
Convergence of Distributed Averaging and Maximizing Algorithms
Part II: State-dependent Graphs

Guodong Shi and Karl Henrik Johansson

Abstract— In this paper, we formulate and investigate a gen-
eralized consensus algorithm which makes an attempt to unify
distributed averaging and maximizing algorithms considered in
the literature. Each node iteratively updates its state as a time-
varying weighted average of its own state, the minimal state, and
the maximal state of its neighbors. In Part I of the paper, time-
dependent graphs are studied. This part of the paper focuses
on state-dependent graphs. We use a µ-nearest-neighbor rule,
where each node interacts with its µ nearest smaller neighbors
and the µ nearest larger neighbors. It is shown that µ+1 is a
critical threshold on the total number of nodes for the transit
from finite-time to asymptotic convergence for averaging, in the
absence of node self-confidence. The threshold is 2µ if each node
chooses to connect only to neighbors with unique values. The
results characterize some similarities and differences between
distributed averaging and maximizing algorithms.

Index Terms— Averaging algorithms, Max-consensus, Finite-
time convergence

I. INTRODUCTION

Distributed averaging algorithms and max-consensus al-
gorithms are two basic models for distributed information
processing over networks. In general they tell a same story
that nodes exchange information with its neighbors under
certain communication graph, update their states based on
the information received, and a collective state convergence
to a common state will eventually be achieved. Applications
for averaging algorithms can be found in engineering [11],
[12], [30], computer science [8], [9], and social science
[5], [6], [7]. Max-consensus algorithms have been widely
used for leader election, network size estimation, and various
applications in wireless networks [34], [30], [29].

Central to the study of averaging and maximizing algo-
rithms is the convergence to a consensus. It can be hard
to analyze due to the switching underlying communication
graph, and various convergence conditions have been estab-
lished for time-dependent graphs [11], [23], [12], [13], [15],
[16], [14], [17], [16]. Asymptotic convergence is common
in the study of averaging consensus algorithms [14], [15],
[12], while it has been shown that maximizing algorithms
converge in general in finite time [34], [35], [36]. Finite-
time convergence of averaging algorithms was investigated
in [30], [32], [33] for continuous-time models, and recently
finite-time consensus in discrete time was discussed in [40]
for a special case of gossiping [39].
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The switching topology can be dependent on the node
states. For instance, in Krause’s model, each node is con-
nected only to nodes within a certain distance [21]. Vicsec’s
model has a similar setting but with higher-order node
dynamics [20]. Because the node dynamics is coupled with
the graph dynamics for state-dependent graphs, the conver-
gence analysis is quite challenging. Deterministic consensus
algorithms with state-dependent graph were studied in [22],
[26], and convergence results for state-dependent interactions
under probabilistic models were established in [24], [25].

In this paper, we make the simple observation that averag-
ing and maximizing algorithms can be viewed as instances
of a more general distributed processing model. Using this
model the transition of the consensus convergence can be
studied for the two classes of distributed algorithms in a
unified way. Each node iteratively updates its state as a
weighted average of its own state together with the minimum
and maximum states of its neighbors. By special cases for
the weight parameters, averaging and maximizing algorithms
can be analyzed.

This part of the paper considers time-dependent graphs.
In both Krause’s [21] and Vicsek’s [20] models, nodes
interact with neighbors whose distance is within a certain
communication range. Recently, it was discovered through
empirical data that in a bird flock each bird seems to interact
with a fixed number of nearest neighbors, rather than with
all neighbors within a fixed metric distance [27]. Nearest-
neighbor model has been studied under a probabilistic set-
ting on the graph connectivity for wireless communication
networks [28]. From a social network point of view, the
evolution of opinions may result from similar models since
members tend to exchange information with a fixed number
of other members who hold a similar opinion as themselves
[5], [26].

We use a µ-nearest-neighbor rule to generate state-
dependent graphs, in which each node interacts with its µ
nearest smaller neighbors (µ neighbors with smaller state
values), and the nearest µ larger neighbors. This model is
motivated from recent studies of collective bird behavior
[27]. For averaging algorithms without node self-confidence
under such state-dependent graphs, we show that µ + 1 is
a critical value for the total number of nodes: finite-time
consensus is achieved globally if the number of nodes is no
larger than µ+ 1, and finite-time consensus fails for almost
all initial conditions if the number of nodes is larger than
µ + 1. Moreover, it is shown that this critical number of
nodes is instead 2µ if each node chooses to connect only
to neighbors with distinct values in the neighbor rule. Time-
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dependent graph models are studied in Part I of the paper
[41], and a complete version of the paper can be found in
[42].

The rest of the paper is organized as follows. In Section
II we introduce the considered network model, the state de-
pendent node interaction, the uniform processing algorithm,
and the consensus problem. The main results are presented
in Section III. Finally some concluding remarks are given in
Section IV.

II. PROBLEM DEFINITION

In this section, we introduce the network model, the
considered algorithm, and define the problem of interest.

A. Network

We first recall some concepts and notations in graph theory
[1]. A directed graph (digraph) G = (V, E) consists of a
finite set V of nodes and an arc set E ⊆ V ×V . An element
e = (i, j) ∈ E is called an arc from node i ∈ V to
j ∈ V . If the arcs are pairwise distinct in an alternating
sequence v0e1v1e2v2 . . . ekvk of nodes vi ∈ V and arcs
ei = (vi−1, vi) ∈ E for i = 1, 2, . . . , k, the sequence is
called a (directed) path with length k. If there exists a path
from node i to node j, then node j is said to be reachable
from node i. Each node is thought to be reachable by itself.
A node v from which any other node is reachable is called
a center (or a root) of G. A digraph G is said to be strongly
connected if node i is reachable from j for any two nodes
i, j ∈ V; quasi-strongly connected if G has a center [2]. The
distance from i to j in a digraph G, d(i, j), is the length
of a shortest simple path i → j if j is reachable from
i, and the diameter of G is diam(G)= max{d(i, j)|i, j ∈
V, j is reachable from i}. The union of two digraphs with
the same node set G1 = (V, E1) and G2 = (V, E2) is defined
as G1 ∪ G2 = (V, E1 ∪ E2). A digraph G is said to be
bidirectional if for every two nodes i and j, (i, j) ∈ E if
and only if (j, i) ∈ E . A bidirectional graph G is said to be
connected if there is a path between any two nodes.

Consider a network with node set V = {1, 2, . . . , n}, n ≥
3. Time is slotted. Denote the state of node i at time k ≥ 0
as xi(k) ∈ R. Then x(k) =

(
x1(k) . . . xn(k)

)T
represents

the network state.
Throughout this paper, we call node j a neighbor of node

i if there is an arc from j to i in the graph. Each node
is supposed to always be a neighbor of itself. Let Ni(k)
represent the neighbor set of node i at time k.

B. State-dependent Communication

In this section, we consider a network model in which
nodes interact only with other nodes having a close state
value. Consider the following nearest-neighbor rule.

Definition 2.1 (Nearest-neighbor Graph): For a positive
integer µ and any node i ∈ V , there is a link entering i
from each node in the set N−i (k)∪N+

i (k), where N−i (k) ={
nearest µ neighbors from {j ∈ V : xj(k)< xi(k)}

}
denotes

the nearest smaller neighbor set, and N+
i (k) =

{
nearest

µ neighbors from {j ∈ V : xj(k)> xi(k)}
}

denotes the

Fig. 1. Examples of nearest-neighbor graph Gµn
x(k)

and nearest-value graph
Gµv
x(k)

for µ = 2. Note that for a given set of states, these graphs are in
general not unique.

nearest larger neighbor set. The graph defined by this nearest
neighbor rule is denoted as Gµnx(k), k = 0, 1, . . . .

Naturally, if there are less than µ nodes with states
smaller than xi(k), N−i (k) has less that µ elements. Similar
condition holds for N+

i (k). Hence, the number of neighbor
nodes is not necessarily fixed in the nearest-neighbor graph.

Remark 2.1: Note that, at each time k, the nearest-
neighbor graph is uniquely determined by the node states.
The node interactions are indeed determined by the distance
between the node states. In this sense, the nearest-neighbor
graph shares similar structure with Krause’s model [21],
[22], where each node communicates with the nodes within
certain radius. This nearest-neighbor graph also fulfills the
interaction structure in the bird flock model discussed in [27]
since each node communicates with an almost fixed number
of neighbors, nearest from above and below.

Note that in the definition of the nearest-neighbor graph,
nodes may have neighbors with the same state values. We
consider the following nearest-value graph, where each node
considers only neighbors with different state values.

Definition 2.2: (Nearest-value Graph) For a positive inte-
ger µ and any node i ∈ V , there is a link entering i from
each node in the set N−i (k) ∪ N+

i (k), where N−i (k) ={
nearest µ neighbors with different values from {j ∈ V :
xj(k)< xi(k)}

}
denotes the nearest smaller neighbor set,

and N+
i (k) =

{
nearest µ neighbors with different values

from {j ∈ V : xj(k) > xi(k)}
}

denotes the nearest larger
neighbor set. The graph defined by this nearest neighbor rule
is denoted as Gµvx(k), k = 0, 1, . . . .

An illustration of nearest-neighbor and nearest-value
graphs at a specific time instance k is shown in Figure 1
for n = 4 nodes and µ = 2.

C. Algorithm

The classical average consensus algorithm in the literature
is given by

xi(k + 1) =
∑

j∈Ni(k)

aij(k)xj(k), i = 1 . . . , n. (1)

Two standing assumptions are fundamental in determining
the nature of its dynamics:
A1 (Local Cohesion)

∑
j∈Ni(k) aij(k) = 1 for all i and k;

A2 (Self-confidence) There exists a constant η > 0 such
that aii(k) ≥ η for all i and k.
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These assumptions are widely imposed in the existing
works, e.g., [12], [11], [19], [14], [15], [23]. With A1 and
A2, we can always write the average consensus algorithm
(1) into the following equivalent form [42]:

xi(k + 1) = ηxi(k) + α
〈i〉
k min

j∈Ni(k)
xj(k)

+
(
1− η − α〈i〉k

)
max

j∈Ni(k)
xj(k), (2)

where α〈i〉k ∈ [0, 1−η] for all i and k. Thus, the information
processing principle behind distributed averaging is that each
node iteratively takes a weighted average of its current state
and the minimum and maximum states of its neighbor set.

The standard maximizing algorithm [34], [35], [36] is
defined by

xi(k + 1) = max
j∈Ni(k)

xj(k), (3)

so distributed maximizing is each node interacting with its
neighbors and simply taking the maximal state within its
neighbor set.

In this paper, we aim to present a model under which
we can discuss fundamental differences of some distributed
information processing mechanisms. We consider the follow-
ing algorithm for the node updates:

xi(k + 1) = ηkxi(k) + αk min
j∈Ni(k)

xj(k)

+
(
1− ηk − αk

)
max

j∈Ni(k)
xj(k), (4)

where αk, ηk ≥ 0 and αk + ηk ≤ 1. We denote the set of
all algorithms of the form (4) by A, when the parameter
(αk, ηk) takes value as ηk ∈ [0, 1], αk ∈ [0, 1 − ηk]. This
model is a special case of (2) as the parameter αk is not
depending on the node index i in (4).

Note that A represents a uniform model for distributed
averaging and maximizing algorithms. Obeying the cohesion
and self-confidence assumptions, the set of (weighted) aver-
aging algorithms, Aave, consists of algorithms in the form
of (4) with parameters ηk ∈ (0, 1], αk ∈ [0, 1− ηk]. The set
of maximizing algorithms, Amax, is given by the parameter
set ηk ≡ 0 and αk ≡ 0.

D. Problem

Let
{
x(k;x0) =

(
x1(k;x0) . . . xn(k;x0)

)T}∞
0

be the
sequence generated by (4) for initial time k0 and initial value
x0 = x(k0) =

(
x1(k0) . . . xn(k0)

)T ∈ Rn. We will identify
x(k;x0) as x(k) in the following discussions. We introduce
the following definition on the convergence of the considered
algorithm.

Definition 2.3: (i) Asymptotic consensus is achieved for
Algorithm (4) for initial condition x(k0) = x0 ∈ Rn if there
exists z∗(x0) ∈ R such that

lim
k→∞

xi(k) = z∗, i = 1, . . . , n.

Global asymptotic consensus is achieved if asymptotic con-
sensus is achieved for all k0 ≥ 0 and x0 ∈ Rn.

(ii) Finite-time consensus is achieved for Algorithm (4) for
initial condition x(k0) = x0 ∈ Rn if there exist z∗(x0) ∈ R
and an integer T∗(x0) > 0 such that

xi(T∗) = z∗, i = 1, . . . , n.

Global finite-time consensus is achieved if finite-time con-
sensus is achieved for all k0 ≥ 0 and x0 ∈ Rn.

The algorithm reaching consensus is equivalent with that
x(k) converges to the manifold

C =
{
x = (x1 . . . xn)T : x1 = · · · = xn

}
.

We call C the consensus manifold. Its dimension is one.
In the following, we focus on the impossibilities and

possibilities of asymptotic or finite-time consensus. We will
show that the convergence properties drastically change when
Algorithm (4) transits from averaging to maximizing.

III. MAIN RESULTS

In this section, we investigate the convergence of Algo-
rithm (4) for state-dependent graphs. We are interested in a
particular set of averaging algorithms, A∗ave, where (αk, ηk)
takes value ηk ≡ 0, αk ∈ (0, 1). Algorithms in A∗ave

correspond to the case when the self-confidence assumption
A2 does not hold, and are of the form

xi(k + 1) = αk min
j∈Ni(k)

xj(k) +
(
1− αk

)
max

j∈Ni(k)
xj(k).

(5)

Algorithms in A∗ave still have local cohesion. Hence, they ful-
fill Assumption A1 but not A2. In fact, averaging algorithms
without self-confidence have been investigated in classical
works on the convergence of product of stochastic matrices,
e.g., [3], [4], [5].

A. Basic Lemmas

We first establish two useful lemmas for the analysis of
nearest-neighbor and nearest-value graphs. The following
lemma indicates that the order of node states is preserved.

Lemma 3.1: For any two nodes u, v ∈ V and every
algorithm in A, under either the nearest-neighbor graph Gµnx(k)

or the nearest-value graph Gµvx(k), we have
(i) xu(k + 1) = xv(k + 1) if xu(k) = xv(k);
(ii) xu(k + 1) ≤ xv(k + 1) if xu(k) < xv(k).

Proof. When xu(k) = xv(k), we have {j : xj(k) <
xu(k)}={j : xj(k) < xv(k)} and {j : xj(k) > xu(k)}={j :
xj(k) > xv(k)}. Thus, for either Gµnx(k) or Gµvx(k), both

min
j∈Nu(k)

xj(k) = min
j∈Nv(k)

xj(k)

and
max

j∈Nu(k)
xj(k) = max

j∈Nv(k)
xj(k)

hold. Then (i) follows straightforwardly.
If xu(k) < xv(k), it is easy to see that

min
j∈Nu(k)

xj(k) ≤ min
j∈Nv(k)

xj(k)
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and
max

j∈Nu(k)
xj(k) ≤ max

j∈Nv(k)
xj(k)

according to the definition of neighbor sets, which implies
(ii) immediately. �

Define
Υk =

∣∣∣{x1(k), . . . , xn(k)
}∣∣∣

as the number of distinct node states at time k, where
∣∣S∣∣ for

a set S represents its cardinality. Then Lemma 3.1 implies
that Υk+1 ≤ Υk for all k ≥ 0. This point plays an important
role in the convergence analysis.

Moreover, for both the nearest-neighbor graph Gµnx(k) and
the nearest-value graph Gµvx(k), in order to distinguish the node
states under different values of neighbors, we denote xµi (k)
as the state of node i when the number of larger or smaller
neighbors is µ. Correspondingly, we denote

hµ(k) = min
i∈V

xµi (k), Hµ(k) = max
i∈V

xµi (k).

and Φµ(k) = Hµ(k) − hµ(k). We give another lemma
indicating that the convergence speed increases as the num-
ber of neighbors increases, which is quite intuitive because
apparently graph connectivity increases as the number of
neighbors increases.

Lemma 3.2: Consider either the nearest-neighbor graph
Gµnx(k) or the nearest-value graph Gµvx(k). Given two integers
1 ≤ µ1 ≤ µ2. For every algorithm in A and every initial
value, we have Φµ1(k) ≥ Φµ2(k) for all k.
Proof. Fix the initial condition at time k0. Let m ∈ V
be a node satisfying xµ1

m (k0) = hµ1(k0) and xµ2
m (k0) =

hµ2(k0). The order preservation property given by Lemma
3.1 guarantees that xµ1

m (k) = hµ1(k) and xµ2
m (k) = hµ2(k)

for all k ≥ k0. It is straightforward to see that xµ1
m (k0 +1) ≤

xµ2
m (k0 + 1) if µ1 ≤ µ2, and continuing we know that
xµ1
m (k0 + s) ≤ xµ2

m (k0 + s) for all s ≥ 2. Thus, we have
hµ1(k) ≤ hµ2(k) for all k ≥ k0. A symmetric analysis leads
to Hµ1(k) ≥ Hµ2(k) for all k and the desired conclusion
thus follows. �

B. Convergence for Nearest-neighbor Graph

For algorithms in the set A∗ave, we present the following
result under nearest-neighbor graph.

Theorem 3.1: Consider the nearest-neighbor graph Gµnx(k).
(i) When n ≤ µ + 1, each algorithm in A∗ave achieves

global finite-time consensus;
(ii) When n > µ + 1, each algorithm in A∗ave fails to

achieve finite-time consensus for almost all initial values;
(iii) When n > µ + 1, each algorithm in A∗ave achieves

global asymptotic consensus if {αk} is monotone.
Proof. (i) When n ≤ µ + 1, the communication graph is
the complete graph. Thus, consensus will be achieved in one
step following (4) for every algorithm in A∗ave.

(ii) Let n > µ+ 1. We define two index set

I−k =
{
i : xi(k) = h(k) = min

i∈V
xi(k)

}
,

and
I+
k =

{
i : xi(k) = H(k) = max

i∈V
xi(k)

}
.

Claim. Suppose both I−k and I+
k contain one node only.

Then so do I−k+1 and I+
k+1.

Let u and v be the unique element in I−k and I+
k ,

respectively. Take m ∈ V\{u}. Noting the fact that xm(k) >
xu(k) and µ ≤ n− 2, we have

min
j∈Nu(k)

xj(k) ≤ min
j∈Nm(k)

xj(k)

and
max

j∈Nu(k)
xj(k) < max

j∈Nm(k)
xj(k).

This leads to xm(k + 1) > xu(k + 1). Therefore, u is still
the unique element in I−k+1. Similarly we can prove that v
is still the unique element in I+

k+1. The claim holds.
Now observe that

∆
.
=
⋃
u 6=v

{
x = (x1 . . . xn)T : xu < min

m∈V\{u}
xm

and xv > max
m∈V\{v}

xm,
}

has measure zero with respect to the standard Lebesgue
measure on Rn. For any initial value not in ∆, we have both
I−k and I+

k contain one unique element, and thus finite-time
consensus is impossible. The desired conclusion follows.

(iii) Recall that

Υk =
∣∣∣{x1(k), . . . , xn(k)

}∣∣∣.
Since Υk+1 ≤ Υk holds for all k according to Lemma 3.1,
there exists two integers 0 ≤ m ≤ n and T ≥ 0 such that

Υk = m, (6)

for all k ≥ T . Thus, we can sort the possible node states for
all k ≥ T as

y1(k) < y2(k) < · · · < ym(k).

Apparently m 6= 1, 2 since otherwise the graph is complete
for time ` with Υ` = 1, 2 and consensus is reached after one
step. We assume m ≥ 3 in the following discussions.

Algorithm (5) can be equivalently transformed to the dy-
namics on {y1(k), . . . , ym(k)}. Moreover, based on Lemma
3.2, we only need to prove asymptotic consensus for the case
µ = 1.

Let µ = 1 and k ≥ T . For algorithms in A∗ave, the
dynamics of {y1(k), . . . , ym(k)} can be written:

y1(k + 1) = αky1(k) + (1− αk)y2(k);

y2(k + 1) = αky1(k) + (1− αk)y3(k);
...

ym−1(k + 1) = αkym−2(k) + (1− αk)ym(k);

ym(k + 1) = αkym−1(k) + (1− αk)ym(k).

(7)
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Now let {αk} be monotone, say, non-decreasing. Then we
have αk ≥ αT > 0. Therefore, for all k ≥ T , we have

y1(k + 1) = αky1(k) + (1− αk)y2(k)

≤ αT y1(k) + (1− αT )ym(k), (8)

and continuing we know that

y1(k + s) ≤ αsT y1(k) + (1− αsT )ym(k), s ≥ 1. (9)

Similarly for y2(k), we have

y2(k + 2) = αk+1y1(k + 1) + (1− αk+1)y3(k + 1)

≤ α2
T y1(k) + (1− α2

T )ym(k) (10)

and

y2(k + s) ≤ αsT y1(k) + (1− αsT )ym(k), s ≥ 2. (11)

Proceeding the analysis, eventually we arrive at

yi(k + n− 1) ≤ αn−1
T y1(k) + (1− αn−1

T )ym(k), (12)

for all i = 1, . . . , n, which yields

Φ(k + n− 1)leq(1− αn−1
T )Φ(k). (13)

Thus, global asymptotic consensus is achieved. The other
case with {αk} being non-increasing can be proved using a
symmetric argument. The desired conclusion follows.

This completes the proof of the theorem. �
Remark 3.1: In Theorem 3.1, the asymptotic consensus

statement relies on the condition that {αk} is monotone.
From the proof of Theorem 3.1 we see that this condition
can be replaced by that there exists a constant ε ∈ (0, 1)
such that either αk ≥ ε or αk ≤ 1 − ε for all k. In fact,
we conjecture that the asymptotic consensus statement of
Theorem 3.1 holds true for all {αk}, i.e., we believe that
asymptotic consensus is achieved for all algorithms in A∗ave

under nearest-neighbor graphs.
Remark 3.2: Theorem 3.1 indicates that µ+1 is a critical

number of nodes for nearest-neighbor graphs: for algorithms
in A∗ave, finite-time consensus holds globally if n ≤ µ + 1,
and fails almost globally if n > µ+ 1. Note that n ≤ µ+ 1
implies that the communication graph is the complete graph,
which is rare in general. Recalling that in Part I of the paper,
it was showed that finite-time consensus fails almost globally
for algorithms in Aave [41], we conclude that finite-time
consensus is generally rare for averaging algorithms in A,
no matter with (Aave) or without (A∗ave) the self-confidence
assumption.

For algorithms in Amax, we present the following result.
Theorem 3.2: Consider the nearest-neighbor graph Gµnx(k).

Algorithms in Amax achieve global finite-time consensus in
no more than dnµe steps, where dze represents the smallest
integer no smaller than z.
Proof. Without loss of generality, we assume that
x1(0), . . . , xn(0) are mutually different. We sort the initial
values of the nodes as xi1(0) < xi2(0) < · · · < xin(0). Here
im denotes node with the m’th largest value initially.

Observing that in is a right-hand side neighbor of nodes
in−µ, in−µ+1, . . . , in−1, we have

xiτ (1) = xin(0), τ = n− µ, . . . , n.

This leads to Υ1 = Υ0 − µ. Proceeding the same analysis
we know that consensus is achieved in no more than dnµe
steps. The desired conclusion follows. �

C. Convergence for Nearest-value Graph

In this subsection, we study the convergence for nearest-
value graphs. Since nearest-value graph Gµvx(k) indeed in-
creases the connectivity of Gµnx(k), the asymptotic consensus
statement of Theorem 3.1 also holds for Gµvx(k). The main
result for finite-time consensus of nearest-value graphs is
presented as follows. It turns out that the critical number of
nodes for nearest-value graphs is 2µ.

Theorem 3.3: Consider the nearest-value graph Gµvx(k).
(i) When n ≤ 2µ, algorithms in A∗ave achieve global finite-

time consensus in no more than dlog2(2µ+ 1)e steps;
(ii) When n > 2µ, algorithms in A∗ave fail to achieve

finite-time consensus for almost all initial conditions.
Proof. (i) Suppose n ≤ 2µ. Based on Lemma 3.2, without
loss of generality, we assume n = 2µ and the initial values
of the nodes are mutually different. Now we have Υ0 =∣∣{x1(0), . . . , xn(0)}

∣∣ = 2µ. We fist show the following
claim.
Claim. If Υk = 2µ−A with A ≥ 0 an integer, then Υk+1 ≤
Υk −A− 1.
We order the node states at time k and denote them as

Y1 < Y2 < · · · < YΥk .

When Υk = 2µ − A, it is not hard to find that the for all
m = µ − A, . . . , µ + 1, each node with value YΥm will
connect to some node with value Y1, and some other node
with value YΥk . Therefore, the nodes with value YΥm ,m =
µ − A, . . . , µ + 1 will reach the same state after the k’th
update. The claim holds.

Therefore, by induction we have Υk = max{0,Υ0 −∑k−1
m=0 2m} = max{0, 2µ − (2k − 1)}. The conclusion (i)

follows straightforwardly.
(ii) Suppose n > 2µ. Let x1(0), . . . , xn(0) be mu-

tually different. Then it is not hard to see that for
any two nodes u and v with xu(0) < xv(0), at
least one of minj∈Nu(0) xj(0) < minj∈Nv(0) xj(0) or
maxj∈Nu(0) xj(0) < maxj∈Nv(0) xj(0) holds. This immedi-
ately leads to xu(1) < xv(1). Because u and v are arbitrarily
chosen, we can conclude that Υ1 = Υ0. By an induction
argument we see that Υk = Υ0 = n for all k ≥ 0, or
equivalently, consensus cannot be achieved in finite time.
Now observe that

⋃
i≥j
{
x = (x1 . . . xn)T : xi = xj

}
has

measure zero with respect to the standard Lebesgue measure
on Rn. The desired conclusion thus follows. �

IV. CONCLUSIONS

This paper focused on a uniform model for distributed
averaging and maximizing. Each node iteratively updated its
state as a weighted average of its own state, the minimal
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state, and maximal state among its neighbors. This part of
the paper studied state-dependent graphs defined by a µ-
nearest-neighbor rule, where each node interacts with its µ
nearest smaller neighbors and the µ nearest larger neighbors,
we showed that µ + 1 is a critical number of nodes when
consensus transits from finite time to asymptotic convergence
in the absence of node self-confidence: finite-time consensus
disappears suddenly when the number of nodes is larger
than µ + 1. This critical number of nodes turned out to be
2µ if each node chooses to connect to nodes with different
values. The results revealed the fundamental connection and
difference between distributed averaging and maximizing,
but more challenges still lie in the principles underlying the
two types of algorithms, such as their convergence rates.
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