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a b s t r a c t

In this paper, we consider the global consensus problem for discrete-timemulti-agent systemswith input
saturation constraints under fixed undirected topologies. We first give necessary conditions for achieving
global consensus via a distributed protocol based on relative statemeasurements of the agent itself and its
neighboring agents. We then focus on two special cases, where the agent model is either neutrally stable
or a double integrator. For the neutrally stable case, any linear protocol of a particular form, which solves
the consensus problem for the case without input saturation constraints, also solves the global consensus
problem for the case with input saturation constraints. For the double integrator case, we show that a
subset of linear protocols, which solve the consensus problem for the case without saturation constraints,
also solve the global consensus problem for the case with input saturation constraints. The results are
illustrated by numerical simulations.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, the distributed coordination of a multi-agent
system (MAS) has received substantial attention due to its wide
application areas, including consensus computation (Bai, Arcak,
& Wen, 2011; Jadbabaie, Lin, & Morse, 2003; Olfati-Saber &
Murray, 2004; Tsitsiklis, 1984), synchronization (Wu & Chua,
1995), distributed processing (Lynch, 1996), and network flow
control (Low, Paganini, & Doyle, 2002; Wen & Arcak, 2004). When
it comes to the consensus problem, each agent has to implement a
distributed protocol based on the limited information about itself
and its neighboring agents.

The design of consensus protocols can be generally divided
into two categories depending on whether the agent models are
continuous-time or discrete-time. Much attention has been de-
voted to the continuous-time case. The existing works here can
be categorized into two directions depending whether the agent
models are identical or not. The consensus problem for homoge-
neous networks (i.e., networks where the agent models are iden-
tical) has been considered (e.g., Li, Du, & Lin, 2011; Li, Duan, Chen,
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& Huang, 2010; Olfati-Saber & Murray, 2004; Ren & Beard, 2005;
Scardovi & Sepulchre, 2009; Seo, Shim, & Back, 2009; Seyboth, Di-
marogonas, & Johansson, 2013; Shi & Hong, 2009; Xiao & Wang,
2008; Yang, Roy,Wan, & Saberi, 2011; Yu, Chen, & Cao, 2010),while
the consensus problem for heterogeneous networks (i.e., networks
where the agent models are non-identical) has been a recent focus
(e.g., Grip, Yang, Saberi, & Stoorvogel, 2012; Wieland, Sepulchre, &
Allgöwer, 2011; Zhao, Hill, & Liu, 2011). The studies on the discrete-
time case are rather limited, but some results can be found in (e.g.,
Blondel, Hendrickx, Olshevsky, & Tsitsiklis, 2005; Jadbabaie et al.,
2003; Moreau, 2005; Ren & Beard, 2005; Tuna, 2008; You & Xie,
2011; Zhang & Tian, 2009).

Most consensus literature does not consider the case where the
agents are subject to input saturation. However, in almost every
physical application, the actuator has bounds on its input, and thus
actuator saturation is important to study. The protocol design for
achieving consensus for the case with input saturation constraints
is a challenging problem, and only few results are available for
continuous-time agent models (e.g., Cortés, 2006; Du, Li, & Ding,
2013; Li, Xiang, & Wei, 2011; Meng, Zhao, & Lin, 2013; Yang,
Stoorvogel, Grip, & Saberi, in preparation). For the single integrator
case, Li, Xiang et al. (2011) showed that any linear protocol based
on the relative state information, which solves the consensus
problem for the case without input saturation constraints under
fixed directed network topologies, also solves the global consensus
problem in the presence of input saturation constraints. Meng
et al. (2013) proposed a linear protocol based on the relative state
information to solve the global consensus problem for an MAS
with input saturation constraints under fixed undirected network
topologies and time varying network topologies. Yang, Stoorvogel,
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Grip et al. (in preparation) studied semi-global regulation of output
synchronization for heterogeneous networks under fixed directed
network topologies.

To the best of the authors’ knowledge, all the existing works
on the consensus problem for an MAS with input saturation con-
straints are restricted to continuous-time agent models. This mo-
tivates us to consider the consensus problem for the case where
the agents models are discrete-time, as such models are relevant
for many practical sampled-data systems. As a first step, in this pa-
per, we assume that the network topology is fixed and undirected.
This papermay be seen as a continuation of thework ofMeng et al.
(2013). We extend their continuous-time results for fixed topolo-
gies to a discrete-time setting. The extension is considerable. First,
Meng et al. (2013) considered the leader–follower case while we
consider the leaderless case. Second, we use a completely new set
Lyapunov stability theory argument.

The remainder of the paper is organized as follows. In Section 2,
some preliminaries and notations are introduced. In Section 3, we
first formulate the global consensus problemwith input saturation
constraints, and then give necessary conditions for achieving
global consensus under fixed undirected topologies. In Sections 4
and 5, we consider the case where the agent model is neutrally
stable and a double integrator, respectively. Simulation examples
are presented in Section 6 followed by conclusions.

2. Preliminaries and notations

In this paper, we assume that the network topology among the
agents is described by a fixed undirected weighted graph G =

(V , E , A ), with the set of agents V = {1, . . . ,N}, the set of undi-
rected edges E ⊆ V × V , and a weighted adjacency matrix A =

[aij] ∈ RN×N , where aij > 0 if and only if (j, i) ∈ E and aij = 0 oth-
erwise. In this paper, we also assume that aij = aji for all i, j ∈ V ,
and that there are no self-loops, i.e., aii = 0 for i ∈ V . The set of
neighboring agents of agent i is defined as Ni = {j ∈ V |aij > 0}. A
path from node i1 to ik is a sequence of nodes {i1, . . . , ik} such that
(ij, ij+1) ∈ E for j = 1, . . . , k−1 in the undirected graph. An undi-
rected graph is said to be connected if there exists a path between
any pair of distinct nodes.

For an undirected weighted graph G , a matrix L = [ℓ]ij ∈ RN×N

with ℓii =
N

j=1 aij and ℓij = −aij for j ≠ i is called the Laplacian
matrix associated with graph G . It is well known that the Laplacian
matrix has the property that all the row sums are zero. If the undi-
rected weighted graph G is connected, then L has a simple eigen-
value at zero with corresponding right eigenvector 1 and all other
eigenvalues are strictly positive. All the eigenvalues can be ordered
as 0 = λ1 < λ2 ≤ · · · ≤ λN ≤ 2∆, where ∆ = maxi∈V ℓii.

Given a matrix A, AT denotes its transpose and ∥A∥ denotes its
induced norm. A symmetric matrix A is positive (negative) definite
if and only if all its eigenvalues are positive (negative), and is
positive (negative) semi-definite if and only if all its eigenvalues
are non-negative (non-positive).We denote by A⊗B the Kronecker
product betweenmatrices A and B. For two column vectors a and b
of the same dimensions, a < (≤)b means that each entry of a − b
is negative (non-positive), while a > (≥)b means that each entry
of a − b is positive (non-negative). IN denotes the identity matrix
of dimensionN×N . 1N denotes the column vector with each entry
being 1. For column vectors x1, . . . , xN , the stacked column vector
of x1, . . . , xN is denoted by [x1; . . . ; xN ].

3. Problem formulation

We consider an MAS of N identical discrete-time agents

xi(k + 1) = Axi(k) + Bσ(ui(k)), i ∈ V , (1)
where xi(k) ∈ Rn, ui(k) ∈ Rm,

σ(ui(k)) = [σ1(ui,1(k)); σ1(ui,2(k)); . . . ; σ1(ui,m(k))],

and each σ1(u) is the standard saturation function

σ1(u) =

1 if u > 1,
u if |u| ≤ 1,
−1 if u < −1.

The only information available for agent i comes from the network.
In particular, agent i receives a linear combination of its own state
relative to that of neighboring agents, i.e.,

ζi(k) =


j∈Ni

aij(xi(k) − xj(k)).

Our goal is to design distributed protocols ui(k) for i ∈ V by
using ζi(k) to solve the global consensus problem, i.e., for any initial
conditions xi(0), where i ∈ V , limk→∞(xi(k) − xj(k)) = 0 for all
i, j ∈ V .

Each agent is subject to the input saturation constraints. These
nonlinearities make the protocol design for achieving consensus
difficult since we have to guarantee that consensus is achieved for
all initial conditions.

3.1. Necessary conditions

Assumption 1. The agentmodel (1) is asymptotically null control-
lable with bounded controls (ANCBC), i.e., the pair (A, B) is stabi-
lizable and all the eigenvalues of the matrix A are within or on the
unit circle.

Based on the results in Saberi, Stoorvogel, and Sannuti (2012,
Section 4.2) and Yang, Sontag, and Sussmann (1997), we have the
following result.

Proposition 1. AnMAS of N agents (1) achieves global consensus via
distributed protocols ui(k) = fi(ζi(k), k), i ∈ V , only if Assump-
tion 1 is satisfied.

From the saturation literature (e.g., Sussmann, Sontag, & Yang,
1994; Teel, 1992), it is evident that, in general, we need to design
a nonlinear protocol to solve the global consensus problem. In this
paper, we shall concentrate on a linear protocol

ui(k) = Kζi(k) = K

j∈Ni

aij(xi(k) − xj(k)), i ∈ V , (2)

as such a protocol may suffice in some cases.
Given a fixed undirected graph and Assumption 1, it follows

from You and Xie (2011, Theorem 3.1) that a network of N agents
(1) in the absence of input saturation achieves consensus via the
protocol (2) if and only if the following assumption is satisfied.

Assumption 2. The graph G is connected.

This together with Proposition 1 yields the following result.

Proposition 2. AnMAS of N agents (1) achieves global consensus via
distributed protocols (2) only if Assumptions 1 and 2 are satisfied.

There is limited knowledge regarding which discrete-time
linear time-invariant systems subject to actuator saturation allow
for global stabilization via linear state feedback control laws. It is
known that for some special discrete-time cases, such as open-
loop neutrally stable systems2 (Bao, Lin, & Sontag, 2000), and a
double integrator (Yang, Stoorvogel, & Saberi, 2013), there exist
saturated globally stabilizing linear state feedback control laws.

2 A discrete-time system is said to be open-loop neutrally stable if all its open-
loop poles are within or on the unit circle with those on the unit circle being simple.
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Hence, in the following sections, we consider the global consensus
problem for such special cases. We show that Assumptions 1 and
2 are also sufficient for achieving global consensus for these cases
by explicitly specifying the matrix K for (2).

4. Neutrally stable agent model

In this section, we consider the case where the agent model (1)
is open-loop neutrally stable.

Under Assumption 1, there exists a non-singular state transfor-
mation T−1, such that

A = T−1

Ac 0
0 As


T , B = T−1


Bc
Bs


,

where AT
cAc = I , As is the Schur stable (i.e., all its eigenvalues are

within the unit circle), and the pair (Ac, Bc) is controllable.
As shown in You and Xie (2011), the asymptotically stable

modes can be ignored since we can set the corresponding gain
matrix to zero. Thus, without loss of generality, we make the
following assumption in this section.

Assumption 3. ATA = In and the pair (A, B) is controllable.

Under Assumption 3, controllability of the pair (A, B) is equivalent
to stabilizability of the pair (A, B).

Consider the following control law:

ui(k) = −εBTA

j∈Ni

aij(xi(k) − xj(k)), i ∈ V . (3)

Note that (3) is of the form (2) with K = −εBTA, where ε is a
designed parameter. The following lemma shows that the protocol
(3) with a properly chosen ε solves the consensus problem for an
MAS without input saturation.

Lemma 1. Consider an MAS of N agents (1) in the absence of input
saturation constraints. Assume that Assumptions 2 and 3 are satisfied.
Then any protocol (3) with ε ∈ (0, 2

λN∥BTB∥
), where λN is the largest

eigenvalue of the corresponding Laplacian matrix, solves the consen-
sus problem.

Proof. It is well known that (e.g. Seo et al., 2009; Zhang & Tian,
2009) the consensus problem for a network of N identical agents
is equivalent to the simultaneous stabilization problem of N − 1
systems. Hence, it can be verified that consensus is achieved via (3)
if all the matrices A − ελiBBTA, where λi, i ∈ {2, . . . ,N} (i.e., the
nonzero eigenvalues of the Laplacian matrix) are Schur stable. It
then follows from Shi, Saberi, and Stoorvogel (2003, Lemma 4.2)
that all these matrices are Schur stable if ε ∈ (0, 2

λN∥BTB∥
). �

The following theorem shows that (3) with ε ∈ (0, 2
λN∥BTB∥

) also
solves the global consensus problem for an MAS.

Theorem 1. Consider an MAS of N agents (1). Assume that Assump-
tions 2 and 3 are satisfied. Then any protocol (3)with ε ∈ (0, 2

λN∥BTB∥
)

solves the global consensus problem.

Proof. Define x(k) = [x1(k); . . . ; xN(k)] and u(k) = [u1(k); . . . ;
uN(k)]. To simplify the notation, sometimes x or u without explic-
itly indicating the time instant will refer to x(k) or u(k) respec-
tively. With these definitions, we obtain the following dynamics:

x(k + 1) = (IN ⊗ A)x(k) + (IN ⊗ B)σ (u(k)), (4a)

u(k) = −ε(L ⊗ BTA)x(k). (4b)
Motivated by the Lyapunov function in Cortés (2006) and Zhang,
Lewis, and Qu (2012), we consider the Lyapunov candidate

V (x(k)) =
1
2
xT(k)(L ⊗ In)x(k).

Define a manifold where all the agent states are identical

M := {x ∈ RNn
|x1 = x2 = · · · = xN}.

Note that V (x) ≥ 0 and V (x) = 0 if and only if x ∈ M . Let us
now evaluate 1V (x(k)) = V (x(k + 1)) − V (x(k)). We sometimes
drop the dependency of V (x(k)) and 1V (x(k)) on x(k) for nota-
tional simplification when it is clear from the context. From the
dynamics of (4), we obtain

1V =
1
2
σ T(u)(L ⊗ BTA)x +

1
2
xT(L ⊗ ATB)σ (u)

+
1
2
σ T(u)(L ⊗ BTB)σ (u)

= −
1
ε
σ T(u)u +

1
2
σ T(u)(L ⊗ BTB)σ (u)

≤ −σ T(u)

1
ε
INm −

1
2
L ⊗ BTB


σ(u),

where we have used that L = LT for undirected graphs and that
zTσ(z) ≥ σ T(z)σ (z) for any column vector z.

Since ε ∈ (0, 2
λN∥BTB∥

), 1V ≤ 0 and 1V = 0 if and only if

(L ⊗ BTA)x = 0. We shall show that (L ⊗ BTA)x = 0 if and only if
x ∈ M , which in turn implies that 1V = 0 if and only if x ∈ M .
We first note that if x ∈ M , then (L ⊗ BTA)x = 0 since the graph is
connected. We then show that (L ⊗ BTA)x = 0 implies that x ∈ M .
Note that (L ⊗ BTA)x = 0 implies that (L̃ ⊗ BTA)q = 0, where the
relative state q = [q2; . . . ; qN ], qi = xi − x1 for i ∈ {2, . . . ,N}, and

L̃ =

ℓ2,2 − ℓ1,2 · · · ℓ2,N − ℓ1,N
...

. . .
...

ℓN,2 − ℓ1,2 · · · ℓN,N − ℓ1,N

 ∈ R(N−1)×(N−1). (5)

Since the graph is connected, it follows from Zhang and Tian (2009,
Lemma 1) that the eigenvalues of L̃ are the nonzero eigenvalues
of the matrix L, which are positive. Thus, the matrix L̃ is non-
singular, i.e., rank(L̃) = N − 1.

From the fact that ATA = In, we see that (L̃⊗ BTA)q = 0 implies
qT(L̃ ⊗ A−1B) = 0. Also note that q(k + 1) = (IN−1 ⊗ A)q(k), since
u(k) = −ε(L ⊗ BTA)x(k) = 0. Therefore

(L̃ ⊗ BTA)q(k + 1) = (L̃ ⊗ BTA2)q(k),

which is equivalent to qT(L̃ ⊗ A−2B) = 0. By iteration, we obtain
qT(L̃ ⊗ A−rB) = 0 for r = 3, 4, . . . , n + 1. Hence,

qT

L̃ ⊗ A−(n+1) 

AnB · · · AB B


= 0. (6)

Note that rank

AnB · · · AB B


= n since the pair (A, B) is

controllable. This together with the fact that the matrix A is non-
singular implies that rank


A−(n+1)


AnB · · · AB B


= n. Fi-

nally, using the property of Kronecker product, we obtain

rank

L̃ ⊗ A−(n+1) 

AnB · · · AB B


= rank

L̃

rank


A−(n+1) 

AnB · · · AB B


= (N − 1)n.

Therefore, the only solution of (6) is q = 0, which is equivalent to
x1 = · · · = xN , i.e., x ∈ M . Hence, we have shown that 1V (x) ≤ 0
and 1V (x) = 0 if and only if x ∈ M .
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Since 1V (x(k)) = V (x(k + 1)) − V (x(k)) ≤ 0, we conclude
that V (x(k)) is non-increasing in k. Thus, limk→∞ V (x(k)) = V∗ for
some V∗ ≥ 0 since V ≥ 0. This implies that 1V (x(k)) → 0 as
k → ∞ and hence x(k) → M as k → ∞. Hence, global consensus
is achieved. �

Remark 1. Note that the continuous-time counterpart was con-
sidered in Meng et al. (2013, Theorem 4.1). They considered the
leader–follower case while we consider the leaderless case. It re-
sults in a completely different analysis which relies on set Lya-
punov stability theory argument.

5. Double integrator agent model

In this section, we consider the case where the agent model (1)
is a double integrator.

Assumption 4. The matrices A and B are of the form

A =


1 1
0 1


, B =


0
1


.

Let us first recall the following result which gives a necessary and
sufficient condition on the feedback gain parameters for achieving
consensus without input saturation constraints.

Lemma 2 (Xie & Wang, 2012). Consider an MAS of N agents de-
scribed by
xi(k + 1)
vi(k + 1)


= A


xi(k)
vi(k)


+ Bui(k), i ∈ V . (7)

Assume that Assumptions 2 and 4 are satisfied. Then the protocol
(2) with K = −


α β


:

ui(k) = −α

j∈Ni

aij(xi(k) − xj(k)) − β

j∈Ni

aij(vi(k) − vj(k)), (8)

solves the consensus problem if and only if

0 < α < β <
α

2
+

2
λN

. (9)

The following theorem shows that a subset of the protocols (8),
which solve the consensus problem for an MAS without input
saturation constraints, also solve the global consensus problem for
an MAS with input saturation constraints.

Theorem 2. Consider an MAS of N agents (1). Assume that Assump-
tions 2 and 4 are satisfied. Then the protocol (8) with

0 <
√
3α < β <

3
2λN

, (10)

solves the global consensus problem.

Proof. Let x(k) = [x1(k); . . . ; xN(k)], v(k) = [v1(k); . . . ; vN(k)],
u(k) = [u1(k); . . . ; uN(k)], yi(k) = [xi(k); vi(k)], and y(k) =

[y1(k); . . . ; yN(k)]. To simplify the notation, sometimes x, v, u
or y without explicitly indicating the time instant will refer to
x(k), v(k), u(k) or y(k) respectively. With these definitions, we ob-
tain the following dynamics:

y(k + 1) = (IN ⊗ A)y(k) + (IN ⊗ B)σ (u(k)),
u(k) =


L ⊗


−α −β


y(k).

We also obtain that x(k+ 1) = x(k) + v(k) and v(k+ 1) = v(k) +

σ(u(k)). Note that u(k) can be written in terms of x(k) and v(k) as

u(k) = −αLx(k) − βLv(k). (11)
Hence, we obtain

u(k + 1) = u(k) − αLv(k) − βLσ(u(k)). (12)

Motivated by the Lyapunov function in Yang, Stoorvogel et al.
(2013), we consider the following Lyapunov candidate

V (y) = −σ T(u)σ (u) + 2σ T(u)u + 2ασ T(u)Lv + αvTLv.

We sometimes drop the dependency of V (y(k)) on y(k) for nota-
tion simplification when it is clear from the context. Similar to the
proof of Theorem1,we define amanifoldwhere all the agent states
are identical

M := {y ∈ R2N
|y1 = y2 = · · · = yN}.

Note that V (y) = 0 if y ∈ M . We will show that V (y) ≥ 0 and
V (y) = 0 if only if y ∈ M . Since σ T(z)z ≥ σ T(z)σ (z) for any col-
umn vector z, where the equality holds if and only if −1 ≤ z ≤ 1,
we obtain

V ≥ σ T(u)σ (u) + 2ασ T(u)Lv + αvTLv (13)

=


σ(u)
Lv


T


1 α

α
2
3
αβ

 
σ(u)
Lv


+ vT


αL −

2
3
αβLTL


v, (14)

where the equality of (13) holds if and only if −1 ≤ u ≤ 1. Since
β >

√
3α > 3

2α > 0, the first term of (14) is non-negative and
is equal to zero if and only if σ(u) = 0 and Lv = 0. Note that
from (11), we see that u = −αLx − βLv = −αLx; therefore,
Lx = 0 since α ≠ 0. Thus, the first term is equal to zero if and
only if y ∈ M . We next show that the second term is also non-
negative. Since L = LT, we see that the eigenvalues of the matrix
αL −

2
3αβLTL are αλi(1 −

2
3βλi), where λi, i ∈ {1, . . . ,N} are the

eigenvalues of the Laplacian matrix L. Since βλN < 3
2 , the second

term is non-negative and equal to zero if and only if Lv = 0. There-
fore, V (y) ≥ 0 and V (y) = 0 if and only if y ∈ M .

Next, we show that1V (y(k)) = V (y(k+1))−V (y(k)) ≤ 0.We
sometimes drop the dependency 1V (y(k)) on y(k) for notational
simplificationwhen it is clear from the context.With some algebra,
we obtain

V (y(k + 1)) = −tTt + 2tTu + 2(α − β)tTLσ(u) + αvTLv
+ 2αvTLσ(u) + ασ T(u)Lσ(u),

where to simplify notation we have used t = σ(u(k + 1)). Note
that −1 ≤ t ≤ 1 by the definition of the saturation function. Thus,

1V (y(k)) = V (y(k + 1)) − V (y(k))
= −tTt + 2tTu + 2(α − β)tTLσ(u)

+ σ T(u)(αL + I)σ (u) − 2σ T(u)u.

Without loss of generality, we assume that ui > 1 for i ∈ {1,
. . . ,N1} := Sp, |ui| ≤ 1 for i ∈ {N1 + 1, . . . ,N2} := Sm, and
ui < −1 for i ∈ {N2 + 1, . . . ,N} := Sq, since if this is not the
case, we can always relabel the nodes to achieve this. Note that the
sets Sp, Sm, and Sq may be empty. We then define the partition t =

[tp; tm; tq], u = [up; um; uq], where tp, up ∈ RN1 , tm, um ∈ RN2−N1 ,
and tq, uq ∈ RN−N2 are defined accordingly.We partition the Lapla-
cian matrix L accordingly

L =

 Lpp Lpm Lpq
LTpm Lmm Lmq

LTpq LTmq Lqq

 ,
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where Lpp, Lpm, Lpq, Lmm, Lmq and Lqq are real matrices of appropri-
ate dimensions. With some algebra, we obtain

1V = −tTptp − tTmtm − tTqtq + 2tTpup + 2tTmum + 2tTquq

+ 2(α − β)

tTp tTm tTq

  Lpp Lpm Lpq
LTpm Lmm Lmq

LTpq LTmq Lqq

  1p
um
−1q



+ α

1T

p uT
m −1T

q

L

 1p
um
−1q


+ 1T

p1p + uT
mum + 1T

q1q

− 2

1T

p uT
m −1T

q
 up

um
uq


= 2(tp − 1p)

T(up − 1p) + 2tTp1p − 21T
p1p

+ 2(tq + 1q)
T(uq + 1q) − 2tTq1q − 21T

q1q − tTptp + 2tTp

×


(α − β)


Lpp Lpm Lpq

  1p
um
−1q


+ 1p


− 2tTp1p

− tTmtm + 2tTm


(α − β)


LTpm Lmm Lmq

  1p
um
−1q


+ um



− tTqtq + 2tTq


(α − β)


LTpq LTmq Lqq

  1p
um
−1q


− 1q



+ 2tTq1q + α

1T

p uT
m −1T

q

L

 1p
um
−1q


+ 1T

p1p

+ 1T
q1q − uT

mum.

Note that

−tTptp + 2tTp


(α − β)


Lpp Lpm Lpq

  1p
um
−1q


+ 1p



= −


tp −


(α − β)


Lpp Lpm Lpq

  1p
um
−1q


+ 1p


T

×


tp −


(α − β)


Lpp Lpm Lpq

  1p
um
−1q


+ 1p



+


(α − β)


Lpp Lpm Lpq

  1p
um
−1q


+ 1p


T

×


(α − β)


Lpp Lpm Lpq

  1p
um
−1q


+ 1p


.

Similar completion of squares for

−tTmtm + 2tTm


(α − β)


LTpm Lmm Lmq

  1p
um
−1q


+ um


,

and

−tTqtq + 2tTq


(α − β)


LTpq LTmq Lqq

  1p
um
−1q


− 1q


,

yields

1V = 2(tp − 1p)
T(up − 1p) + 2(tq + 1p)

T(uq + 1p) (15)

−


tp −


(α − β)


Lpp Lpm Lpq

  1p
um
−1q


+ 1p


T

×


tp −


(α − β)


Lpp Lpm Lpq

  1p
um
−1q


+ 1p


(16)

−


tm −


(α − β)


LTpm Lmm Lmq

  1p
um
−1q


+ um


T

×


tm −


(α − β)


LTpm Lmm Lmq

  1p
um
−1q


+ um


(17)

−


tq −


(α − β)


LTpq LTmq Lqq

  1p
um
−1q


− 1q


T

×


tq −


(α − β)


LTpq LTmq Lqq

  1p
um
−1q


− 1q


(18)

+ sTM̃s, (19)

where s = [1p; um; −1q] and M̃ = (α − β)2L2 + (3α − 2β)L since
L = LT. Note that the two terms in (15) are negative since tp −1p <
0, up−1p > 0, tq+1q > 0, uq+1q < 0, and that the terms in (16)–
(18) are all non-positive. In order to show that 1V ≤ 0, it is suffi-
cient to show that the term (19) is also non-positive, i.e., to show
that the matrix M̃ is negative semi-definite. It is easy to see that
the eigenvalues of thematrix M̃ are (α −β)2λ2

i + (3α −2β)λi, i ∈

{1, . . . ,N}. Hence, M̃ has one simple eigenvalue at zero with the
corresponding right eigenvector 1, while all other eigenvalues are
(α − β)2λ2

i + (3α − 2β)λi, i ∈ {2, . . . ,N}. We shall show that all
these eigenvalues are negative. Since λi > 0 and λi ≤ λN , it is suf-
ficient to show that λN <

2β−3α
(α−β)2

. We note that λN < 3
2β from (10).

Thus, it is sufficient to show that 3
2β <

2β−3α
(α−β)2

. With some algebra,

we see that this is equivalent to show that β >
√
3α, which is true

given (10).
Hence, we have shown that 1V (y) ≤ 0. We then show that

1V (y) = 0 if and only if y ∈ M . To show this, we first note that
1V < 0 if the first two terms (15) are not empty since they are
negative. Therefore, 1V = 0 only if these terms are empty. This is
the case when |ui| ≤ 1 for all the agents i ∈ {1, . . . ,N}, i.e., when
the sets Sp and Sq are empty. In this case, we have

1V = −tTt + 2tTu + 2(α − β)tTLu + uT(αL − I)u
= −{t − [(α − β)L + IN ] u} T

{t − [(α − β)L + IN ] u}

+ uTM̃u. (20)

Note that the term in (20) is non-positive and is equal to zero if and
only if t = [(α − β)L + IN ] u.

Recall that M̃ has exactly one zero eigenvalue with the corre-
sponding right eigenvector 1, while all other eigenvalues are neg-
ative. Therefore, the term uTM̃u is also non-positive and it is equal
to zero if and only if Lu = 0.

Hence, we conclude that 1V = 0 if and only if t = [(α − β)L
+I] u and Lu = 0. Since Lu = 0, we obtain t = u. On the other
hand, from (12), we obtain

t = σ(u(k + 1)) = u(k + 1) = u − αLv − βLσ(u) = u − αLv.

Thus,we see that Lv = 0 sinceα ≠ 0. Thus v1 = · · · = vN since the
graph is connected. From (11),we obtainu = −αLx−βLv = −αLx.
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Fig. 1. Network with seven agents.

This together with the fact that Lu = 0 implies that L̃q = 0, where
the relative state q = [q2; . . . ; qN ], qi = xi − x1 for i ∈ {2, . . . ,N},
and L̃ is given by (5). Since thematrix L̃ is non-singular, we see that
q = 0, i.e., x1 = · · · = xN . Therefore 1V (y) = 0 if and only if
y ∈ M .

Hence, we have shown that 1V (y) ≤ 0 and 1V (y) = 0 if and
only if y ∈ M . It then follows from a similar analysis as in the end
of the proof of Theorem 1, that y(k) → M as k → ∞. Hence, global
consensus is achieved. �

Remark 2. Note that for the continuous-time case, Meng et al.
(2013, Theorem 5.1) shows that any linear protocols, which solve
the consensus problem for an MAS without input saturation
constraints, also solve the global consensus problem for an MAS
with input saturation constraints. In this sense, the result of
Theorem 2 is different since it requires a more restricted condition
given by (10) on the feedback gain parameters of the linear
protocol (8).

Remark 3. The Lyapunov function (14) has one additional term
ασ T(u)Lv compared to the Lyapunov function used in Meng et al.
(2013, Theorem 5.1) for the continuous-time case. The stability
analysis is substantially different from the one inMeng et al. (2013,
Theorem 5.1).

6. Illustrative example

In this section, we illustrate our results on global consensus
with input saturation constraints for a network with N = 7 double
integrators, whose topology is given in Fig. 1. Choose α = 0.07 and
β = 0.15 such that the condition (10) is satisfied. The simulation
results shown in Fig. 2 confirm the results of Theorem 2.

7. Conclusions and future work

This paper considered the global consensus problem for anMAS
of discrete-time identical linear agents, where the agent dynamics
are either neutrally stable or a double integrator, with input
saturation constraints under fixed undirected network topologies.
Extensions to directed topologies and time-varying topologies
are currently under investigation. Another interesting topic is to
consider heterogeneous networks.
(a) The evolution of xi . (b) The evolution of vi .

(c) Saturated input σ(ui).

Fig. 2. Simulation results with input saturation constraint.
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