risk(x0, N0);
7: else
8: TerInd = 0;
9: Output: Infeasible;

10: end if
11: Implementation:
12: while TerInd do
13: Set k = k + 1;
14: Measure xk;
15: if xk ∈ Xf then
16: TerInd = 0;
17: Output: Successful;
18: else
19: Let wk−1 = xk −Axk−1 −Bu∗

k−1|k−1

20: if wk−1 ∈ α∗
k−1|k−1W then

21: Let Nk = Nk−1 − 1 and go to line 31;
22: else
23: if xk /∈ F̂Deter(L), ∀L ∈ N[1,Nmax] then
24: TerInd = 0;
25: Output: Infeasible;
26: else
27: Let Nk = min{L ∈ N[1,Nmax] | xk ∈

F̂Deter(L)} and go to line 31;
28: end if
29: end if
30: end if
31: Solve the problem P̂Risk(xk, Nk) and implement

u∗
k|k; ▷ u∗

k|k is obtained from the optimal solution
to P̂Risk(xk, Nk);

32: end while

Consider the following system

xk+1 = Axk +Buk + wk

where A = [1, 0.9; 0, 1.1], B = [0; 1], X = {x ∈
R2|[−10,−10]T ≤ x ≤ [10, 10]T }, and U = {u ∈ R| − 1 ≤
u ≤ 1}. We consider the following five different disturbance
sets in the form of W = {w ∈ R2|[−0.2γ,−0.2γ]T ≤ w ≤
[0.2γ, 0.2γ]T }, where γ takes value in {1, 2, 4, 6, 8}. The
realization of wk is drawn from W uniformly at random.
The target set is set as Xf = {x ∈ R2|[−0.9,−0.9]T ≤ x ≤
[0.9, 0.9]T }. Set the prediction horizon Nmax = N0 = 10 and
the maximum time step is Tmax = 15. We stop running either
when the state trajectory enters Xf or when the time step
exceeds Tmax. The run in which the actual state trajectory
does not enter Xf before termination is deemed infeasible.

For comparison, we introduce the following parameters
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Fig. 1: Feasible state sets of robust risk-aware MPC and
robust MPC for γ = 1. The region with blue boundary
represents the feasible state set of risk-aware MPC, i.e.,
FRisk. The region circled by red line is the robust backward
reachable set from Xf within N = 10 steps; The region
circled black line is the feasible state set of tube MPC FTube.

for tube MPC [10]. We use weight matrices Q = I and
R = 0.1, under which the LQR gain is chosen as the
feedback gain, denoted by K, to construct tubes. Set the
solution to the corresponding algebraic Riccati equation as
the weight matrix, denoted by P , for terminal cost. Denote
by Zf the corresponding minimal robust controlled invariant
set. At time step k, given the state xk, the adapted tube MPC
problem is formulated as follows:

min
v·|k,z·|k

Nk−1∑
i=0

(∥zk+i|k∥2Q + ∥vk+i|k∥2R) + ∥zk+Nk|k∥
2
P

s.t : zk|k ∈ {xk} ⊕ Zf ,

∀i ∈ N[0,Nk−1] :

zk+i+1|k = Azk+i|k ⊕Bvk+i|k,
vk+i|k ∈ U⊖KZf ,

zk+i|k ⊆ X⊖ Zf ,

zk+Nk|k ⊆ Xf ⊖ Zf ,

(7)

where zk+i|k and vk+i|k are the predicted nominal state
and control input of the nominal system, respectively. Given
the optimal solution, denoted by v∗k+i|k and z∗k+i|k, to the
problem (7), the implemented controller is uk = v∗k|k +
K(xk − z∗k|k). The feasible state set of the problem (7) is
denoted by FTube(Nk). The online implementation of tube
MPC is similar to Algorithm 1 with adaptive horizon.

A. Comparison with Tube MPC

We begin with the comparison of feasible state sets for
risk-aware MPC, robust MPC, and tube MPC. Here the
feasible state set of robust MPC is computed by perform-
ing the backward reachability. The feasible state sets for
γ = 1 are shown in Fig. 1. The region circled by blue
line is FRisk(Nmax) and the region with black line represents

Fig. 2: Feasible state trajectories for 100 realizations of
disturbances with γ = 1 by robust risk-aware MPC and tube
MPC. The rectangle shaded in red denotes the target set.

FTube(Nmax). The set FRobust(Nmax) defined by the open-
loop control is empty. As a comparison, we compute the
robust backward reachable set from Xf within N = 10 steps
[27], which is the largest feasible set for closed-loop robust
control, as shown by the region with red black line. We can
observe that the risk-ware MPC admits a larger feasible state
set than its robust counterparts. In this example, the feasible
state set of the reformulated robust risk-aware MPC, i.e.,
F̂Deter(Nmax), is the same as FRisk(Nmax). We note that for
larger disturbance sets, i.e., when γ = 2, 4, 6, 8, the feasible
state set of risk-aware MPC is invariant with respect to γ
while those of the other two methods are empty.

Next let us compare the performance under our approach
and the tube MPC. We choose an initial state x0 = [−10, 2]T ,
which is in FTube(Nmax). For each approach, we perform
100 runs. Their state trajectories are shown in Fig. 2. To
roughly compare the performance, we identify the average
cost per step for each strategy, defined by

JStrategy =
1

100

100∑
k=1

1

Tk

Tk∑
i=1

xT
i Qxi + uT

i Rui,

where Tk represents the number of time steps in the k-th
run. The results are JRisk = 36.8588 and JTube = 40.7146,
suggesting that the proposed strategy has a comparable per-
formance with tube MPC while significantly enlarging the
feasible state set. The main reason that tube MPC leads to
inferior performance may be twofold: i) nominal but not
actual trajectories are optimized within tube MPC; ii) the
presence of terminal cost deteriorates the optimality of sys-
tem trajectories. The average computation time of each run
under our approach is 1.9917 seconds, a slightly longer than
1.7308 seconds for tube MPC. The reason is that the refor-
mulated robust risk-aware MPC problem (5) may encounter
more constraints along the horizon due to the augmented
matrices.

B. Robust Risk-Aware MPC for Large Disturbance Sets

To illustrate the strength of the proposed method, we
further report the performance of the proposed method for
large disturbance sets, i.e., when γ = 2, 4, 6, 8. We choose the
initial state to be x0 = [−10, 4]T , which is in FRisk \ FTube.
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γ = 2 γ = 4 γ = 6 γ = 8
α∗
0|0 0.4152 0.2129 0.1470 0.1126

Probability of success 100% 100% 94% 78%
Ave. computation time per run 2.5400 4.2922 4.9052 5.8236

TABLE I: The shrinking coefficients α∗
0|0, the probability

of successful runs, and the average computation time (in
seconds) per run under Algorithm 1 for 100 realizations of
disturbances for γ = 2, 4, 6, and 8.

Fig. 3: Feasible state trajectories for 100 realizations of
disturbances under different γ. The rectangle shaded in red
denotes the target set.

In the experiments, we perform 100 runs of Algorithm 1 for
each γ ∈ {2, 4, 6, 8}. The risk at time t = 0, probability
of success, and computation time are summarized in Table I.
Note that we only report α∗

0|0 at t = 0, because typically it is
the most critical in the sense that the value of α∗

k|k increases
as xk approaches the target set. From Table I, we can see that
Algorithm 1 can effectively (with high probability) drive the
state to the target set even when the initial state is infeasible
for the robust MPC. When the disturbance bound grows, the
controller has relatively low robustness (captured by the size
of α∗

0|0) to achieve feasibility. The average computation of
each run increases with respect to γ, since more time steps
are needed for driving the state to the target set against larger
disturbance realizations.

The feasible state trajectories by Algorithm 1 under dif-
ferent γ are shown in Fig. 3. The results show that in
most runs the state is successfully driven to the target set.
They also demonstrate the trend that, as we increase γ, the
trajectories become less concentrated because larger noises
impose a stronger effect on the state trajectories. Note that
the disturbance bounds for γ = 6 or 8 (which are 1.2 or

1.6, respectively) are greater than the control input bound
(which is 1). To the best of our knowledge, these two cases
cannot be handled by most existing control methods. The
probabilities of success shown in Table I justify that our
method has greater robustness in practice than the theoretical
robustness quantified using the shrinking coefficients α.

VI. CONCLUSION

In this work, we developed a robust risk-aware MPC
algorithm for linear discrete-time systems subject to bounded
disturbances. The proposed algorithm takes a certain degree
of risk on future disturbance realizations when necessary,
therefore enlarging the feasible state set of conventional
robust MPC. A computationally efficient reformulation was
introduced for the case where the sets can be expressed
as zonotopes, and an online implementation algorithm was
designed. Finally, we demonstrated the effectiveness of the
proposed method via one numerical example.

Future directions of great interest include the extension
to the closed-loop control design, the integration of data-
driven uncertainty quantification into our method, theoretical
analysis of the inherent robustness, and the experimental
evaluation on hardware.
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