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a b s t r a c t

In this paper, we study the discrete-time consensus problem over networks with antagonistic and
cooperative interactions. A cooperative interaction between two nodes takes place when one node
receives the true state of the otherwhile an antagonistic interaction happenswhen the former receives the
opposite of the true state of the latter. We adopt a quite general model where the node communications
can be either unidirectional or bidirectional, the network topology graph may vary over time, and the
cooperative or antagonistic relations can be time-varying. It is proven that, the limits of all the node
states exist, and the absolute values of the node states reach consensus if the switching interaction
graph is uniformly jointly strongly connected for unidirectional topologies, or infinitely jointly connected
for bidirectional topologies. These results are independent of the switching of the interaction relations.
We construct a counterexample to indicate a rather surprising fact that quasi-strong connectivity of
the interaction graph, i.e., the graph contains a directed spanning tree, is not sufficient to guarantee
the consensus in absolute values even under fixed topologies. Based on these results, we also propose
sufficient conditions for bipartite consensus to be achieved over the network with joint connectivity.
Finally, simulation results using a discrete-time Kuramoto model are given to illustrate the convergence
results showing that the proposed framework is applicable to a class of networks with general nonlinear
dynamics.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Distributed consensus algorithms were first introduced in the
study of distributed optimization methods in Tsitsiklis, Bertsekas,
and Athans (1986). Phase synchronization was observed in Vicsek,
Czirok, Jacob, Cohen, and Schochet (1995) and its mathematical
proofwas given in Jadbabaie, Lin, andMorse (2003). The robustness
of the consensus algorithm to link/node failures and time-delays
was studied in Olfati-Saber, Fax, and Murray (2007). A central
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problem in consensus study is to investigate the influence of the
interaction graph on the convergence or convergence speed of
the multi-agent system dynamics. The interaction graph, which
describes the information flow among the nodes, is often time-
varying due to the complexity of the interaction patterns in
practice. Both continuous-time and discrete-time models were
studied for consensus algorithms with switching interaction
graphs and joint connectivity conditions were established for
linear models (Blondel, Hendrickx, Olshevsky, & Tsitsiklis, 2005;
Cao, Morse, & Anderson, 2008b; Hendrickx & Tsitsiklis, 2013;
Ren & Beard, 2005). Nonlinear multi-agent dynamics have also
drawn much attention (Meng, Lin, & Ren, 2013; Shi & Hong, 2009)
since in many practical problems the node dynamics are naturally
nonlinear, e.g., the Kuramoto model (Strogatz, 2000).

Although great progress has been made, most of the existing
results are based on the assumption that the agents in the network
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are cooperative. Recently, motivated by opinion dynamics over
social networks (Cartwright & Harary, 1956; Easley & Kleinberg,
2010; Hegselmann & Krause, 2002), consensus algorithms over
cooperative–antagonistic networks drewmuch attention (Altafini,
2012, 2013; Shi, Johansson, & Johansson, 2013). Altafini (2013)
assumed that a node receives the opposite of the true state of its
neighboring node if they are antagonistic. Therefore, the modeling
of such an antagonistic input for agent i is of the form −(xi + xj)
(in contrast to the form −(xi − xj) for cooperative input), where
j denotes the antagonistic neighbor of agent i. On the other hand,
the authors of Shi et al. (2013) assumed that a node receives the
opposite of the relative state from its neighboring node if they are
antagonistic. Then, the antagonistic input for agent i is modeled
by the form (xi − xj) in this case. The extension to the case
of homogeneous single-input high-order dynamical systems was
discussed in Valcher and Misra (2014). The graph was assumed to
be fixed and a spectral analysis approach was used. Instead, we
will focus on switching topologies with joint connectivity and take
advantage of a detailed state-space analysis approach in this paper.
A lifting approach was proposed in Hendrickx (2014) to study
opinion dynamics with antagonisms over switching interaction
graphs. Some general conditions were established by applying the
rich results from the consensus literature. The dissensus problem
was studied in Bauso, Giarre, and Pesenti (2012), where the focus
was to understand when consensus is or is not achieved if death
and duplication phenomena occur. Note that in dissensus the
control terms for death and duplication phenomena are added to
the classical consensus algorithm. However, consensus or bipartite
consensus in our study does not denote a control goal, but a final
behavior of multi-agent systems. In particular, consensus denotes
the final states of all the agents converging to the same value
while bipartite consensus denotes the final states of all the agents
converging to two opposite values.

Note that most of the existing works on antagonistic interac-
tions are based on the assumption that the interaction graph is
fixed. In many practical cases, however, the interactions between
agents may vary over time or be dependent on the states. In this
paper, we focus on the behavior of multiple agents with antago-
nistic interactions, discrete-time dynamics, and switching interac-
tion graphs. Both unidirectional and bidirectional topologies are
considered. We show that the limits of all node states exist and
reach a consensus in absolute values if the switching interaction
graph is uniformly jointly strongly connected for unidirectional
topologies, or infinitely jointly connected for bidirectional topolo-
gies. Here, reaching consensus in absolute values is not a design
objective, but rather an emergent behavior that we can observe for
cooperative–antagonistic networks. By noting that an antagonis-
tic interaction also represents an arc in the graph, we know that
the connectivity of the network may not be guaranteed without
antagonistic interactions. Therefore, we actually show that the an-
tagonistic interaction has a similar role as the cooperative interac-
tion in contributing to the consensus of the absolute values of the
node states. In addition, a counterexample is constructed that in-
dicates that quasi-strong connectivity of the interaction graph, i.e.,
the graph has a directed spanning tree, is not sufficient to guaran-
tee consensus of the node states in absolute values even under a
fixed topology. Based on these results, we propose sufficient con-
ditions for bipartite consensus to be achieved over a network with
joint connectivity. It turns out that the structural balance condition
is essentially important and this part of the result can be viewed
as an extension of the work (Altafini, 2013) to the case of general
time-varying graphswith joint connectivity. A detailed asymptotic
analysis is performed with a contradiction argument to show the
main results.
2. Problem formulation and main results

Consider a multi-agent network with agent set V = {1, . . . , n}.
In the rest of the paperwe use agent and node interchangeably. The
state-space for the agents is R, and we let xi ∈ R denote the state
of node i. Set x = (x1, x2, . . . , xn)T.

2.1. Interaction graph

The interaction graph of the network is defined as a sequence
of unidirectional graphs, Gk = (V, Ek), k = 0, 1, . . . , with node
set V and Ek ⊆ V × V is the set of arcs at time k. An arc from
node i to j is denoted by (i, j). A path from node i to j is a sequence
of consecutive arcs {(i, k1), . . . , (kl, j)}. We assume that Gk is a
signed graph, where ‘‘+’’ or ‘‘−’’ is associated with each arc (i, j) ∈

Ek. Here, ‘‘+’’ represents cooperative relation and ‘‘−’’ represents
antagonistic relation. The set of neighbors of node i inGk is denoted
by Ni(k) := {j : (j, i) ∈ Ek} ∪ {i}, and N +

i (k) and N −

i (k) are used
to denote the cooperative neighbor sets and antagonistic neighbor
sets, respectively. Clearly, Ni(k) = N −

i (k) ∪ N +

i (k) ∪ {i}. The joint
graph of G during time interval [k1, k2) is defined by G([k1, k2)) =

k∈[k1,k2)
Gk = (V,


k∈[k1,k2)

Ek). The sequence of graphs {Gk}
∞

0 is
said to be sign consistent if the sign of any arc (i, j) does not change
over time. Under the assumption that {Gk}

∞

0 is sign consistent, we
can define a signed total graphG∗

:= (V, E∗), where E∗
= ∪

∞

k=0 Ek.
We write i → j if there is a path from i to j. A root is a node i

such that i → j for every other node j ∈ V \ {i}. A unidirectional
graph is quasi-strongly connected if it has a directed spanning tree,
i.e., there exists at least one root. A unidirectional graph is called
strongly connected if there is a path connecting any two distinct
nodes. A unidirectional graphG is called bidirectional if for any two
nodes i and j, (j, i) ∈ E if and only if (i, j) ∈ E . A bidirectional graph
is connected if it is connected as a bidirectional graph ignoring the
arc directions. We introduce the following definition of the joint
connectivity of a sequence of graphs.

Definition 2.1. (i) {Gk}
∞

0 is uniformly jointly strongly connected
if there exists a constant T ≥ 1 such that G([k, k + T )) is
strongly connected for any k ≥ 0.

(ii) {Gk}
∞

0 is uniformly jointly quasi-strongly connected if there
exists a constant T ≥ 1 such that G([k, k + T )) has a directed
spanning tree for any k ≥ 0.

(iii) Suppose Gk is bidirectional for all k ≥ 0. Then {Gk}
∞

0 is
infinitely jointly connected ifG([k, +∞)) is connected for any
k ≥ 0.

2.2. Node dynamics

The update rule for each node is described by:

xi(k + 1) =


j∈Ni(k)

aij(x, k)xj(k),

k = 0, 1, . . . , i = 1, 2, . . . , n, (1)

where xi(k) ∈ R represents the state of agent i at time k, x =

(x1, x2, . . . , xn)T, and aij(x, k) represents a nonlinear time-varying
function. Eq. (1) can be written in the compact form:

x(k + 1) = A(x, k)x(k), k = 0, 1, . . . , (2)

where A(x, k) = [aij(x, k)] ∈ Rn×n. For aij(x, k), we impose the
following assumption.

Assumption 2.1. There exists a positive constant 0 < λ < 1 such
that:

(i) aii(x, k) ≥ λ, for all i, x, k, and


j∈Ni(k)
|aij(x, k)| = 1 for all

i, x, k;
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(ii) aij(x, k) ≥ λ for all i, j, x, k, if j ∈ N +

i (k); and aij(x, k) ≤ −λ

for all i, j, x, k, if j ∈ N −

i (k).

Remark 2.1. The antagonistic interactions commonly exist in
social networks and signed graphs are used to describe these
interactions. In signed graphs, a positive/negative weight is
associated with a cooperative/antagonistic relationship between
the two agents. Assumption 2.1 models such a signed graph
in a discrete-time dynamics and switching topology setting.
Similar modeling can be found in Altafini (2013) with continuous-
time dynamics and fixed topology. Clearly, the second part of
Assumption 2.1 describes cooperative–antagonistic interactions in
the sense that aij(x, k) > 0 represents that i is cooperative to j,
and aij(x, k) < 0 represents that i is antagonistic to j. In addition,
because of complexity of the interaction patterns, aij may depend
on time or relative measurements for agent dynamics (2), instead
of being constant. Lots of practical multi-agent system models
can be written in this form (e.g., Kuramoto equation, consensus
algorithm, and swarming model given in Moreau, 2005). Last
but not the least, we want to emphasize that the existence of a
positive constant λ in Assumption 2.1 is a technical assumption
and plays an indispensable role in driving the states of the system
asymptotically to converge (see the proofs of the main theorems).
This is in fact a very general assumption and has been used
extensively in the existing literature (see e.g., Blondel et al., 2005;
Shi et al., 2013). Here, λ can be an arbitrarily small constant and
thus the assumption on the existence of λ will not restrict the
usefulness of Assumption 2.1 on practical applications.

2.3. Main results

Uniform joint strong connectivity is sufficient for convergence
of agent states for unidirectional graphs, as stated in the following
theorem.

Theorem 2.1. Suppose that Assumption 2.1 holds and that Gk is
unidirectional for all k ≥ 0. For system (1), limk→∞ xi(k) exists
and limk→∞ |xi(k)| = M∗, for all i ∈ V and every initial state
x(0) ∈ Rn, if {Gk}

∞

0 is uniformly jointly strongly connected, where
M∗ is a nonnegative constant.

For cooperative networks, it is well-known that asymptotic
consensus can be achieved if the interaction graph is uniformly
quasi-strongly connected, e.g., Cao, Morse, and Anderson (2008a)
and Ren and Beard (2005). Note that quasi-strong connectedness
is weaker than strong connectedness. Then, a natural question is
whether asymptotic consensus in absolute values can be achieved
when the interaction graph is uniformly quasi-strongly connected.
We construct the following counterexample showing that quasi-
strong connectivity is not sufficient for the consensus in absolute
values even in case of a fixed graph.
Counterexample. Let V = {1, 2, 3} and initial state is x(0) =

(1, 0, −1)T. The interaction graph Gk = G is fixed and shown in
Fig. 1 and

A = [aij] =

 1 0 0
1/3 1/3 1/3

−1/2 0 1/2


.

It is straightforward to check that G is quasi-strongly connected.
However, the states of the agents remain x1(k) = 1, x2(k) = 0, and
x3(k) = −1, for all k = 1, 2, . . . under system dynamics (1). Thus,
the absolute values of the agent states do not reach a consensus.

For bidirectional graphs, we present the following result
indicating that the consensus in absolute values can be achieved
under weaker connectivity conditions than those in Theorem 2.1
for unidirectional graphs.
Fig. 1. Signed graph G used in the counterexample.

Theorem 2.2. Suppose that Assumption 2.1 holds and Gk is bidi-
rectional for all k ≥ 0. For system (1), limk→∞ xi(k) exists and
limk→∞ |xi(k)| = M∗, for all i ∈ V and every initial state x(0) ∈ Rn

if {Gk}
∞

0 is infinitely jointly connected, where M∗ is a nonnegative
constant.

We note that Theorems 2.1 and 2.2 are concerned with
consensus of the absolute values of agent states. It is not clear
what is the final sign of the states, i.e., the sign of limk→∞ xi(k) for
different i ∈ V . We next characterize how bipartite consensus, i.e.,
splitting into two opposite states, can emerge. We first introduce
the notion of structural balance, cf., Definition 2 of Altafini (2013).

Definition 2.2. Suppose that the sequence of graphs {Gk}
∞

0 is sign
consistent and G∗

= (V, E∗) is a signed total graph defined in
Section 2.1. G∗ is structurally balanced if we can divide V into
two disjoint nonempty subsets V1 and V2 (i.e., V1


V2 = V and

V1


V2 = ∅), where negative arcs only exist between these two
subsets, i.e., the arc (i, j) is associated with sign ‘‘+’’, ∀i, j ∈ Vq
(q ∈ {1, 2}) and the arc (i, j) is associated with sign ‘‘−’’, ∀i ∈

Vq, j ∈ Vr , q ≠ r (q, r ∈ {1, 2}).

Remark 2.2. Since we assume that the sequence of graphs {Gk}
∞

0
is sign consistent, even if the interconnection graph may be
changing with time, the sets V1 and V2 do not, and hence the two
‘‘antagonistic groups’’ are always the same given that the signed
total graph G∗ is structurally balanced.

We next establish our result for bipartite consensus.

Theorem 2.3. Suppose that Gk is unidirectional for all k ≥ 0 and
{Gk}

∞

0 is uniformly jointly strongly connected, or Gk is bidirectional
for all k ≥ 0 and {Gk}

∞

0 is infinitely jointly connected. Also suppose
that Assumption 2.1 holds, G∗ is structurally balanced, and every
negative arc in G∗ appears infinitely often in {Gk}

∞

0 . For system (1),
limk→∞ xi(k) = M∗, i ∈ V1, and limk→∞ xi(k) = −M∗, i ∈ V2, for
every initial state x(0) ∈ Rn, where M∗ is a constant.

Remark 2.3. The interpretation of Theorem 2.3 is that under
proper graph structure, the agent states in the same cooperative
subgroup converge to the same limit and the limits of agents
in different cooperative subgroups are exactly opposite. It is
not hard to see from Theorem 2.3 that the structural balance
condition plays a key role in obtaining such a bipartite consensus
behavior. Theorem 2.3 can be viewed as an extension of the result
of Altafini (2013) from fixed to switching graphs. We establish
conditions for both unidirectional and bidirectional graphs with
joint connectivity. A detailed analysis of the asymptotic behavior
will be done and a contradiction argument applied to show the
main results, in contrast to the spectral analysis approach given
in Altafini (2013).

3. Proofs

In this section, we present the proofs of the statements. First
a key technical lemma is established, and then the proofs of
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Theorems 2.1–2.3 are presented. Since the proofs do not rely on
whether or not aij depends on x, without loss of generality, we use
aij(k) to denote aij(x, k).

Lemma 1. Suppose that Assumption2.1 holds. For system (1), it holds
that ∥x(k + 1)∥∞ ≤ ∥x(k)∥∞, for all k = 0, 1, . . . .

Proof. It follows from Assumption 2.1 that |xi(k + 1)| ≤
j∈Ni(k)

|aij(k)| |xj(k)| ≤


j∈Ni(k)

|aij(k)|


× maxi∈V |xi(k)| =

∥x(k)∥∞, for all i, which leads to the conclusion directly. �

3.1. Proof of Theorem 2.1: consensus in absolute values

Since a bounded monotone sequence always admits a limit,
Lemma 1 implies that for any initial value x(0), there exists a
constant M∗, such that limk→∞ ∥x(k)∥∞ = M∗. We further define
Φi = lim supk→∞ |xi(k)|, Ψi = lim infk→∞ |xi(k)|, for all i ∈ V .
Clearly, it must hold that 0 ≤ Ψi ≤ Φi ≤ M∗. Therefore,
limk→∞ |xi(k)| = M∗, for all i ∈ V if and only if Φi = Ψi = M∗,
i ∈ V .

In addition, based on the fact that limk→∞ ∥x(k)∥∞ = M∗, it
follows that for any ε > 0, there exists a k(ε) > 0 such that
M∗

−ε ≤ ∥x(k)∥∞ ≤ M∗
+ε,∀k ≥k(ε) and |xi(k)| ≤ M∗

+ε, ∀i ∈

V, ∀k ≥k(ε).
We next use a contradiction argument. Now suppose that there

exists a node i1 ∈ V such that 0 ≤ Ψi1 < M∗. With the definitions
of Ψi1 , for any ε > 0, there exists a constant Ψi1 < α1 < M∗ and a
time instance k1 ≥k(ε) such that |xi1(k1)| ≤ α1. This shows that

|xi1(k1)| ≤ M∗
− (M∗

− α1) = M∗
− ξ1, (3)

where ξ1 = M∗
− α1 > 0.

First of all, it follows from Lemma 1 that |xj(k1 + s)| ≤

∥x(k1)∥∞, for all s = 1, 2, . . . and all j ∈ V . We next fix
i1 and analyze the trajectory of xi1 after k1. Then itmust be true that
for all s = 1, 2, . . . , |xi1(k1+s)| ≤


j∈Ni1 (k1+s−1)

ai1j(k1 + s − 1)
xj(k1 + s − 1)

 =
ai1 i1(k1 + s − 1)

 xi1(k1 + s − 1)
 +

j∈Ni1 (k1+s−1)\{i1}
|ai1j(k1 + s − 1)||xj(k1 + s − 1)| ≤ |ai1i1(k1 +

s − 1)| |xi1(k1 + s − 1)| + (1 − |ai1 i1(k1 + s − 1)|)∥x(k1)∥∞. Also
note that ∥x(k1)∥∞ ≤ M∗

+ ε. It thus follows from (3) that

|xi1(k1 + 1)| ≤ |ai1 i1(k1)| |xi1(k1)| + (1 − |ai1 i1(k1)|)∥x(k1)∥∞

≤ ai1 i1(k1)(M
∗
− ξ1) + (1 − ai1 i1(k1))(M

∗
+ ε)

≤ M∗
+ ε − λξ1, (4)

where we have used the fact that ai1 i1 ≥ λ from Assumption 2.1.
By a recursive analysis we can further deduce that

|xi1(k1 + s)| ≤ M∗
+ ε − λsξ1, s = 1, 2, . . . . (5)

Next,we consider the time interval [k1, k1+T ). SinceG([k1, k1+
T )) is strongly connected, there is a path from i1 to any other node
during the time interval [k1, k1 + T ). This implies that there exists
a time instant k2 ∈ [k1, k1+T ) such that i1 is a neighbor of another
node i2 at k2.Wenext analyze the trajectory of xi2 after k2. It follows
that |xi2(k2+s)| ≤


j∈Ni2 (k2+s−1) |ai2j(k2+s−1)||xj(k2+s−1)| =

|ai2i1(k2 + s − 1)| |xi1(k2 + s − 1)| +


j∈Ni2 (k2+s−1)\{i1}
|ai2j(k2 +

s − 1)||xj(k2 + s − 1)| ≤ |ai2 i1(k2 + s − 1)||xi1(k2 + s − 1)| +

(1 − |ai2 i1(k2 + s − 1)|)∥x(k2)∥∞, where we have used the fact
that |xi(k2 + s)| ≤ ∥x(k2)∥∞, for all s = 1, 2, . . . , and for all
i ∈ V . Noting that ∥x(k2)∥∞ ≤ M∗

+ ε, it thus follows that
|xi2(k2 + s)| ≤ |ai2 i1(k2 + s − 1)|(M∗

+ ε − λs−1+k2−k1ξ1) + (1 −

|ai2 i1(k2 + s− 1)|)(M∗
+ ε) ≤ M∗

+ ε − λs+k2−k1ξ1, s = 1, 2, . . . .
We can further use the fact k2 − k1 < T to obtain

|xi2(k1 + s)| ≤ M∗
+ ε − λsξ1, s = T , T + 1, . . . . (6)
We now reiterate the previous argument for the time interval
[k1 + T , k1 + 2T ). Again, there is a path from i1 to any other node
during the time interval [k1+T , k1+2T ). There exists a time instant
k3 ∈ [k1 + T + 1, k1 + 2T ) such that either i1 or i2 is a neighbor of
i3 (i3 is another node different from i1 and i2) at k3. For any of the
two cases we can deduce from (5) and (6) that for agent i3, it must
hold |xi3(k1 + s)| ≤ M∗

+ ε − λsξ1, s = 2T , 2T + 1, . . . .
The above analysis can be carried out to intervals [k1 +2T , k1 +

3T ), . . . , [k1+(n−2)T , k1+(n−1)T ), where i4, . . . , in canbe found
recursively until they include thewhole network.We can therefore
finally arrive at ∥x(k1 + (n − 1)T )∥∞ ≤ M∗

+ ε − λ(n−1)T ξ1 <
M∗

− λ(n−1)T ξ1/2, for sufficient small ε satisfying ε < λ(n−1)T ξ1/2.
Then, it follows from Lemma 1 that

∥x(k)∥∞ < M∗
− λ(n−1)T ξ1/2,

for all k ≥ k1 + (n − 1)T , which contradicts the fact that
limk→∞ ∥x(k)∥∞ = M∗. Therefore, limk→∞ |xi(k)| = M∗, for all
i ∈ V . �

3.2. Proof of Theorem 2.1: existence of state limits

In this section, we show that limk→∞ xi(k) exists, for all i ∈ V .
Without loss of generality,M∗ is assumed to be nonzero andwe fix
any i ∈ V . Note that the fact that limk→∞ |xi(k)| = M∗ include
three possibilities: limk→∞ xi(k) = M∗, limk→∞ xi(k) = −M∗,
or xi(k) switches between −M∗ and M∗ infinitely as k → ∞.
The last possibility actually means lim infk→∞ xi(k) = −M∗ and
lim supk→∞ xi(k) = M∗. We next prove the existence of the limit
of xi(k) by showing that this last possibility cannot happen.

Suppose that we do have lim infk→∞ xi(k) = −M∗, and
lim supk→∞ xi(k) = M∗. The following proof is based on a contra-
diction argument.We first useM∗ and xi(k) to bound the trajectory
of xi after time instant k. Note that for all s = 1, 2, . . . ,

xi(k + s) =


j∈Ni(k+s−1)

aij(k + s − 1)xj(k + s − 1)

≤ aii(k + s − 1)xi(k + s − 1)

+


j∈Ni(k+s−1)\{i}

|aij(k + s − 1)||xj(k + s − 1)|

≤ aii(k + s − 1)xi(k + s − 1)
+ (1 − aii(k + s − 1))∥x(k)∥∞.

It thus follows that xi(k+1) ≤ λxi(k)+(1−λ)∥x(k)∥∞. Therefore,
for all k ≥k(ε), it follows that xi(k+1) ≤ λxi(k)+(1−λ)(M∗

+ε).
By a recursive analysis, we know that for all k ≥ k(ε) and all
s = 1, 2, . . . ,

xi(k + s) ≤ λsxi(k) + (1 − λs)(M∗
+ ε). (7)

Since lim infk→∞ xi(k) = −M∗, for any given ε, there exists
an infinite sequence {k̄χ }

∞

χ=0 such that k̄χ > k(ε) and xi(k̄χ ) ≤

−(M∗
− ε), χ = 0, 1, . . . . In addition, since lim supk→∞ xi(k) =

M∗, for any k̄χ ∈ {k̄χ }
∞

χ=0, there exists a time instant k̄χ > k̄χ such
that xi(k̄χ ) ≥ (M∗

− ε). By also noting that the state at each step
is bounded by the previous step from (7), there must exist a time
instant k̄∗

χ ∈ [k̄χ , k̄χ ] such that −λ(M∗
− ε) + (1 − λ)(M∗

+ ε) ≤

xi(k̄∗
χ ) ≤ −λ2(M∗

− ε) + (1 − λ2)(M∗
+ ε).

Therefore, for all k̄χ , it follows that

|xi(k̄∗

χ )| ≤ max{|(1 − 2λ)M∗
+ ε|, |(1 − 2λ2)M∗

+ ε|}

≤ M∗
− (1 − max{|1 − 2λ|, |1 − 2λ2

|})M∗
+ ε

< M∗
−

(1 − max{|1 − 2λ|, |1 − 2λ2
|})M∗

2
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if ε is chosen sufficiently small as

ε <
(1 − max{|1 − 2λ|, |1 − 2λ2

|})M∗

2
.

This contradicts the fact that limk→∞ |xi(k)| = M∗ (which was
shown in the beginning of Section 3.1) and verifies that limk→∞

xi(k) exists. Therefore, we have proven Theorem 2.1.

3.3. Proof of Theorem 2.2

In this case, since G is infinitely jointly connected, the union
graph G([k1, ∞]) is connected. We can therefore define k2 :=

infk

k ≥ k1, Ni1(k) \ {i1} ≠ ∅


. We denote V1 = Ni1(k2).

Obviously, we have that |xi1(k2)| = |xi1(k1)| ≤ M∗
− ξ1, where

ξ1 = M∗
− α1 > 0 is defined as in (3). Therefore, following the

similar analysis by which we obtained (5) and (6), we know that
|xi(k2 + 1)| ≤ M∗

+ ε − λξ1, i ∈ V1.
Similarly, since the union graph G([k2 + 1, ∞]) is connected,

we can continue to define k3 := infk

k ≥ k2 + 1 :


i∈V1

(Ni(k) \ {i}) ≠ ∅


. We also denote V2 =


i∈V1

Ni(k3). Note that
{i1} ⊆ V1 ⊆ V2 with the definition of neighbor sets. The fact
that the graph is bidirectional guarantees that k3 is not only the
first time instant that there is an arc from V1 to another node, but
also the first time instant that there is an arc from another node to
V1 during the time interval [k2 + 1, k3]. Therefore, we can apply
Lemma 1 to the subsetV1 for time interval [k2 +1, k3], and deduce
that |xi(k3)| ≤ M∗

+ε−λξ1, i ∈ V1. It then follows from the same
analysis that |xi(k3 + 1)| ≤ M∗

+ ε − λ2ξ1, i ∈ V2.
The above argument can be carried out recursively for

V3, V4, . . . until Vm = V for some constant m ≤ n − 1. The
corresponding km can be found based on infinite joint connected-
ness condition, where |xi(km + 1)| ≤ M∗

+ ε − λmξ1, for all i ∈ V .
This indicates that

∥x(km + 1)∥∞ ≤ M∗
+ ε − λmξ1 < M∗

− λmξ1/2,

for sufficient small ε satisfying ε < λn−1ξ1/2. This contradicts the
fact that ∥x(k)∥∞ ≥ M∗

− ε > M∗
− λmξ1/2, ∀k ≥ k(ε) (which

was shown in the beginning of Section 3.1). Therefore, it follows
that limk→∞ |xi(k)| = M∗, for all i ∈ V .

Note that the proof given in Section 3.2 does not require
connectivity. Therefore, using the same analysis as Section 3.2, we
can show that limk→∞ xi(k) exists, for all i ∈ V . Therefore, we have
proven Theorem 2.2. �

3.4. Proof of Theorem 2.3

It follows from Theorem 2.1 that there exists a positive constant
M∗ such that for all i ∈ V , either limk→∞ xi(k) = M∗ or
limk→∞ xi(k) = −M∗. We can therefore define two subsets of V
as V1 = {i ∈ V : limk→∞ xi(k) = −M∗

}, and V2 = {i ∈

V : limk→∞ xi(k) = M∗
}. Without loss of generality, we assume

that V1 is nonempty. Since the signed graph G∗
= (V , E∗) is sign

consistent, the sign of each arc (i, j) ∈ E∗ is denoted by ϱij, where
ϱij = + or ϱij = −. We next show that if (i, j) ∈ E∗ and i, j ∈ V1,
it is necessary that ϱij = +.

Suppose it is not true, i.e., suppose (i, j) ∈ E∗, i, j ∈ V1, but
ϱij = −. In the first place, it follows from the definitions of V1 and
V2 that for any ε > 0, there exists a positive constantk1(ε) such
that for all k ≥k1(ε),−M∗

−ε ≤ xi ≤ −M∗
+ε, i ∈ V1,M∗

−ε ≤

xi ≤ M∗
+ ε, i ∈ V2. Since the arc (i, j) appears infinitely often in

{Gk}
∞

0 , it follows that there exists an infinite subsequence {k̃χ }
∞

χ=0
such that k̃χ ≥k1(ε) and (i, j) ∈ Ek̃χ for all χ = 0, 1, . . . . Consider

any k̃χ . We know that

xj(k̃χ + 1) = ajj(k̃χ )xj(k̃χ ) + aji(k̃χ )xi(k̃χ )

+


l∈Nj(k̃χ )\{j,i}

ajl(k̃χ )xl(k̃χ )

≥ −ajj(k̃χ )(M∗
+ ε) + aji(k̃χ )(−M∗

+ ε)

−


l∈Nj(k̃χ )\{j,i}

|ajl(k̃χ )|(M∗
+ ε)

= −ajj(k̃χ )(M∗
+ ε) + aji(k̃χ )(−M∗

+ ε)

− (1 − ajj(k̃χ ) − |aji(k̃χ )|)(M∗
+ ε)

≥ (2λ − 1)M∗
− ε,

wherewe have used the fact that aji(k̃χ ) ≤ 0 fromAssumption 2.1.
If we choose ε sufficiently small satisfying ε < λM∗, it then follows
that xj(k̃χ +1) > −M∗

+ ε. Note that xj(k̃χ +1) > −M∗
+ ε holds

for all χ = 0, 1, . . . . This shows that lim infχ→∞ xj(k̃χ + 1) >

−M∗
+ ε, which contradicts that j ∈ V1. We thus know that if

(i, j) ∈ E∗ and i, j ∈ V1, then ϱij = +.
Next, since G∗

= (V, E∗) is structurally balanced, V is divided
into two disjoint nonempty subsets V1 and V2, where ϱkl = +, for
all k, l ∈ V1 and k, l ∈ V2, and ϱkl = − for all k ∈ V1, l ∈ V2 and
k ∈ V2, l ∈ V1.

It therefore follows that V1 ⊆ V1 from the reasoning that
(i, j) ∈ E∗ and i, j ∈ V1 implies ϱij = +. Therefore, we know
that V2 is nonempty. In addition, ϱkl = +, for all k, l ∈ V2. We
thus know that V1 = V1 and V2 = V2. Therefore, it follows that
limk→∞ xi(k) = M∗, i ∈ V1 and limk→∞ xi(k) = −M∗, i ∈ V2 for
every initial state x(0) ∈ Rn, where M∗ is a constant.

4. Numerical example

Consider the following discrete-time Kuramoto oscillator
system with antagonistic and cooperative links:

θi(k + 1) = θi(k) − µ


j∈Ni(k)\{i}

sin

θi(k) − Rij(k)θj(k)


, (8)

where θi(k) denotes the state of node i at time k, µ > 0 is the
stepsize, and Rij(k) ∈ {1, −1} represents the cooperative or
antagonistic relationship between node i and node j. Note that
with Rij(k) ≡ 1, system (8) corresponds to the classical Kuramoto
oscillatormodel (Strogatz, 2000). Let δ ∈ (0, π

2 )be a given constant
and suppose θi(0) ∈ (−π

2 +δ, π
2 −δ) for all i ∈ V . Here δ can be any

positive constant sufficiently small. System (8) can be rewritten as

θi(k + 1) = θi(k) − µ


j∈Ni(k)\{i}

sin(θi(k) − Rij(k)θj(k))
θi(k) − Rij(k)θj(k)

× (θi(k) − Rij(k)θj(k)).

Note that the function sin x/x is well-defined for x ∈ (−∞, ∞).
Therefore, we can define

aij(θ, k) =
sin(θi(k) − Rij(k)θj(k))

θi(k) − Rij(k)θj(k)
Rij(k), j ∈ Ni(k) \ {i},

and aii(θ, k) = 1 − µ


j∈Ni(k)\{i}
|aij(θ, k)|, where θ = (θ1, θ2,

. . . , θn)
T, so that (8) is re-written into the form of (1).
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Fig. 2. Graphs G1 , G2 , G3 considered in the example.

Fig. 3. Convergence for unidirectional topology.

Lemma 1 ensures that 0 < λ∗
≤

sin(θi(k)−Rij(k)θj(k))
θi(k)−Rij(k)θj(k)

≤ 1,

where λ∗
=

sin(π−2δ)
π−2δ . This gives us |aij(θ, k)| ≥ λ∗, for all i

and j ∈ Ni(k) \ {i}. In addition, by selecting µ < 1−λ∗

n , we can
guarantee that |aii(θ, k)| ≥ λ∗ for all θ and k. Therefore, we can
use Theorems 2.1, 2.2, and 2.3 to study the behavior of Kuramoto
oscillator with antagonistic links.

We next verify the theoretical results using simulations. For
the case of unidirectional topology, we assume that the topology
switches periodically as

G1 // G2 // G3 // G1 // . . . at time instants
ηl = l s, l = 1, 2, . . . , where G1, G2, G3 are represented in Fig. 2.
The system matrices associated with G1, G2, G3 are given by A1 =

1 0 0
0 1 0

−0.5 0 0.5


, A2 =


1 0 0
0 0.5 −0.5
0 0 1


, A3 =


0.5 0.5 0
0 1 0
0 0.5 0.5


.

The initial state is x(0) = (−1.5, 1, 0)T and µ = 0.1. Fig. 3
shows the convergence of states over unidirectional switching
topologies. We see that the absolute values of the states converge
for this group of oscillators with antagonistic interactions and
switching topologies, in accordance with the conclusion from
Theorem 2.1. Note all agent states converge to zero, instead of
achieving bipartite consensus.

For the case of bidirectional topology, we assume the topology
switches between G4 and G5 in Fig. 4. The topology is G4 except
at time intervals [l2, l2 + 1], where the topology is G5, l =

1, 2, . . . . The signed matrices associated with G4, G5 are A4 =
0.5 0 −0.5
0 1 0

−0.5 0 0.5


, A5 =


1 0 0
0 0.5 0.5
0 0.5 0.5


. The initial states and µ

are the same as previously. Fig. 5 shows the convergence of
states over this bidirectional switching topology. We see that the
absolute values of the agent states converge to the same limit,
in accordance with the conclusion from Theorems 2.2 and 2.3.
Bipartite consensus is achieved in this case.

5. Conclusions

In this paper, we studied the consensus problem of multi-agent
systems over cooperative–antagonistic networks in a discrete-
time setting. Both unidirectional and bidirectional topologies were
considered. Itwas proven that the limits of all agent states exist and
reach a consensus in absolute values if the topology is uniformly
Fig. 4. Graphs G4 and G5 considered in the example.

Fig. 5. Convergence for bidirectional topology.

jointly strongly connected or infinitely jointly connected. We also
gave an example to show that uniformquasi-strong connectedness
is not sufficient to guarantee consensus in absolute values. We
further proposed sufficient conditions for bipartite consensus to
be achieved over networks with joint connectivity. Examples were
given to explain coordination of multiple nonlinear systems with
antagonistic interactions using the proposed algorithms. Future
works include investigating time-delay influence and other types
of antagonistic interaction models.
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