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Abstract—This paper analyzes a class of nonlinear consensus
algorithms where the input of an agent can be decoupled into a
product of a gain function of the agents own state, and a sum
of interaction functions of the relative states of its neighbors.
We prove the stability of the protocol for both single and
double integrator dynamics using novel Lyapunov functions,
and provide explicit formulas for the consensus points. The
results are demonstrated through simulations of a realistic
example within the framework of our proposed consensus
algorithm.

I. INTRODUCTION

The consensus problem has received a tremendous research
interest over the past years. The coordination of autonomous
agents based solely on local interactions and decentralized
control algorithms [20], has applications in formation-control
[9], flocking [14], [24] and rendezvous [4] amongst others.

While most research effort has been on analyzing linear
consensus, many applications of consensus protocols are in-
herently nonlinear. This paper contributes to a deeper insight
in nonlinear consensus by considering a class of nonlinear
consensus protocols where the input of an agent can be
decoupled into a product of a positive gain function of the
agents own state, and a sum of interaction functions of its
neighbors relative states. Nonlinear interacton functions are
a well-studied problem [17], [5], [10], with applications in
consensus while preserving connectedness [11], [8] and col-
lision avoidance [18], [8], [23]. Sufficient conditions for the
convergence of nonlinear protocols for first-order integrator
dynamics are given in [1] and in [13] for a multidimensional
state-space.

Consensus on a general function value through nonlinear
gain functions was first introduced in [20] as χ-consensus,
and a solution to the χ-consensus problem was presented in
[6]. χ-consensus has applications for instance in weighted
power mean consensus [6], [7], [3]. The literature on χ-
consensus has been focused on agents with single integrator
dynamics. However, as we show later, the results can be gen-
eralized to also hold for second-order integrator dynamics.

Consensus protocols where the input of an agent can be
separated into a product of a positive function of the agents

This work was supported in part by the European Commission, the
Swedish Research Council and the Knut and Alice Wallenberg Foundation.
The 2nd author is also affiliated with the Centre for Autonomous Systems at
KTH and is supported by the VR 2009-3948 grant. † Corresponding author.
E-mail: mandreas@kth.se

own state were studied in [3] for single integrator dynam-
ics. [2] extended the results to switching communication
topologies, where the communication graph always remains
connected. Linear consensus for double integrator dynamics
were studied in detail in [22] for undirected as well as for
directed communication. Necessary and sufficient conditions
for consensus with double integrator dynamics and directed
communication topology were given in [25]. Extensions to a
certain type of nonlinear control law were made in [21]. The
more general model where both the gains and the interaction
functions are nonlinear is however not mentioned, and to our
best knowledge this is the first work addressing the more
general model. [16] studies position consensus for agents
with double integrator dynamics under a class of nonlin-
ear interaction functions and nonlinear velocity-damping. In
contrast to this, we consider agents with single integrator
dynamics and undamped double integrator dynamics.

There main contributions of this paper are twofold. First,
we derive explicit bounds on the convergence rate for a class
of nonlinear consensus protocols for first-order dynamics,
using a novel Lyapunov function which penalizes the sum
of weighted integrals of the deviations from the equilibrium
states of the agents. A second contribution of this paper is
the generalization of previous results on linear consensus
algorithms for double integrator dynamics to nonlinear algo-
rithms. Here we borrow the concept of the novel Lyapunov
function, penalizing the sum of integrals of the deviations
from the equilibrium velocities of the agents, but add a
penalty also on an integral of the disagreement over the
communication links.

The rest of this paper is organized as follows. In section II
we investigate nonlinear consensus for single integrator dy-
namics, where we bound the convergence rate from below
using a novel Lyapunov function. We also derive neces-
sary and sufficient conditions for consensus under switching
topologies. In section III we derive necessary and sufficient
conditions for consensus under double integrator dynamics.
In section IV we demonstrate our results by a comprehensive
example, followed by some concluding remarks in section V.

II. CONSENSUS FOR SINGLE INTEGRATOR DYNAMICS

In this section we review the most important results derived
in [3]. We first make some definitions used later on in this
paper. Let G be a graph. Denote by V = {1, . . . , n} the
vertex set of G, and by E = {1, . . . ,m} the edge set of G.
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Let Ni be the set of neighboring nodes to i. Denote by B =
B(G) the adjacency matrix of G, and let L be the Laplacian
matrix of G. We will denote the position of agent i as xi,
and its velocity as vi, and collect them into column vectors
x = (x1, . . . , xn)T , v = (v1, . . . , vn)T . A function f(·) with
domain X is said to be Lipschitz (continuous) if there exists
K ∈ R+ : ∀x, y ∈ X :

∥∥f(x)− f(y)
∥∥ ≤ K ·‖x− y‖.

A. Directed graphs

We consider the following nonlinear first-order consensus
protocol where each node i applies the control signal:

ẋi = ui = −γi(xi)
∑
j∈Ni

αij(xi − xj). (1)

We make the following assumptions on the gain and interac-
tion functions.

Assumption 1. γi is continuous and γi(x) > 0 ∀i ∈ V
Assumption 2. αij(·) is Lipschitz continuous
∀ i ∈ V, ∀ (i, j) ∈ E , and furthermore:
x · αij(x) > 0 ∀x 6= 0, αij(0) = 0 ∀(i, j) ∈ E .

Assumption 2 ensures that αij(·) is an odd function. We
are now ready to state the following result.

Theorem 1. Given n agents obeying the agreement pro-
tocol (1) with αij and γi satisfying assumptions 2 and 1
respectively, then for any initial condition x(0), the agents
converge to an agreement point x∗, satisfying mini xi(0) ≤
x∗ ≤ maxi xi(0) if and only if the underlying communication
graph G contains a directed spanning tree. Furthermore if all
directed spanning trees contained in G have the same root
node, then x∗ = xr(0).

Before giving the proof, we need the following lemma.

Lemma 2. Let G be a directed graph not containing a
directed spanning tree. Then there exist strongly connected
components G1,G2 ⊂ G with G1 ∩ G2 = ∅ such that there
exist no incoming edges to G1 from G \ G1 and no incoming
edges to G2 from G \ G2.

Proof: Let G be a directed graph not containing a di-
rected spanning tree. Assume that there do not exist strongly
connected components G1,G2 ⊂ G with G1 ∩ G2 = ∅ such
that there exists no incoming edges to G1 from G \ G1

and no incoming edges to G2 from G \ G2. There exist
two possibilities. In case 1 there exists only one strongly
connected component G1 with no incoming edges, and in case
2 there does not exist any strongly connected component with
no incoming edges. We now show only case 1 is possible,
implying that G must contain a directed spanning tree.
Case 1: Denote by G1, . . . ,Gk the disjoint strongly connected
components of G, and assume without loss of generality
that G1, . . . ,Gk are maximal. Let G1 be the only component
with no incoming edges. Consider any component Gi1 , i1 6=
1. Since Gi1 by assumption has an incoming edge from say
component Gi2 , there exists a directed path from any node
in Gi2 to any node in Gi1 . By applying the same argument
recursively, since G is finite, there is either a directed path

from G1 to Gi1 , or a loop containing Gi1 . But the existence
of a loop would imply that any node on the loop is reachable
from any other node on the loop, since the components are
assumed to be strongly connected. But this would contradict
the assumption of G1, . . . ,Gk being maximal. Thus there
exists a path from any node in G1 to any node in Gi1 . Since
Gi1 was arbitrary there exists a path from any node in G1

to any other node in G, implying that G contains a directed
spanning tree, with root node in G1.
Case 2: We show that G must contain at least one
strongly connected component, and that this case may be
excluded. Denote by G1, . . . ,Gk the disjoint strongly con-
nected components of G, and assume without loss of gener-
ality that G1, . . . ,Gk are maximal. Consider any component,
say Gi1 . Like in the previous case there is a directed path
from any node in Gi2 to any node in say Gi1 . We can apply
the same argument recursively, and since G is finite and
by assumption there exists no component with no incoming
edge, the path must eventually form a cycle containing at least
two components. But this would imply that the components
in the cycle together form a strongly connected component,
violating our assumption that G1, . . . ,Gk are maximal.

Proof: (of theorem 1):
(Sufficiency:) The proof idea is similar to the one presented
in [15], by using a Lyapunov function based on the convex
hull of the agents’ states. Consider the candidate Lyapunov
function V (x) = xi1 − xi2 ≥ 0, xi1 ∈ S1, xi2 ∈ S2, where:

S1 = {i1 : xi1 = max
i
xi, min

k∈Ni1
xk < xi1}

S2 = {i2 : xi2 = min
i
xi, max

k∈Ni2
xk > xi2}.

Assume that consensus is not reached, i.e. V (x) > 0. It is
now shown that S1 ∪ S2 6= ∅. Assume for the sake of con-
tradiction that S1 ∪ S2 = ∅. Let M1 = {k : xk = maxi xi}
and M2 = {k : xk = mini xi}. If k1 ∈ M1 we must have
Nk1 ∈M1 and if k2 ∈M2 we must have Nk2 ∈M2, since
otherwise either S1 or S2 would be non-empty. Since G by
assumption contains a directed spanning tree, there exists a
root node k∗ such that there exists a path from k∗ to any
node i ∈ V . Three distinct cases exist, which we show all
contradict our assumption that S1 ∪ S2 = ∅:
Case 1: k∗ ∈M1. There exists a path from k∗ toM2. Thus
for at least one node i ∈ M2 ∃j ∈ Ni : j /∈ M2, which
contradicts S1 ∪ S2 = ∅.
Case 2: k∗ ∈M2. There exists a path from k∗ toM1. Thus
for at least one node i ∈ M1 ∃j ∈ Ni : j /∈ M1, which
again contradicts S1 ∪ S2 = ∅.
Case 3: k∗ ∈ V \ (M1 ∪ M2). There exists a path from
k∗ to M1, and a path from k∗ to M2. This implies there
exist at least two nodes, i1 ∈ M1, i2 ∈ M2 such that
∃j ∈ Ni1 : j /∈ M1 and ∃j ∈ Ni2 : j /∈ M2, which again
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contradicts S1 ∪ S2 = ∅. Thus

dV (x(t))

dt
= ẋi1 − ẋi2 = γi(xi1)

∑
j∈Ni1

αi1j(xj − xi1)

−γi(xi2)
∑
j∈Ni2

αi2j(xj − xi2)

≤ γi(xi1)αi1i∗1 (xi∗1 − xi1)− γi(xi2)αi2i∗2 (xi∗2 − xi2) < 0

where xi∗1 = argmink∈Ni1 xk and xi∗2 = argmaxk∈Ni2 xk.
Furthermore V̇ (x) = 0 ⇔ x = x∗1. Thus the agents
converge to a common value x∗. It is also clear that
xmin ≤ x∗ ≤ xmax.

(Necessity:) Assume that G contains no directed spanning
tree. By lemma 2 ∃ G1,G2 ⊂ G such that G1,G2 are disjoint
and there exists no incoming edges to G1 from G \ G1 and
no incoming edges to G2 from G \ G2. Let

xi(0) =

{
x1

0 ∀i ∈ G1

x2
0 ∀i ∈ G2

where x1
0 6= x2

0. By (1) we have that ẋi = 0 ∀i ∈ G1 ∪ G2.
Thus consensus cannot be reached.

B. Linear interaction functions

If the consensus protocol is modified in such a way that
we remove the nonlinearity of αij(·), we can make a stronger
statement on the final consensus value based on the theory
from linear consensus on directed communication graphs. Let
the consensus protocol be given by

ẋ = γi(xi)
∑
j∈Ni

(xj − xi) (2)

with γi(·) satisfying assumption 1.

Theorem 3. Let G be connected. By [19] the Laplacian, L,
has a left eigenvector e, with ei > 0 such that eTL = 0.
Then the agents converge to a common point x∗, satisfying∑
i∈V ei

∫ x0
i

0
1

γi(y) dy =
∫ x∗

0

∑
i∈V ei

1
γi(y) dy

Proof: Convergence follows by Theorem 1. Consider the
quantity E(x) =

∑
i∈V ei

∫ xi
0

1
γi(y) dy. Differentiating with

respect to time yields

dE(x(t))

dt
=
∑
i∈V

∂E(x)

∂xi

∂xi
∂t

=
∑
i∈V

ei
1

γi(xi)
γi(xi)

∑
j∈Ni

(xj − xi)

=
∑
i∈V

ei
∑
j∈Ni

(xj − xi) = eTLx = 0

Hence E(x0) = E(x∗), which concludes the proof.

C. Undirected graphs

Assume now that the communication topology is undi-
rected, which is formalized in the following assumption.

Assumption 3. αij(·) is Lipschitz continuous ∀i ∈
V,∀ (i, j) ∈ E , and furthermore: αij(−y) =

−αji(y) ∀(i, j) ∈ E , ∀y ∈ R and y ·αij(y) > 0 ∀(i, j) ∈
E , ∀y ∈ R \ {0}, αij(0) = 0

We are now ready to state the main result of this section.

Theorem 4. Given n agents obeying the agreement pro-
tocol (1) with αij and γi satisfying assumptions 3 and 1
respectively, then the agents asymptotically converge to an
agreement point x∗, uniquely determined by∑

i∈V

∫ x0
i

0

1

γi(y)
dy =

∫ x∗

0

∑
i∈V

1

γi(y)
dy (3)

for any set of initial conditions xi(0) = x0
i , if and only if the

underlying communication graph G is connected.

Proof: (Sufficiency:) Consider the candidate Lyapunov
function V (x(t)) =

∑
i∈V

∑
j∈Ni

∫ xi−xj
0

αij(y) dy >

0 iff x̄ 6= 0 where x̄ = BTx. Differentiating with
respect to time yields

V̇ =
dV

dt
=
∂V

∂x̄

∂x̄

∂t
=
∂V

∂x̄
BT ∂x

∂t
.

Defining α(x̄) = [α1(x̄1), . . . , αm(x̄m)]T ,, it is eas-
ily shown that: ∂V (x(t))

∂x̄ = α(x̄)T . We write (1)
in vector form as ẋ = −Γ(x)Bα(x̄), where x =
[x1, . . . , xn]T , Γ(x) = diag([γ1(x1), . . . , γn(xn)]). Hence

V̇ = −α(x̄)BTΓ(x)Bα(x̄) = −
∥∥∥Γ(x)

1
2Bα(x̄)

∥∥∥2

2
≤ 0, and

Γ(x)
1
2Bα(x̄) = 0 ⇔ Bα(BTx) = 0 ⇔ BBTx = 0

by 3. But this implies x = x∗1 since BBT = L, which
for connected graphs G has a single zero eigenvalue, with
1 as corresponding eigenvector. Hence the agents converge
to an agreement point xi = x∗ ∀i. The necessity part of
the proof is trivial and omitted. Now consider the quantity
E(x) =

∑
i∈V

∫ xi
0

1
γi(y) dy. Differentiating with respect to

time yields

dE(x(t))

dt
=
∂E(x(t))

∂x

∂x

∂t

= −
[

1

γ1(x1)
, . . . ,

1

γn(xn)

]
Γ(x)Bα(x̄) = −1TBα(x̄) = 0

Hence E(x) is invariant and the agreement point x∗ is given
by (3). By assumption 1, E(x∗) is strictly increasing, and
hence (3) admits a unique solution.

Note 1. The agreement protocol (1) has an intuitive physical
interpretation. If we interpret xi as the temperature of the
nodes, 1

γi(·) can be seen as the temperature-dependent heat
capacity of the nodes. Analogously, αij(·) may be seen as
the thermal conductivity of the links, being dependent on the
heat flow in the link. The invariant quantity E(x) is the total
energy of the system, and the Lyapunov function V (x) is the
sum of the potential energies in the links.

D. Bounded interaction functions

We now make the following additional assumptions on the
gain functions and the interaction functions:

Assumption 4. The interaction functions αij(·) satisfy: αij ·
y ≤ αij(y) ∀(i, j) ∈ E , ∀y ∈ R, where αij ; ∈ R+.
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Assumption 4 imposes a uniform linear lower bound on the
interaction functions. This is desirable in most applications,
since having arbitrary small interaction functions would cause
slow convergence. The following lemma shows that also γi(·)
is uniformly bounded.

Lemma 5. γi(x(t)) is bounded by: γ ≤ γi(x(t)) ≤ γ̄ ∀i ∈
E , ∀t ∈ R+ for some γ, γ̄; ∈ R+, depending only on the
initial condition x(0).

Proof: By the proof of theorem 1, maxi xi is
non-increasing while mini xi is non-decreasing. Hence
mini xi(0) ≤ xi(t) ≤ maxi xi(0) ∀i ∈ V, ∀t ∈ R+.
Since a continuous function on a compact set attains its
minimum and maximum, there exist γ and γ̄ such that
γ ≤ γi(x(t)) ≤ γ̄ ∀i ∈ E , ∀t ∈ R+ .

We now prove that the rate of convergence is bounded by
an exponential function. Let: x̃ =

[
xi − x∗, . . . , xn − x∗

]T
Theorem 6. Given n agents with initial condition x̃(0)
obeying (1) and satisfying assumption 4, the disagreement
vector x̃(t) satisfies

∥∥x̃(t)
∥∥

2
≤
√

γ̄
γ

∥∥x̃(0)
∥∥

2
e−λ2(Lα)γt,

where λ2(Lα) denotes the second smallest eigenvalue of Lα.

Remark 1. Theorem 6 extends the results in [3]. Under
certain conditions on αij(·) and γi(·), the agents converge
to an agreement point at least at exponential rate. The bound
on the convergence speed relies heavily on a novel Lyapunov
function, which penalizes a weighted integral of the deviation
from the equilibrium state for each agent.

Proof: Consider the following candidate Lyapunov func-
tion:

V (x(t)) =
∑
i∈V

∫ xi

x∗

y − x∗
γi(y)

dy. (4)

It is easily verified that V (x) ≥ 0 and V (x) = 0 ⇔ x = 0.
Now consider the time derivative of V (x) along trajectories
of the closed loop system:

dV (x(t))

dt
=
∑
i∈V

∂V (x(t))

∂xi

∂xi
∂t

= −
∑
i∈V

xi − x∗
γi(xi)

· γi(xi)
∑
j∈Ni

αij(xi − xj)

= −
∑
i∈V

xi
∑
j∈Ni

αij(xi − xj) +
∑
i∈V

x∗
∑
j∈Ni

αij(xi − xj)

= −1

2

∑
i∈V

∑
j∈Ni

(xi − xj)αij(xi − xj)

≤ −1

2

∑
i∈V

∑
j∈Ni

αij(xi − xj)2

= −1

2

∑
i∈V

∑
j∈Ni

αij
[
(xi − x∗)− (xj − x∗)

]2
= −

∑
i∈V

(xi − x∗)2
∑
j∈Ni

αij +
∑
i∈V

∑
j∈Ni

αij(xi − x∗)(xj − x∗)

= −x̃TLαx̃

where Lα is the weighted Laplacian given by

Lα =


∑
j∈V k1jα1j . . . −k1nα1n

−k21α21 . . . −k2nα2n
...

. . .
...

−kN1αn1 . . .
∑
j∈V knjαnj


with

kij =

{
1 if j ∈ Ni
0 otherwise.

By the Courant-Fisher Theorem and the fact that Lα1 = 0,
we have λ2(Lα) = infxT 1=0, x 6=0

xTLαx
xT x

. Thus

V̇ (x(t)) ≤ −λ2(Lα) · x̃T x̃

= −2λ2(Lα)
∑
i∈V

∫ xi

x∗
(y − x∗) dy

≤ −2λ2(Lα)γ
∑
i∈V

∫ xi

x∗

y − x∗
γi(y)

dy = −2λ2(Lα)γV (x).

By the comparison lemma [12], it follows that V (x(t)) ≤
V (x(0)) · e−2λ2(Lα)γt. It is possible to express bounds of
the convergence rate directly in terms of x̃. Observing that
x̃T x̃ ≤ 2γ̄

∑
i∈V

∫ xi
x∗

y−x∗

γi(y) dy, and V (x(0)) ≤ 1
2γ x̃

T x̃, it

follows that
∥∥x̃(t)

∥∥
2
≤
√

γ̄
γ

∥∥x̃(0)
∥∥

2
e−λ2(Lα)γt.

III. CONSENSUS FOR DOUBLE INTEGRATOR DYNAMICS

Consider the linear second-order dynamical system:

ẋi = vi (5)
v̇i = ui (6)

where agent i applies the following nonlinear consensus
protocol:

ui = −γi(vi)
∑
j∈Ni

[
αij
(
xi − xj

)
+ βij

(
vi − vj

)]
. (7)

We show that under mild conditions, the consensus protocol
(7) achieves asymptotic consensus.

Theorem 7. Consider the second order system (5)–
(6) under the consensus protocol (7), where αij(·) and
γi(·) satisfy assumptions 3 and 1 respectively, and
βij(·) satisfies the same assumptions as αij(·). The sys-
tem achieves consensus with respect to x and v, i.e.
|xi − xj | → 0 , | vi − vj | → 0 ∀ i , j ∈ G as t→∞
for any initial condition (x(0), v(0)) if and only if G is con-
nected. Furthermore, if consensus is reached, the velocities
converge to a common value limt→∞ v(t) = v∗1 satisfying∑
i∈V

∫ v0i
0

1

γi(y)
dy =

∫ v∗
0

∑
i∈V

1

γi(y)
dy.

Remark 2. Theorem 7 generalizes both the literature on
linear second-order consensus [22] as well as the literature
on first-order nonlinear consensus [3]. By modifying the
novel Lyapunov function as introduced in (4), we are able
to prove that the agents reach consensus for the nonlinear
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consensus protocol also in the case of double integrator
dynamics.

Proof: (Sufficiency:) We write (5)–(7) in vector form:

ẋ = v

v̇ = −Γ(v)
[
Bα(x̄) + Bβ(v̄)

]
where α(x̄) = [α1(x̄1), . . . , αm(x̄m)]T ,
β(x̄) = [β1(x̄1), . . . , βm(x̄m)]T , m = |E|, and
Γ(x) = diag([γ1(x1), . . . , γn(xn)]). Consider the
following candidate Lyapunov function, also used in [16]

V (x, v) =
∑
i∈V

∫ vi

v∗

y − v∗
γi(y)

dy +
1

2

∑
j∈Ni

∫ xi−xj

0

αij(y) dy

 .

By noting that 1
2

∑
i∈V

∑
j∈Ni

xi − xj =
∑

(i,j)∈E xi − xj
we write V (x, v) using the adjacency matrix B:

V (x, v) =

∫ x̄

0

1TBTα(y) dy +

∫ v

v∗1

ỹTΓ−1(y)1dy ≥ 0

with ỹ =
[
y1 − v∗ . . . yn − v∗

]T
. Differentiating V (x, v)

with respect to time yields:

dV (x, v)

dt
=
∂V (x, v)

∂x

∂x

∂t
+
∂V (x, v)

∂v

∂v

∂t
= α(x̄)TBT v − (v − v∗1)TΓ−1(v)Γ(v)

[
Bα(x̄) + Bβ(v̄)

]
= −vTBβ(v̄) + v∗1TBβ(v̄) = −v̄Tβ(v̄) ≤ 0

with equality if and only if v̄ = 0. We now invoke LaSalles
invariance principle to show that the agreement point satisfies
v̇ = 0. The subspace where V̇ (x, v) = 0 is given by S1 ={

(x, v)|v = v∗(t)1
}

. Noting that on S1:

v̇ = −Γ(v)
[
Bα(x̄) + Bβ(v̄)

]
= −Γ(v)Bα(x̄) 6= k(t)1.

To see this, suppose that v̇(t) = −Γ(v)Bα(x̄) = k(t)1 ⇔
Bα(x̄) = Γ−1(v)k(t)1, where k(t) 6= 0. Premultiplying by
1T yields 0 = 1TBα(x̄) = k(t)1TΓ−1(v)1 6= 0, which
is a contradiction since k(t) 6= 0 by assumption. Hence S1

only contains trajectories where v = v∗1, v̇ = 0. This also
implies that no trajectory where x 6= x∗(t) · 1 can lie on
S1, since v = v∗1 implies 0 = v̇ = −Γ(v)Bα(x̄), which
implies Bx̄ = 0 ⇒ Lx = 0 ⇒ x = x∗(t)1 since G is
connected. Thus the agents converge to a moving point in R,
|xi − xj | → 0, |vi − vj | → 0 ∀i, j ∈ G as t → ∞ and
furthermore v̇(t) = 0.
(Necessity:) Assume that G is disconnected. Then there
exist two connected components, G1,G2 ∈ G, such that
V(G1) ∩ V(G2) = ∅ and there is no edge between G1 and
G2. Let xi(0) = x1

0, vi(0) = v1
0 ∀i ∈ G1 and xi(0) =

x2
0, vi(0) = v2

0 ∀i ∈ G2, where v1
0 6= v2

0 . Since G1 and
G2 are vertex-disjoint and there is no edge connecting G1

and G2, v̇i = 0 ∀i ∈ V(G1) ∪ V(G2). Thus consensus cannot
be reached. Next we show that E(v) =

∑
i∈V

∫ vi
0

1
γi(y) dy =∫ v

0
1TΓ−1(v)1dy is invariant under the protocol (7). Indeed,

consider:
dE(v(t))

dt
=
∂E

∂v

∂v

∂t
= −1TΓ−1(v)Γ(v)

[
Bα(x̄) +Bβ(v̄)

]
= −1TBα(x̄)− 1TBβ(v̄) = 0.

Thus we conclude that limt→∞ x(t) = x∗(t)1 and
limt→∞ v(t) = v∗1 with v∗ given by the integral equation:∑

i∈V

∫ v0i

0

1

γi(y)
dy =

∫ v∗

0

∑
i∈V

1

γi(y)
dy.

The existence and uniqueness of the solution to the above
integral equation follows by from assumption 1.

IV. EXAMPLE

Consider a group of autonomous mobile agents in space.
The agents are denoted v1, . . . , v5, whose communication

v1 v2 v3

v4

v5

e1
e3

e2
e4

Figure 1. Communication topology of the agents.

topology is given by the undirected graph in figure 1. The
goal is to reach consensus in one dimension by applying
a distributed consensus control law by using only relative
position and velocity measurements. The raw control signal
is the power applied to the agent’s engine, Pi. However, the
acceleration in an observers reference frame is ai = Pi

|vi| ,
where vi is the agents velocity. We assume that the agents
only have access to relative measurements, and hence are
unaware of their absolute positions. This scenario can be
modeled by our proposed nonlinear consensus protocol (7),
where the gain function γi(y) = 1

|y|+c ∀i ∈ V captures
the dependence of the agents acceleration on it’s absolute
speed. c ∈ R+ is arbitrarily small, and ensures the bound-
edness of γi·. The interaction functions are chosen to be
αij(y) = 2βij(y) = 20 (ey − 1) sgn (y) ∀(i, j) ∈ E . It is
clear that this situation cannot be modeled by any previously
proposed linear consensus protocols. Figures 2 and 3 show
the state trajectories for different initial conditions. Due to
theorem 7, consensus is reached, and the final consensus
velocity, as seen from an observer, can be calculated and
is shown with a dashed lines.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have considered a class of nonlinear
consensus protocols for first-order and second-order dynam-
ics. Necessary and sufficient conditions for consensus were
derived for static communication topologies under single and
double integrator dynamics, and for switching under single
integrator dynamics. In all cases, expressions for the conver-
gence points were specified. Necessary and sufficient con-
ditions for the convergence were derived for static directed
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Figure 2. State trajectories with x(0) = [−4, 0, 3,−1,−5], v(0) =
[−3,−7, 3,−1, 0]T
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Figure 3. State trajectories with x(0) = [−4, 0, 3,−1,−5], v(0) =
[8, 4, 14, 10, 11]T

communication under single integrator dynamics. For static
communication topologies under single integrator dynamics,
we derived bounds on the exponential convergence using a
novel Lyapunov function.

Possible applications could include consensus problems
with preferred and non-preferred absolute agreement points.
The state-dependent convergence speed could also be used
to capture inherent properties of the agents dynamics, as
demonstrated in the example. Other possible applications
include distributed estimation with state-dependent sensor
noise and measurement range.
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