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Nonlinear Consensus Protocols With
Applications to Quantized Communication

and Actuation
Jieqiang Wei , Xinlei Yi , Henrik Sandberg , and Karl Henrik Johansson , Fellow, IEEE

Abstract—Nonlinearities are present in all real ap-
plications. Two types of general nonlinear consensus
protocols are considered in this paper, namely, the sys-
tems with nonlinear communication and actuator con-
straints. The solutions of the systems are understood in
the sense of Filippov to handle the possible discontinuity
of the controllers. For each case, we prove the asymptotic
stability of the systems with minimal assumptions on the
nonlinearity, for both directed and undirected graphs. These
results extend the literature to more general nonlinear
dynamics and topologies. As applications of established
theorems, we interpret the results on quantized consensus
protocols.

Index Terms—Networks of autonomous agents, nonlinear
systems, nonsmooth analysis, stability.

I. INTRODUCTION

D ISTRIBUTED consensus is a benchmark problem in the
study of multiagent systems. For continuous-time models,

many control protocols have been proposed to solve asymptotic
or finite-time consensus problems [4], [6], [23]. In addition to
the well-studied linear consensus problem (e.g., [18], [22]), the
nonlinear scenario has attracted many researchers’ attention.

Nonlinearities are present in any real systems. In this paper,
we consider a first-order nonlinear multiagent system for various
topologies and with minimal assumptions on the nonlinearity,
which make the stability analysis harder to conduct.

One source of nonlinearities is communication constraints.
In [9] and [11], the authors considered the case when only
quantized agent states can be exchanged across the communica-
tion links. Building on the assumption that the communication
graph is undirected, asymptotic convergence of all Krasovskii
solutions to practical consensus was provided, i.e., convergence
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to a neighborhood of the consensus point. In [16], the authors
considered a consensus protocol with nonlinear communication
constraints, where the nonlinear functions are assumed to be
piecewise continuous, strictly increasing, and sign preserving.
In this case, precise consensus can be achieved. However, the
stronger assumption will put limits on the application of the
results; notice that quantizer that is not strictly increasing fails
to satisfy the assumption in [16].

Another source of nonlinearities is actuator constraints. Two
cases are commonly seen in the literature. The first case is that
the actuation is a nonlinear function of the sum of the agent
state differences. In [6], the author studied such a case when
the nonlinearity is a sign function. In [26], the authors consid-
ered a more general model by replacing the sign function by
any sign-preserving functions. Sufficient conditions to guaran-
tee asymptotic consensus of all Filippov solutions are provided.
In [13], the authors considered a system, which can be seen as
the discretized version of the system in [26] with quantizers and
the time-varying topology. The second case is that the actuation
is the sum of nonlinear functions of the agent state differences.
In [14], the authors considered this case with Lipschitz con-
tinuous functions under a switching topology. In [8], [12], and
[28], the authors considered the situation that the nonlinear func-
tions are uniform quantizers. More precisely, in [8], the authors
considered quantized protocols within the framework of hybrid
dynamical systems. In [12], the author considered the same
system as [8] and proved the stability for undirected graphs
using the notion of the Filippov solution. In a more recent
work [28], the authors proposed self-triggered rules to avoid
continuous communications between agents based on the same
model. In [26], the authors considered sign-preserving nonlinear
possibly discontinuous functions and gave sufficient conditions
to guarantee asymptotic consensus under undirected graphs. It
is worth to mention that nonlinear actuators can be useful to ful-
fill some specific control objective, e.g., finite-time convergence
[4], [25].

In this paper, we develop a general framework for nonlin-
ear consensus protocols. With respect to earlier literature, our
contribution is twofold. On one hand, we propose two general
frameworks, which incorporate communication and actuator
constraints, respectively. In these frameworks, the nonlineari-
ties are only assumed to be increasing, which include a sign
function, quantizer as special cases. The differential inclusion
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of the dynamical system, which evidently is an extension of
the systems with continuous control protocol, is considered.
The notion of Filippov is employed to understand the solution
of the system. Sufficient conditions are given to guarantee the
convergence. On the other hand, we consider these frameworks
defined on directed graphs, by which we extend some existing
results for consensus, e.g., in [9], [11], and [12], to weaker topo-
logical conditions, namely directed graphs. More precisely, for
systems with nonlinear communication, we prove that the states
of the agents converge to practical consensus for heterogeneous
nonlinearity if the graph is strongly connected and for homo-
geneous case if the graph contains a directed spanning tree. As
an application, we extend the results in [9] and [11] from undi-
rected graphs to directed ones. For the systems with nonlinear
actuation, we provide the sufficient conditions, under the as-
sumption that nonlinear functions are odd and nondecreasing,
to guarantee asymptotic convergence to the practical consen-
sus set for all Filippov solutions when the underlying graph
is undirected, directed ring, and directed spanning tree, respec-
tively. Moreover, we show the result cannot be extended to more
general topologies by examples. Again, as a specific application,
we extend the results in [12] to directed graphs.

The reasons we choose the Filippov solution are the twofolds.
First, for many nonlinear consensus protocols with a discontin-
uous controller, the classical and Carathéodory solutions do not
exist. In [9], it is proven that these solutions do not exist for quan-
tized consensus protocols. So, considering generalized solutions
is unavoidable. Furthermore, for systems that can guarantee the
existence of a classical solution, the results in this paper can
be applied in a straightforward manner. Second, the Filippov
set-valued map, compared to Krasovskii’s, eliminates possible
misbehavior of the right-hand side of the differential equation
on sets of zero measure [3]. Moreover, as will be proved in the
Appendix, the Filippov and Krasovskii solutions are equivalent
for the systems in Sections III and V-A.

The structure of this paper is as follows. In Section II, we
introduce some background material. In Section III, we consider
consensus protocols with nonlinear communication among the
agents. Section IV is devoted to the case when the actuator is
nonlinear. In Section V, we apply the results in Sections III
and IV to quantized consensus protocols. Finally, this paper is
wrapped up with the conclusion in Section VI.

Notations: With R−, R+ , and R�0 , we denote the sets of
negative, positive, and nonnegative real numbers, respectively.
The ith row and jth column of a matrix M are denoted as Mi,·
and M·,j , respectively. For simplicity, let M�

·,j denote (M·,j )�.
The vectors ρ1 , ρ2 , . . . , ρn denote the canonical basis of Rn . We
denote 1n and 0n as the column vectors containing only ones
and zeros in Rn . The cardinality of a set A is denoted |A|.

II. PRELIMINARIES

In this section, we briefly review some essentials from graph
theory [2] and give some properties of Filippov solutions [10].

Let G = (V, E , A) be a weighted digraph with node set
V = {v1 , . . . , vn}, edge set E ⊆ V × V , and weighted adja-
cency matrix A = [aij ] with nonnegative adjacency elements

aij . An edge of G is an ordered pair eij = (vi, vj ), and we write
I = {1, 2, . . . , n}. The adjacency elements aij are defined as
aij > 0 if and only if eji ∈ E . Moreover, aii = 0 for all i ∈ I.
For undirected graphs, A = A�.

The set of neighbors of node vi is denoted by Ni = {vj ∈
V : (vj , vi) ∈ E}. For each node vi , its in-degree is defined
as degin(vi) =

∑n
j=1 aij . The degree matrix of the digraph

G is a diagonal matrix Δ where Δii = degin(vi). The graph
Laplacian is defined as L = Δ − A. This implies L1n = 0n .

A directed path from node vi to node vj is a sequence of
edges from E such that the first edge starts from vi , the last edge
ends at vj , and every edge starts where the previous edge ends.
A graph is called strongly connected if for every two nodes
vi and vj , there is a directed path from vi to vj . A subgraph
G′ = (V′, E′, A′) of G is called a directed spanning tree for G if
V′ = V , E′ ⊆ E , and, for every node vi ∈ V′, there is exactly one
vj such that eji ∈ E′, except for one node, which is called the
root of the spanning tree. Furthermore, we call a node v ∈ V a
root of G if there is a directed spanning tree of G with v as a root.
In other words, if v is a root of G, then there is a directed path
from v to every other node in the graph. A digraph is a directed
ring if for every node vi , there exists exactly one vj such that
eij ∈ E and there exists exactly one vk such that eki ∈ E .

The incidence matrix of a digraph is denoted as B ∈ Rn×m ,
with Bij = −1 if the jth edge is toward vertex i, and equal to 1
if the jth edge is originating from vertex i, and 0 otherwise. For
undirected graphs, the incidence matrix can be defined with an
arbitrary orientation.

Lemma 1 (See [17, Lemma 2]): The Laplacian matrix
L of a strongly connected digraph G satisfies that zero is an
algebraically simple eigenvalue of L and there is a w ∈ Rn

+
such that w�L = 0 and 1�

n w = 1. Moreover, the symmetric
part of L�diag(w) is positive semidefinite.

In the remainder of this section, we discuss Filippov solutions.
Let X be a map from Rn to Rn , and let 2Rn

denote the collection
of all subsets of Rn . The Filippov set-valued map of X , denoted
F [X] : Rn → 2Rn

, is defined as

F [X](x) �
⋂

δ>0

⋂

μ(S )=0

co {X(B(x, δ)\S)} (1)

where B(x, δ) is the open ball centered at x with radius δ > 0,
S is a subset of Rn , μ denotes the Lebesgue measure, and
co denotes the convex closure. If X is continuous at x, then
F [X](x) contains only the point X(x).

Lemma 2: For an increasing function ϕ : R → R, the Fil-
ippov set-valued map satisfies the following.

1) F [ϕ](x) = [ϕ(x−), ϕ(x+)], where ϕ(x−), ϕ(x+) are the
left and right limits of ϕ at x, respectively.

2) For any x1 < x2 , and νi ∈ F [ϕ](xi), i = 1, 2, we have
ν1 � ν2 .

3) F [ϕ](x) = {ϕ(x)} for almost all x.
Proof: These items can be seen as a straightforward deduc-

tion from [20, Th. 1(1)], the definition of increasing functions,
and the fact that monotone functions are continuous almost ev-
erywhere, respectively. �
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With a slight abuse of the notation, we denote ϕ(x+)
(ϕ(x−)) : R → R. This should not be confused in the context.

Lemma 3 (See [27, Lemma 3. p. 365]): For an increasing
function ϕ : R → R, ϕ(x+) (ϕ(x−)) is defined everywhere and
is right (left) continuous for all x.

A Filippov solution of the differential equation ẋ(t) =
X(x(t)) on [0, t1 ] ⊂ R is an absolutely continuous function
x : [0, t1 ] → Rn that satisfies the differential inclusion

ẋ(t) ∈ F [X](x(t)) (2)

for almost all t ∈ [0, t1 ]. A Filippov solution t �→ x(t) is maxi-
mal if it cannot be extended forward in time, that is, if t �→ x(t)
is not the result of the truncation of another solution with a larger
interval of definition. Since Filippov solutions are not necessar-
ily unique, we need to specify two types of invariant sets. A set
R ⊂ Rn is called weakly invariant for (2) if, for each x0 ∈ R,
at least one maximal solution of (2) with initial condition x0 is
contained in R. Similarly, R ⊂ Rn is called strongly invariant
for (2) if, for each x0 ∈ R, every maximal solution of (2) with
initial condition x0 is contained in R. For more details, see [7]
and [10].

If f : Rn → R is locally Lipschitz, then its generalized gra-
dient ∂f : Rn → 2Rn

is defined by

∂f(x) := co
{

lim
i→∞

∇f(xi) : xi → x, xi /∈ S ∪ Ωf

}
(3)

where∇ denotes the gradient operator, Ωf ⊂ Rn denotes the set
of points, where f fails to be differentiable, and S ⊂ Rn is a set
of Lebesgue measure zero that can be arbitrarily chosen to sim-
plify the computation. The resulting set ∂f(x) is independent
of the choice of S [5].

Given a set-valued map F : Rn → 2Rn
, the set-valued Lie

derivativeLFf : Rn → 2R of a locally Lipschitz function f :
Rn → R with respect to F at x is defined as

LFf(x) := {a ∈ R | there exists ν ∈ F(x) such that

ζ�ν = a for all ζ ∈ ∂f(x)}. (4)

If F takes convex and compact values, then, for each x, LFf(x)
is a closed and bounded interval, possibly empty [7].

Finally, we recall that he following functions are regular1 and
Lipschitz continuous

V (x) := max
i∈I

xi, W (x) := −min
i∈I

xi (5)

which will be used to prove stability for some dynamical systems
in this paper, using [7, Th. 2].

III. MULTIAGENT SYSTEMS WITH NONLINEAR

COMMUNICATIONS

In this section, we consider a network of n agents with a
communication topology given by a weighted directed graph
G = (V, E , A). Agent i receives information from agent j if
and only if there is an edge from node vj to node vi in G.
Unlike the linear consensus protocol, here, a nonlinear map of

1The definition of a regular function can be found in [5], and we recall that
any convex function is regular.

the states is available to the agents. More precisely, we consider
the nonlinear consensus protocol

ẋ = −Lf(x) (6)

where f(x) = [f1(x1), . . . , fn (xn )]� and fi : R → R satisfies
the following assumption.

Assumption 1: The function fi : R → R is an increas-
ing function satisfying limxi →+∞ fi(xi) > 0 and limxi →−∞
fi(xi) < 0.

Note that we do not assume continuity of the function fi .
Examples of functions satisfying Assumption 1 include the sign
function and various quantization functions.

Lemma 4: Suppose the function f : Rn → Rn satisfies
f(x) = [f1(x1), . . . , fn (xn )]� and each fi satisfies Assumption
1; then, the Filippov set-valued map obeys

F [f ](x) =
n×

i=1
F [fi ](xi).

Proof: First, by Lemma 2, we have ×n
i=1 F [fi ](xi) =

×n
i=1[fi(x−

i ), fi(x+
i )]. Second, by [20, Th. 1(1)] and assump-

tions of this lemma, we have F [f ](x) = co{E}, where E =
{e ∈ Rn | ei ∈ {fi(x−

i ), fi(x+
i )},∀i ∈ I}. Notice that |E| �

2n . Hence, the conclusion follows by the observation that
co{E} = ×n

i=1[fi(x−
i ), fi(x+

i )]. �
In order to handle possible discontinuities, we understand

the solution of (6) in the Filippov sense, i.e., we consider the
differential inclusion

ẋ ∈ F [−Lf(x)](x) (7)

= −LF [f ](x) (8)

= −L
n×

i=1
F [fi ](xi) (9)

=: K1(x) (10)

where (8) and (9) are implied by [20, Th. 1(5)] and Lemma 4. The
existence of Filippov solutions can be guaranteed by assuming
monotonicity of fi , which implies that fi is locally essentially
bounded. Furthermore, we assume the maximal solution of (10)
exists for any initial condition. Denote

D1 =
{

x ∈ Rn | ∃σ ∈ R s.t. σ1n ∈ n×
i=1

F [fi ](xi)
}

. (11)

More precise illustrations of the set D1 and the set D2 defined
in (16) can be found in Remark 3.

Remark 1: One closely related notion of the Filippov so-
lution is the Krasovskii solution, e.g., [3]. Since the Krasovskii
set-valued map is the same as the Filippov one for any monotone
function, we can show that Krasovskii and Filippov solutions of
(6) are equivalent. More detailed discussion can be found in the
Appendix.

Proposition 5: If fi satisfies Assumption 1, the set D1 is
closed.

Proof: For any sequence {yk} ⊂ Rn satisfying limk→∞
yk = x and yk ∈ D1 , k = 1, 2, . . ., we shall show that x ∈ D1 .
Since Rn can be divided into finite orthants, there exists a sub-
sequence of {yk}, denoted as {yk	 }, which satisfies that all
the elements in the sequence {yk	 − x} belong to one orthant
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of Rn . In other words, yk	
i converge to xi from one side, i.e.,

yk	
i < xi or yk	

i > xi . To simplify the notation, we assume the
sequence {yk − x} itself belongs to one orthant of Rn .

Note that yk ∈ D1 implies that ∩n
i=1F [fi ](yk

i ) �= ∅. For the
case yk

i > xi , we have fi(yk−
i ) � fi(x−

i ), fi(yk+
i ) � fi(x+

i )
and limk→∞ fi(yk+

i ) = fi(x+
i ), which is based on Lemma 3.

Hence, we have
[

lim
k→∞

fi

(
yk−

i

)
, lim
k→∞

fi

(
yk+

i

)
]

⊂ [
fi

(
x−

i

)
, fi

(
x+

i

)]
.

Similarly, for the case yk
i < xi , we also get that result. Then,

∩n
i=1F [fi ](xi) �= ∅, i.e., x ∈ D1 . �
Next, we establish asymptotic convergence of system (10)

with respect to D1 .
Theorem 6: Consider the differential inclusion (10) with

fi satisfying Assumption 1. Suppose the underlying topology G
is strongly connected. Then, all the Filippov solutions converge
to D1 asymptotically.

Proof: Consider the Lyapunov function V1(x) = w�F (x),
where w ∈ Rn

+ is given by Lemma 1 and F (x) = [F1(x1)
, . . . , Fn (xn )] with Fi(xi) =

∫ xi

0 fi(τ)dτ . It can be verified
that V1 ∈ C0 and V1 is convex, which implies that V1 is reg-
ular. Moreover, by the monotonicity of fi , we have ∂Fi(xi) =
[fi(x−

i ), fi(x+
i )] = F [fi ](xi). Hence, V1 is locally Lipschitz

continuous. Moreover, by Assumption 1, the function V1 is ra-
dially unbounded. Indeed, limxi →∞ fi(τ)dτ = ∞.

Let Ψ1 be defined as

Ψ1 =
{

t � 0 | both ẋ(t) and
d

dt
V1(x(t)) exist

}

. (12)

Since x is absolutely continuous and V1 is locally Lipschitz, we
can let Ψ1 = R�0\Ψ̄1 , where Ψ̄1 is a Lebesgue measure zero
set. By [1, Lemma 1], we have

d

dt
V1(x(t)) ∈ LK1 V1(x(t)) (13)

for all t ∈ Ψ1 , and, hence, that the set LK1 V1(x(t)) is nonempty
for all t ∈ Ψ1 . For t ∈ Ψ̄1 , we have that LK1 V1(x(t)) is empty;
hence, maxLK1 V1(x(t)) < 0. In the rest of the proof, we only
consider t ∈ Ψ1 . Moreover, in the proofs of the remaining the-
orems in this paper, we always focus on a subset of R�0 on
which the set-valued Lie derivative of the corresponding Lya-
punov functions is not empty.

The gradient of V1 is given as

∂V1(x) = co
{

diag(w)ν | ν ∈ n×
i=1

F [fi ](xi)
}

. (14)

Next, we shall prove maxLK1 V1(x(t)) � 0. By definition,∀a ∈
LK1 V1(x(t)), we have that ∃u ∈ ×n

i=1 F [fi ](xi) such that

a = −u�L� diag(w)ν (15)

for all ν ∈ ×n
i=1 F [fi ](xi), i.e., diag(w)ν ∈ ∂V1(x). A special

case is that ν = u, which implies that a � 0 by Lemma 1. Hence,
we have maxLK1 V1(x(t)) � 0.

Finally, notice that a = 0 if and only if ×n
i=1 F [fi ](xi) ∩

span{1n} �= ∅. Hence, by the fact that D1 is closed, we have

{x ∈ Rn | 0 ∈ L̃K1 V1(x)} = D1 . By [7, Th. 2], all the Filip-
pov trajectories converge into the largest weakly invariant set

contained in {x ∈ Rn | 0 ∈ L̃K1 V1(x)}. Hence, the conclusion
holds. �

In the previous theorem, the topology was assumed to be
strongly connected. Next, we shall relax this assumption to di-
graphs containing a directed spanning tree, which for linear
consensus protocol is known to be a necessary and sufficient
condition for consensus. However, for the digraph cases, we
make an additional assumption that the agents are homoge-
neous, i.e., fi = fj for any i, j ∈ I.

Theorem 7: Suppose the nonlinear functions in (6) are
given as f(x) = [f̄(x1), f̄(x2), . . . , f̄(xn )], where f̄ satisfies
Assumption 1. If the underlying digraph G contains a directed
spanning tree, then all Filippov solutions of (10) asymptotically
converge to

D2 =
{

x ∈ Rn | ∃σ ∈ R s.t. σ1n ∈ n×
i=1

F [
f̄
]
(xi)

}

. (16)

Proof: In this case, the differential inclusion (10) can be
written as

ẋ ∈ −L
n×

i=1
F [

f̄
]
(xi) =: K2(x). (17)

This proof is divided into five steps.
1) Denote the set Ir = {i ∈ I | vi is a root of G} and the

subvectors xr and xf of x corresponding to Ir and I\
Ir , respectively. Since the subgraph corresponding to the
roots is strongly connected and the states of the roots
are not affected by the other agents, system (17) can be
written as

ẋr ∈ −Lr

n×
i=1

F [
f̄
]
(xi), i ∈ Ir (18)

ẋf ∈ −Lf

n×
i=1

F [
f̄
]
(xi), i ∈ I (19)

where Lr is the Laplacian matrix of the subgraph corre-
sponding to the roots. By applying Theorem 6, xr con-
verges to

{
xr | ∃a s.t. a ∈ F [f̄ ](xi) ∀i ∈ Ir

}
. (20)

2) In this item and the following item 3, we shall prove that
the functions V (x(t)) and W (x(t)), given as in (5), are
not increasing along the trajectories x(t) of the system
(17). We start with V in this part. We only focus on a
subset of R�0 on which the set-valued Lie derivative of
V is not empty. Let x(t) be a trajectory of (17) and define

α(x(t)) = {k ∈ I | xk (t) = V (x(t))}. (21)

Denote x(t) = xi(t) for i ∈ α(x(t)). The generalized
gradient of V is given as [5, Example 2.2.8]

∂V (x(t)) = co{ρk ∈ Rn | k ∈ α(x(t))}. (22)

Similar to the proof of Theorem 6, we focus on the
set Ψ2 such that LK2 V (x(t)) �= ∅ for t ∈ Ψ2 and
μ(R�0 \Ψ2) = 0. For t ∈ Ψ2 , let a ∈ LK2 V (x(t)). By
definition, there exists a νa ∈ ×n

i=1 F [f̄ ](xi) such that
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a = (−Lνa)� · ζ for all ζ ∈ ∂V (x(t)). Consequently, by
choosing ζ = ρk for k ∈ α(x(t)), we observe that νa

satisfies

−Lk,·νa = a ∀k ∈ α(x(t)). (23)

Next, we show that maxLK2 V (x(t)) � 0 for all t ∈ Ψ2
by considering two possible cases: Ir ⊆ α(x(t)) and
Ir � α(x(t)).
If Ir ⊆ α(x(t)), there are two subcases. First, |Ir | = 1,
i.e., there is only one root, denoted as vi . Then, Li,· =
0; hence, Li,·ν = 0 for any ν ∈ ×n

i=1 F [f̄ ](xi). By the
observation (23), we have LK2 V (x(t)) = {0}. Second,
|Ir | � 2. By the fact that the subgraph spanned by the
roots is strongly connected, there exists wi > 0 for i ∈ Ir

such that
∑

i∈Ir
wiLi,· = 0n , which implies that

∑

i∈Ir

wiLi,·ν = 0 (24)

for any ν ∈ ×n
i=1 F [f̄ ](xi). Again, by (23), we have

LK2 V (x(t)) = {0}.
If Ir � α(x(t)), there exists i ∈ Ir \α(x(t)). We define
α′(ν) as

α′(ν) =
{

i ∈ α(x(t)) | νi = max
j∈α(x(t))

νj

}

(25)

for any ν ∈ ×n
i=1 F [f̄ ](xi). From item 2 of Lemma 2,

for any j ∈ α′(ν), we know that νj = max νi , thus
Lj,·ν � 0. By the fact that the choice of ν is arbitrary
in ×n

i=1 F [f̄ ](xi) and the observation (23), we have
LK2 V (x(t)) ⊂ R�0 .
Moreover, we investigate the set {x | 0 ∈ LK2 V (x)} in a
more detailed manner. Denoting

Eα(x) = {eij ∈ E | j ∈ α(x)} (26)

we next show that 0 ∈ LK2 V (x) if and only if ∃ν ∈
×n

i=1 F [f̄ ](xi) such that νi = νj for any eij ∈ Eα(x) ,
which is equivalent to F [f̄ ](xi) ∩ F [f̄ ](xj ) �= ∅ for
all eij ∈ Eα(x) . The sufficient part is straightforward;
in fact, we can take νi = νj = f(x−) for any eij ∈
Eα(x) . Then, 0 ∈ LK2 V (x). The necessary part can
be proved as follows. Since 0 ∈ LK2 V (x), there ex-
ists ν ∈ ×n

i=1 F [f̄ ](xi) such that Lj,·ν = 0 for any j ∈
α(x). Then, this ν satisfies that α′(ν) = α(x). Indeed,
if α′(ν) � α(x), then for any j ∈ α′(ν) with eij ∈ E
and i /∈ α′(ν), Lj,·ν < 0. Hence, α′(ν) = α(x). Further-
more, by using the same argument, we have for any eij ∈
E satisfying i /∈ α(x) and j ∈ α(x), f(x−) ∈ F [f̄ ](xi).

3) For the Lyapunov functions W as given in (5), denote

β(x(t)) = {i ∈ I | xi(t) = −W (x(t))} (27)

and xi(t) = x(t) for i ∈ β(x(t)), and Eβ (x(t)) = {eij ∈
E | j ∈ β(x(t))}. By similar derivations, we find that
maxLK2 W (x(t)) � 0 and 0 ∈ LK2 W (x(t)) if and only
if ∃ν ∈ ×n

i=1 F [f̄ ](xi) such that νi = νj for any eij ∈
Eβ (x(t)) , which is equivalent to F [f̄ ](xi) ∩ F [f̄ ](xj ) �=
∅ for all eij ∈ Eβ (x(t)) .

4) So far, we have that V (x(t)) and W (x(t)) are not in-
creasing along the trajectories x(t) of the system (17).
Hence, the trajectories are bounded and remain in the set
[x(0), x(0)]n for all t � 0. Therefore, for any N ∈ R+ ,
the set SN = {x ∈ Rn | ‖x‖∞ � N} is strongly invari-
ant for (17). By [7, Th. 2], we have that all solutions of
(17) starting in SN converge to the largest weakly invari-
ant set M contained in

SN ∩ {x ∈ Rn : 0 ∈ LK2 V (x)}
∩ {x ∈ Rn : 0 ∈ LK2 W (x)}. (28)

5) We have proved the asymptotic stability of the system.
Next, we will prove that the set D2 is strongly invariant,
and for any x0 /∈ D2 , all the solutions satisfying x(0) =
x0 converge to D2 . Notice that D2 is closed by the same
argument as the one in Proposition 5.

We start with the strong invariance of D2 . Notice that by the
monotonicity of f̄ , we can reformulate D2 as

D2 =
{
x | F [

f̄
]
(x) ∩ F [

f̄
]
(x) �= ∅

}
. (29)

For any x0 ∈ D2 , we proved that any trajectories starting from
x0 , V (x(t)), and W (x(t)) are not increasing. Hence, x(t) �
x0 and x(t) � x0 for all t � 0, which, by Lemma 2, implies
that F [f̄ ](x(t)) ∩ F [f̄ ](x(t)) �= ∅ for all t and x(t) satisfying
x(0) = x0 . Then, x(t) ∈ D2 for all t � 0, which implies that
D2 is strongly invariant.

Next, we show that for any x0 /∈ D2 , all solutions satisfying
x(0) = x0 converge to D2 . We will prove it by contradiction.
Indeed, we assume that there exists x0 /∈ D2 and one solution
x̃(t) satisfying x̃(0) = x0 that does not converge to D2 . Since
the set D2 is strongly invariant, we have x̃(t) /∈ D2 for all t � 0.
Then, F [f̄ ](x̃) ∩ F [f̄ ](x̃) = ∅, where

x̃ = lim
t→∞V (x̃(t)), x̃ = − lim

t→∞W (x̃(t)).

Hence, there exists a constant C > 0, such that d(F [f̄ ](x̃),
F [f̄ ](x̃)) > C, where d(S1 , S2) = infy1 ∈S1 ,y2 ∈S2 d(y1 , y2) is
the distance between two sets S1 and S2 . For any i, j ∈ I
with i �= j, there exists a vector wij ∈ Rn such that wij�

L =
(ρi − ρj )�. For each pair i, j ∈ I, we choose one wij and col-
lect all the wij for i, j ∈ I in the set Ω. Notice that there are
only finite number of vectors in Ω. Then, for any t, i ∈ α(x̃(t))
and j ∈ β(x̃(t)), we have x̃(t) � x̃ and x̃(t) � x̃. Moreover,
since x̃(t) is uniformly bounded, there exists a constant τ (does
not depend on t) such that for any s ∈ [t, t + τ ]

w(s)�ẋ(s) >
C

2
(30)

where w : R → Ω is piecewise constant and w(s) = wij with
i ∈ α(t), j ∈ β(t) for s ∈ [t, t + τ ]. Note that for any T � 0,
the function w(s)�ẋ(s) is Lebesgue integrable on [0, T ], and by
(30), we have

∫ �

0
w(s)�ẋ(s)ds >

C

2
T (31)

which diverges as T → ∞. This is a contradiction to the fact
that w(s) is globally bounded, and for any T < ∞ and i ∈ I,
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∫ �
0 ẋi(s)ds is bounded. Hence, we have that for any x0 /∈ D2 ,

all the solutions satisfying x(0) = x0 will converge to D2 . Here
ends the proof. �

Remark 2: From the proof of Theorem 7, we know that
the maximal components of the trajectories of the system (17)
are not increasing, while the minimal ones are not decreasing.
Hence, (17) is a nonlinear positive system (e.g., [21]), i.e., with
positive initial conditions, the trajectories will be positive for
all the time. However, system (10) with all nonlinear functions
different is not necessarily a positive system.

Remark 3: Theorem 7 has precise interpretations in some
specific scenarios.

For the linear consensus protocol f̄(xi) = xi , trivially
F [fi ](xi) = {xi} and set D2 = span{1}. This coincides with
the result in [24].

For the case that f̄ is strictly increasing, by the fact that
F [f̄ ](y1) ∩ F [f̄ ](y2) = ∅ for any y1 �= y2 , we have D2 =
span{1}. Denote the subgraph spanned by the roots of G as
Gr , the corresponding Laplacian matrix as Lr , and xr ∈ R|Ir |

as the vector containing the root components of x. Since Gr

is strongly connected, there exists a positive vector ξ ∈ R|Ir |

such that ξ�Lr = 0|Ir |, e.g., [15]. Then, we can check that

ξ�ẋr = {0}. Hence, by Theorem 7, xr converges to ξ�xr (0)
ξ�1

asymptotically. This coincides with the result in [15].
For the case f̄ is a uniform quantizer, Theorem 7 extends the

result in [9] to directed topologies. We shall elaborate on this in
Section V.

The stability of system (6) under more general assumptions
than the ones in Theorem 7, namely, that fi �= fj , i �= j but
still the graph is directed, is an open problem. More precisely,
additional assumptions are needed for fi in order to guarantee
that V and W are nonincreasing.

IV. MULTIAGENT SYSTEMS WITH NONLINEAR ACTUATORS

In this section, we consider the case when the actuators of the
agents are nonlinear, instead of the nonlinear communications as
in the previous section. Specifically, we consider the following
nonlinear consensus protocol:

ẋi = −
∑

ej i ∈E
aij gij (xi − xj ) (32)

where gij : R → R satisfy Assumption 1. The existence of Fil-
ippov solutions can be guaranteed similarly as in Section III. We
assume that the maximal solution exists for all initial condition.

In this section, we consider three different topologies, namely,
connected undirected graph, directed ring graph, and directed
spanning tree. We will show, at the end of the section, that the
result cannot be extended to general digraphs.

First, we assume that the underlying graph G is undirected.
Besides Assumption 1, we assume that gij = gji for all i, j ∈ I
such that there exists eij ∈ E , which is reasonable since there is
no orientation on each edge. Recall that m denotes the number
of edges. We denote the edges e1 , . . . , em (instead of eij ), and
the corresponding weights a1 , . . . , am . Furthermore, if gij s are

odd, we can write the system (32) in a vectorized form as

ẋ = −Bg(B�x) =: −Bh(x) (33)

where g(x) = [a1g1(x1), a2g2(x2), . . . , am gm (xm )], h(x) =
g(B�x), and B is the incidence matrix. The procedure described
in this paragraph is explained in the following example.

Example 1: Consider system (32) defined on the undirected
ring graph with three nodes v1 , v2 , v3 . Then, system (32) is given
as

ẋ1 = −g12(x1 − x2) − g13(x1 − x3)

ẋ2 = −g21(x2 − x1) − g23(x2 − x3)

ẋ3 = −g31(x3 − x1) − g32(x3 − x2).

Relabel the edges e12 , e23 , e31 as e1 , e2 , e3 , respectively. Then,
by the assumptions that gji = gij , we can also relabel the non-
linear function as g1 , g2 , g3 according to the edges. This allows
us to rewrite the dynamic as

ẋ1 = −g1(x1 − x2) − g3(x1 − x3)

ẋ2 = −g1(x2 − x1) − g2(x2 − x3)

ẋ3 = −g3(x3 − x1) − g2(x3 − x2)

which is in the compact form as (33).
Theorem 8: Suppose the underlying graph is a connected

undirected graph. If the functions gi satisfy Assumption 1 and
are odd, then all the Filippov solutions of (32) asymptotically
converge into

H1 =
{

x ∈ Rn | 0m ∈ m×
i=1

F [gi ]
(
B�

·,ix
)
}

. (34)

Proof: Notice that we do not assume that gi is continuous.
By (33) and [20, Th. 1], the differential inclusion (32) satisfies

ẋ ∈ −BF [h](x) (35)

⊂ −B
m×

i=1
aiF [gi ](B�

·,ix) =: K3(x). (36)

Consider the Lyapunov function V3(x) = 1
2 x�x and only a sub-

set of R�0 on which the set-valued Lie derivative of V3 is not
empty. The set-valued Lie derivative LK3 V3(x) is given as

{

a ∈ R | a = −x�Bν, ν ∈ m×
i=1

aiF [gi ]
(
B�

·,ix
)
}

.

In this case, LK3 V3(x) �= ∅ for all t > 0.
By the fact that gi is monotone and gi(0) = 0 (since gi is an

odd function), we have

F [gi ](yi) ⊂
{

R�0 , if yi > 0

R�0 , if yi < 0.
(37)

Hence, νi and (B�x)i have the same sign for any ν ∈ ×m
i=1 ai

F [gi ](B�
·,ix) and i ∈ I. This implies that maxLK3 V3(x) � 0.

By [7, Th. 2], all solutions of (36) converge to the largest weakly
invariant set M contained in

{x ∈ Rn : 0 ∈ LK3 V3(x)}. (38)
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Notice that 0 ∈ LK3 V3(x) if and only if 0m ∈ ×m
i=1 F [gi ]

(B�
·,ix), and the conclusion holds.
The remaining task is to show that H1 is closed. First,

we notice that H1 �= ∅. Indeed, since the functions gi are
odd, then 0 ∈ F [gi ](0), i.e., span{1n} ⊂ H1 . Second, since
F [gi ](zi) = [gi(z−i ), gi(z+

i )] and gi(z−i )(gi(z+
i )) is left (right)

continuous (see Lemma 3), there exists λi > 0, such that
{zi, | 0 ∈ F [gi ](zi)} = [−λi , λi ]. In conclusion, we have H1 =
{x | |xk − x	 | � λi ,∀ei = (xk , x	) ∈ E}, which is closed. �

Remark 4: If the function gi is strictly sign preserving,
namely, ygi(y) > 0 if y �= 0, the set H1 = span{1} when G
is connected. Therefore, Theorem 8 indicates that the states
of the agents asymptotically converge to consensus. In fact,
finite-time consensus can be proved for some special cases,
e.g., gi = sign [4].

If gi is not strictly sign preserving, for example, if gi is a
uniform quantizer, the points in set H1 are sometimes referred
as practical consensus. This coincides with the results in the
literature, e.g., [12].

Remark 5: Theorem 8 is different from [26, Th. 14] in the
sense that sign preservation (see [26, Def. 1]) is not assumed for
the functions gi in Theorem 8. Hence, precise consensus cannot
be concluded in general from Theorem 8.

Before we present the next result, we employ an example to
show that if the functions gij are not odd, the trajectories of (32)
can be unbounded.

Example 2: Consider the system (32) defined on the undi-
rected graph with two nodes v1 , v2 and one edge e1 . Further-
more, assume g1 = ϕ with

ϕ(x) =

{
0, if x > 0

−1, if x � 0.
(39)

Then, the closed-loop system can be written as

ẋ1 = −ϕ(x1 − x2)

ẋ2 = −ϕ(x2 − x1). (40)

With a slight abuse of the notation, we denote

ϕ(Lx) :=

[
ϕ(x1 − x2)

ϕ(x2 − x1)

]

(41)

where L is the Laplacian matrix of the graph. Notice that since ϕ
is not an odd function, the system cannot be written in the form
(33). Moreover, for any x0 ∈ span{12}, the Filippov set-valued
map

F [−ϕ(Lx)] = co

{[
1
0

]

,

[
0
1

]}

(42)

which implies that x(t) = x0 + 1
212t is a Filippov solution.

Hence, the trajectories can diverge. A simulation with x0 =
[0.5, 0]� is given in Fig. 1.

In fact, by analyzing the Lyapunov function |x1 − x2 |, we can
show that the trajectory of (40) converges to the consensus space
{x ∈ R2 | x1 = x2} in finite time and then slides on it. Hence,
in this example, the consensus space and the solutions x(t) =
η(t)12 with nonconstant η are regarded as a sliding surface

Fig. 1. Simulation of system (40) with initial condition x0 = [ 1
2 , 0]�. The

gray surface is the consensus space. The trajectory hits the consensus
space at 1

2 12 when t = 1
2 , i.e., the point a1 . For t ∈ [ 1

2 ,∞), the solution
is ( 1

4 + 1
2 t)12 , which diverges as t → ∞.

and sliding solutions, respectively. In some applications, the
diverging sliding solutions are undesired; thus, extra conditions
on the nonlinearities are needed to eliminate these trajectories
(see Remark 6).

We shall consider extensions of Theorem 8 from undirected
graphs to digraphs. We start with directed rings. By relabeling
the edges as e1 = (vn , v1), e2 = (v1 , v2), . . . , en = (vn−1 , vn ),
the dynamical system (32) can be written in the vectorized form

ẋ = −g
(−B�x

)
(43)

where B is the incidence matrix of the ring and g is the same as
in (33).

Theorem 9: Suppose the underlying graph is a ring and gi

satisfies Assumption 1. Then, all the Filippov solutions of (32)
asymptotically converge to

H2 =
{

x ∈ Rn | 0n ∈ n×
i=1

F [gi ]
(−B�

·,ix
)
}

(44)

if
1) |I| = 2 and gi is odd for any ei ∈ E , or
2) |I| � 3 and gi(0) = 0,∀ei ∈ E and ∃ej ∈ E such that

F [gj ](0) = {0}.
Proof: The Filippov differential inclusion corresponding to

(43) is given as

ẋ ∈ F [−g
(
B�x

)]
(x) =: K4(x). (45)

Consider the candidate Lyapunov functions V and W given
as in (5). Similar to the proof of Theorem 6, we only consider
t ∈ Ψ4 such that LK4 V (x(t)) and LK4 W (x(t)) are nonempty,
and μ(R�0 \Ψ4) = 0. In order to show maxLK4 V (x(t)) � 0,
we consider the following two cases.

1) If x /∈ span{1}, there exists i ∈ α(x), which in defined
as (21), and {j} = Ni such that xj < xi . Since gi is
monotone and gi(0) = 0, we have (37) holds. Hence,
maxLK4 V (x(t)) � 0.

2) If x ∈ span{1}, K4(x) can be analyzed in details as
follows.
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a) If |I| = 2 and gi is odd for any ei ∈ E , then

F [−g(B�x)](x)

= co

{[
a1g1(0+)

a2g2(0−)

]

,

[
a1g1(0−)

a2g2(0+)

]}

.

By the fact that gi is odd, the set F [g(B�x)](x) ∩
span{12} = [0, 0]�.

b) if |I| � 3 and gi(0) = 0,∀ei ∈ E and there ex-
ists ej ∈ E such that F [gj ](0) = {0}, without
loss of generality, we assume F [g1 ](0) = {0}.
For any x ∈ span{1n}, we have ν1 = 0 for any
ν ∈ F [−g(B�x)](x).

In both cases, the set-valued Lie derivative LK4

V (x(t)) = {0}.
So far, we proved that maxLK4 V (x(t)) � 0. And maxLK4

W (x(t)) � 0 can be proved in the same manner. This implies
that the system (45) is Lyapunov stable.2 Next, we shall show
to which set the trajectories converge.

Consider the coordination transformation z = −B�x. By
[20, Th. 1], we have that

ż = −B�ẋ

⊂ −B�F [−g
(−B�x

)]
(x)

⊂ −B� n×
i=1

aiF [−gi ]
(−B�

·,ix
)

= B� n×
i=1

aiF [gi ](zi). (46)

Again, since −B� is the Laplacian matrix of the ring graph,
we have that the differential inclusion of z is the same as
(10). Hence, by Theorem 6, the trajectories z(t) converge to
{z ∈ Rn | ∃c ∈ R s.t. c1 ∈ ×n

i=1 aiF [gi ](zi)}. Moreover, by
the fact that 1�z = 0 and (37), we have c = 0. This implies
that the trajectories x(t) of (45) converge to H2 . Here, the
closedness of H2 follows the same arguments as in the proof of
Theorem 8. �

Remark 6: For condition 1 in Theorem 9, Example 2 can
be employed to show the necessity of having odd function gi .
For condition 2, [26, Example 16], which consider the case
gi = sign,∀ei ∈ E , shows the necessity of existence ei ∈ E
s.t. F [gi ](0) = {0} to avoid an unbounded solution like in
Example 2.

For the rest of this section, we consider the case that the
underlying graph is a directed spanning tree.

Corollary 10: Consider the dynamical system (32) defined
on a directed spanning tree. Suppose that gij = ḡ satisfies As-
sumption 1 and ḡ(0) = 0; the weights aij = a,∀eji ∈ E . Then,
all the Filippov solutions asymptotically converge to

H3 =
{

x ∈ Rn | ∃σ ∈ F [ḡ](0) s.t.

σ1n−1 ∈ n−1×
i=1

F [ḡ]
(−B�

·,ix
)
}

. (47)

2Notice that in this paper, we do not assume the nonlinear functions to be sign
preserving, as defined in [26, Def. 1], so exact consensus cannot be expected.

Proof: Denote the root of G as v1 . Since the state of the
root is constant, the differential inclusion corresponding to (32)
can be written as

ẋ ∈ F
[

0

−ḡ(−B�x)

]

(x) =: K5(x) (48)

where, without loss of generality, we take the weight a = 1, and
for general weight, we denote agij as ḡ.

Since the Laplacian matrix of the tree is given by

−L =

[
0�n
B�

]

(49)

it can be verified by (1) that

K5(x) = F [−ḡ(Lx)](x). (50)

Similarly to Theorem 9, we shall first show that maxLK5

V (x(t)) � 0 and maxLK5 W (x(t)) � 0, where V and W given
as in (5), for t ∈ Ψ5 satisfying that R�0 \Ψ5 is a Lebesgue
measure zero set. In order to show maxLK4 V (x(t)) � 0, we
consider the following two cases.

1) If 1 ∈ α(x), defined in (21), then by the fact that
F [ḡ(0)](x) = {0}, we have LK5 V (x(t)) = {0}.

2) If 1 /∈ α(x), then there exists i ∈ α(x) and {j} = Ni

such that xj � xi . Then, by (37) and F [ḡ(Lx)](x) ⊂
×n

i=1 F [ḡ(Li,·x)](x), we have LK5 V (x(t)) ⊂ R�0 .
So far, we have proved that maxLK5 V (x(t)) � 0. The same

conclusion holds for W . This implies that the set H3 is Lya-
punov stable for system (48). Next, we shall show H3 is in fact
asymptotically stable.

Consider the coordinate transformation z = Lx. Then, z sat-
isfies the following differential inclusion:

ż ∈ LK5(x)

⊂ L

(

{0} × n−1×
i=1

F [−ḡ]
(−B�

·,ix
)
)

⊂ −L

(

F [ḡ](0) × n−1×
i=1

F [ḡ]
(−B�

·,ix
)
)

(51)

where the first ⊂ is implied by [20, Th. 1(3) (4)], and the second
one is implied by {0} ⊂ F [ḡ](0), which can be seen from the
assumption that ḡ(0) = 0 and ḡ is monotone. So far, we have

ż ∈ −L

(
n×

i=1
F [ḡ](zi)

)

(52)

which is in the same form as (10). Hence, by Theorem 7 and the
fact z1 ≡ 0, the conclusion holds. Here, the closedness of H3
follows the same arguments as in the proof of Theorem 8.

Here, we interpret Corollary 10 by an example. �
Example 3: If the function ḡ is strictly increasing, ḡ(0) = 0,

and is continuous at the origin, then trivially F [ḡ](0) = {0}.
Furthermore, we have F [ḡ](y) ⊂ R+ if y > 0 and F [ḡ](y) ⊂
R− if y < 0. Hence, Corollary 10 implies that the states of the
agents asymptotically converge to consensus.

For general ḡ, precise consensus cannot be guaranteed, for
instance, if ḡ is a uniform quantizer (see Corollary 12).
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Remark 7: For general directed graphs, the trajectories will
not converge to the sets given in Theorem 9 and Corollary 10.
An example is given in the following section.

V. APPLICATIONS TO QUANTIZED CONSENSUS

In this section, we shall discuss the results in Sections III and
IV for a special type of nonlinear consensus algorithms, namely,
quantized consensus algorithms. Quantization is common in ap-
plications (e.g., [8], [9], [12], [19]) and may describe imperfect
information exchange or communication constraints. There are
three main types of quantizers, namely, uniform, asymmetric,
and logarithmic quantizers

qu (z) =
⌊

z

Δ
+

1
2

⌋

Δ (53)

qa(z) =
⌊ z

Δ

⌋
Δ (54)

ql(z) =

{
sign(z) exp (qu (ln(|z|))) , if z �= 0

0, if z = 0
(55)

respectively, where Δ is a positive constant.
In this section, we replace the nonlinear functions in sys-

tem (6) and (32) by the aforementioned quantizers. By doing
this, we extend some existing results about quantized consensus
algorithms from undirected to directed graphs.

A. Quantized Communication

Consider a multiagent system with quantized communicated
data

ẋi =
n∑

j=1

aij

(
qj (xj ) − qi(xi)

)
(56)

where qi : R → R, i = 1, . . . , n, denote one of (possibly dif-
ferent) the quantizers (53)–(55). If x ∈ Rn , we denote with
some abuse of notation q(x) = (q1(x1), . . . , qn (xn ))�. Hence,
the dynamics (56) can be written in the vector form as

ẋ = −Lq(x). (57)

Consider directed graphs. Let the quantizer be uniform, i.e.,
qi = qu ∀i ∈ I. Then, system (57) can be written as

ẋ = −Lqu (x). (58)

In this case, the set D2 defined in (16) is given as

{x ∈ Rn | ∃k ∈ Z such that kΔ1n ∈ F [qu ](x)} (59)

which is equivalent to

Q :=
{

x ∈ Rn | ∃k ∈ Z s.t.

(

k − 1
2

)

Δ � xi �
(

k +
1
2

)

Δ ∀i ∈ I
}

. (60)

With quantized communication, precise consensus cannot be
achieved in general. We say that the state variables of the agents
converge to practical consensus, if x(t) → Q as t → ∞.

Fig. 2. Strongly connected digraph used in Examples 4.

Now, we can extend the result in [9], based on Theorem 7,
from undirected to directed graphs.

Corollary 11: Consider the system (58) defined on a di-
rected graph. If the graph contains a spanning tree, all the Filip-
pov solutions asymptotically converge to Q.

Remark 8: When the underlying graph is strongly con-
nected or undirected, Theorem 6 implies the stability of system
(57) when each qi takes any of the form qu , qa , or ql .

B. Quantized Actuation

Consider a multiagent system with quantized actuation

ẋi =
n∑

j=1

aij q(xj − xi). (61)

By specifying the quantizer q to be uniform quantizer qu , we
have the set H1 in (34) can be rewritten as

P :=
{

x ∈ Rn | −1
2
Δ � xi − xj � 1

2
Δ ∀eij ∈ E

}

. (62)

Then, Theorems 8 and 9 and Corollary 10 lead to the follow-
ing result.

Corollary 12: Consider the system (61) with uniform quan-
tizer qu ; then, all the Filippov solutions asymptotically converge
to the set P if

1) G is undirected, or
2) G is a directed ring or a directed spanning tree.
Proof: This corollary is a direct application of the results in

Section IV, since qu is odd and continuous at the origin, which
implies that F [qu ](0) = {0}. �

Remark 9: The undirected case corresponding to
Corollary 12 was presented in [12].

In the following example, we show that the extension cannot
be made to more general directed graphs containing cycles.

Example 4: Consider the multiagent system (32) defined
on the digraph in Fig. 2. Furthermore, assume gij = qu with
quantizer constant Δ = 1. Given the initial condition x0 =
[0,− 1

3 ,− 2
3 , 1

3 , 2
3 , 0, 0]�, it can be verified that x(t) = x0 ,∀t >

0, is a Filippov solution. However, this solution does not belong
to the set P in (62). In fact, |x3 − x6 | = |x5 − x6 | > 1

2 Δ.
If the quantizer in (61) is replaced by the asymmetric qa ,

diverging sliding solutions will appear as shown in the following
example.

Example 5: Consider the system (61) with asymmetric
quantizer qa defined on the directed ring graph with two nodes.
Since F [qa ](0) = F [ϕ](0), where ϕ is defined in (39), for any
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x ∈ span{12}, the Filippov set-valued map F [qa(−Lx)](x) =
F [ϕ(−Lx)](x) is given as (42). Hence, for any x0 ∈ span{12},
x(t) = x0 + 1

21t is a Filippov solution. However, for system
(61) defined on a directed ring graph, if there exists an edge eij

on which the quantizer is qu or ql , the solution will be bounded.

VI. CONCLUSION

In this paper, we considered two general nonlinear consen-
sus protocols, namely, multiagent systems with nonlinear com-
munication or actuator constraints. For both cases, we proved
asymptotic convergence to a consensus set for various topolo-
gies. More precisely, for the case with nonlinear communication,
we considered the undirected graphs and directed graphs with
a spanning tree. For the case with nonlinear actuation, we con-
sidered undirected graphs, directed rings, and directed spanning
trees. Finally, we applied the results to quantized consensus
protocols. Interesting problems for the future include switching
topologies, and robustness studies.

APPENDIX

In this appendix, we discuss the equivalence between the
Filippov and Krasovskii solutions of system (10).

First, we introduce the Krasovskii set-valued map and the
corresponding Krasovskii solutions. The Krasovskii set-valued
map of X , denoted K[X] : Rn → 2Rn

, is defined as

K[X](x) �
⋂

δ>0

co {X(B(x, δ))}. (63)

Notice that different from Filippov set-valued map (1), here, we
do not exclude any zero-measure subset S. If X is continuous
at x, then K[X](x) contains only the point X(x).

In the following proposition, we show a special case that the
Krasovskii and Filippov set-valued maps are coincident.

Proposition 13: Suppose the function f : Rn → Rn

satisfies f(x) = [f1(x1), . . . , fn (xn )]� and each fi satisfies
Assumption 1; then, the Krasovskii set-valued map obeys

K[f ](x) =
n×

i=1
F [fi ](xi).

Proof: By definition (63) and Lemma 2, we have that for
each component fi satisfying Assumption 1

K[fi ](xi) = [fi(x−
i ), fi(x+

i )]

which is equivalent to the Filippov set-valued map F [fi ](xi).
Then, by using the same arguments as in Lemma 4, we conclude
that for the vector-valued function f , we have

K[f ](x) =
n×

i=1
[fi(x−

i ), fi(x+
i )]

=
n×

i=1
F [fi ](xi).

�
A Krasovskii solution of the differential equation ẋ(t) =

X(x(t)) on [0, t1 ] ⊂ R is an absolutely continuous function
x : [0, t1 ] → Rn that satisfies the differential inclusion

ẋ(t) ∈ K[X](x(t)) (64)

for almost all t ∈ [0, t1 ]. Now, the Krasovskii solutions of (6)
are the solutions of the following differential inclusion:

ẋ ∈ K[−Lf(x)](x)

= −LK[f ](x)

= −LF [f ](x)

where the first equality is based on [3, Proposition 11], and the
second one is based on Proposition 13. Hence, the Krasovskii
and Filippov solutions of (6) are equivalent.
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