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Abstract: In this paper, we first study agreement protocols for coupled continuous-time nonlinear dynamics over cooperative
multi-agent networks. To guarantee convergence for such systems, it is common in the literature to assume that the vector field
of each agent is pointing inside the convex hull formed by the states of the agent and its neighbors given the relative states
between each agent and its neighbors are available. This convexity condition is relaxed in this paper, as we show that it is
enough that the vector field belongs to a strict tangent cone based on a local supporting hyperrectangle. The new condition has
the natural physical interpretation of adding a compass for each agent in addition to the available local relative states, as each
agent needs only to know in which orthant each of its neighbor is. It is proven that the multi-agent system achieves exponential
state agreement if and only if the time-varying interaction graph is uniformly jointly quasi-strongly connected. Cooperative–
antagonistic multi-agent networks are also considered. For these systems, the (cooperative–antagonistic) relation has a negative
sign for arcs corresponding to antagonistic interactions. State agreement may not be achieved for cooperative–antagonistic
multi-agent systems. Instead it is shown that asymptotic modulus agreement is achieved if the time-varying interaction graph is
uniformly jointly strongly connected.
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1 Introduction

1.1 Motivation
In the last decade, coordinated control of multi-agent sys-

tems has attracted extensive attention due to its broad appli-

cations in engineering, physics, biology and social sciences

[10, 18, 23]. A fundamental idea is that by carefully imple-

menting distributed control protocols for each agent (node),

collective tasks can be reached for a network system us-

ing only neighboring information exchange and interactions.

Agreement protocols, where the goal is to drive the node

states to a common value, serve as primary problems and

canonical solutions to distributed controller design [17].

The idea of state agreement protocol and its fundamen-

tal convergence properties were established for linear sys-

tems in the classical work [22]. Various efforts have been

made towards a clear understanding on how the underlying

communication graph influences the convergence and con-

vergence rate of linear agreement seeking, just to name a

few [4, 5, 10, 19]. In the meantime, agreement protocols

with nonlinear agent dynamics are also intriguing due to the

nonlinear nature of many real-world network systems. In

fact, classical Kuramoto model and Vicsek’s model of cou-

pled node dynamics are both of nonlinear form [11, 23]. Due

to the challenge raised by the nonlinearity of node interac-

tions, results on the agreement seeking of nonlinear multi-

agent systems are quite limited in the literature, especially

for time-varying communication graphs [3, 13, 16].

These existing linear or nonlinear agreement protocols are

functioning all because of a fundamental convexity assump-

tion on the node interactions. For discrete-time models, it is

usually assumed that each agent updates its state as a con-

vex combination of its neighbors’ states [4, 14, 16]. For

continuous-time models, the vector field for each agent must

fall into the relative interior of a tangent cone formed by the
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convex hull of the relative state vectors in its neighborhood

[13]. Another standing assumption in above works lies in

that agents in the network must be cooperative, which is of-

ten not the case in reality. Recently, motivated from opinion

dynamics evolving over social networks and security of net-

work systems, state agreement problems over cooperative–

antagonistic networks were studied in [1, 20]. In such net-

works, each arc is associated with a positive/negative sign

indicating cooperative/antagonistic relations.

1.2 Contributions
In this paper, we intend to answer the following questions

for nonlinear agreement protocols.

Q1. When and how the fundamental convexity assumption

on node interactions can be relaxed?

Q2. Can we explicitly characterize the convergence rate of

nonlinear multi-agent systems?

Q3. What is the fundamental difference in asymptotical

state evolution between cooperative and cooperative-

antagonistic networks?

We show that the convexity condition needed for agree-

ment seeking of multi-agent systems, can be relaxed, at the

cost of equipping each agent with a “compass” with the help

of which the direction of each axis can be observed for a

prescribed global coordinate system. We do not require that

each agent has access to its own or its neighbors’ states, but

the information exchange is based on relative states of the

agents as usual. Using the compass, each agent can derive

a strict tangent cone from a local supporting hyperrectangle.

This cone defines the feasible set of local control actions for

the agent to guarantee convergence to state agreement. It is

argued that the vector field of an agent can be outside of the

convex hull formed by the states of the agent and its neigh-

bors, and thus provides a relaxed condition for agreement.

We remark that a magnetic compass is naturally present in

many biological systems. For instance, the European Robin

bird can detect and navigate through the Earth’s magnetic
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field, providing them with a compass in addition to their nor-

mal vision [21]. Engineering systems, such as multi-robot

networks, can be equipped with an electronic compass at a

rather low cost.

Under a precise and general definition to nonlinear multi-

agent systems with compasses, we establish two main re-

sults:

• For cooperative networks, we show that the underly-

ing communication graph associated with the nonlinear

interactions being uniformly jointly quasi-strongly con-

nected is necessary and sufficient for exponential agree-

ment. The convergence rate is explicitly given.

• For cooperative-antagonistic networks, we propose a

general model following the sign-flipping interpreta-

tion along an antagonistic arc introduced in [1]. We

show that the underlying graph being uniformly jointly

strongly connected, irrespective with the sign of the

arcs, is sufficient for asymptotic modulus agreement

in the sense that the absolute value of each agent state

component reaches an agreement asymptotically.

We believe these results have largely extended the previous

understandings on multi-agent systems with nonlinear node

dynamics and with possible antagonistic interactions.

1.3 Paper Organization
The remainder of the paper is organized as follows. In

Section 2, we give some mathematical preliminaries on con-

vex sets, graph theory, and Dini derivatives. The nonlinear

multi-agent dynamics, the interaction graph, the compass,

and and the convergence definitions are presented in Sec-

tion 3. The main result on agreement for cooperative multi-

agent system is presented in Section 4. The main result on

asymptotic modulus agreement for cooperative–antagonistic

network is given in Section 5. A brief concluding remark is

given in Section 6.

2 Preliminaries

In this section, we introduce some mathematical prelim-

inaries on convex analysis [2], graph theory [9], and Dini

derivatives [8].

2.1 Convex analysis
For any nonempty set S ⊆ R

d, ‖x‖S = infy∈S ‖x − y‖
is called the distance between x ∈ R

d and S, where ‖ · ‖
denotes the Euclidean norm. A set S ⊂ R

d is called convex

if (1 − ζ)x + ζy ∈ S when x ∈ S , y ∈ S , and 0 ≤ ζ ≤ 1.

A convex set S ⊂ R
d is called a convex cone if ζx ∈ S

when x ∈ S and ζ > 0. The convex hull of S ⊂ R
d is

denoted co(S) and the convex hull of a finite set of points

x1, x2, . . . , xn ∈ R
d denoted co{x1, x2, . . . , xn}.

Let S be a convex set. Then there is a unique element

PS(x) ∈ S , called the convex projection of x onto S, sat-

isfying ‖x − PS(x)‖ = ‖x‖S associated to any x ∈ R
d. It

is also known that ‖x‖2S is continuously differentiable for all

x ∈ R
d, and its gradient can be explicitly computed [2]:

∇‖x‖2S = 2(x− PS(x)). (1)

Let S ⊂ R
d be convex and closed. The interior and bound-

ary of S is denoted by int(S) and ∂S, respectively. If S
contains the origin, the smallest subspace containing S is

the carrier subspace denoted by cs(S). The relative interior

of S, denoted by ri(S), is the interior of S with respect to

the subspace cs(S) and the relative topology used. If S does

not contain the origin, cs(S) denotes the smallest subspace

containing S − z, where z is any point in S. Then, ri(S)
is the interior of S with respect to the subspace z + cs(S).
Similarly, we can define the relative boundary rb(S).

Let S ⊂ R
d be a closed convex set and x ∈ S . The

tangent cone to S at x is defined as the set

T (x,S) =
{
z ∈ R

d : lim inf
ζ→0

‖x+ ζz‖S
ζ

= 0
}
.

Note that if x ∈ int(S), then T (x,S) = R
d. Therefore, the

definition of T (x,S) is essential only when x ∈ ∂S.

2.2 Graph Theory
A directed graph G consists of a pair (V, E), where V =

{1, 2, . . . , n} is a finite, nonempty set of nodes and E ⊆ V ×
V is a set of ordered pairs of nodes denoted arcs. The set of

neighbors of node i is denoted Ni := {j : (j, i) ∈ E}. A

directed path in a directed graph is a sequence of arcs of the

form (i, j), (j, k), . . . . If there exists a path from node i to j,

then node j is said to be reachable from node i. If for node i,
there exists a path from i to any other node, then i is called a

root of G. G is said to be strongly connected if each node is

reachable from any other node. G is said to be quasi-strongly

connected if G has a root.

2.3 Dini derivatives
Consider the differential equation

ẋ = f(t, x), (2)

where f : R × M → R
d is continuous in x ∈ M ⊂ R

d

for fixed t and piecewise continuous in t for fixed x. Let

V (t, x) : R ×M → R be locally Lipschitz with respect to

x and uniformly continuous with respect to t. Define

D+
f V (t, x) = lim

τ→0+
sup

V (t+ τ, x+ τf(t, x))− V (t, x)

τ
.

The function D+
f V is called the upper Dini derivative of V

along the trajectory of (2). Suppose that for an initial con-

dition x(t0), (2) has a solution x(t) defined on an interval

[0, ε) and let D+V (t, x(t)) be the upper Dini derivative of

V (t, x(t)) with respect to t, i.e.,

D+V (t, x) = lim
τ→0+

sup
V (t+ τ, x(t+ τ))− V (t, x(t))

τ
.

Let t∗ ∈ [0, ε) and put x(t∗) = x∗. Then we have that

D+V (t∗, x(t∗)) = D+
f V (t∗, x∗).

The following lemma can be found in [7].

Lemma 1. Suppose for each i ∈ V , Vi : R × M → R is
continuously differentiable. Let V (t, x) = maxi∈V Vi(t, x),
and let V̂(t) = {i ∈ V : Vi(t, x(t)) = V (t, x(t))} be the set
of indices where the maximum is reached at time t. Then

D+V (t, x(t)) = max
i∈̂V(t)

V̇i(t, x(t)).
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3 Multi-agent System

In this section, we present the model of the considered

multi-agent systems, introduce the corresponding interaction

graph, and define some useful geometric concepts used in the

control laws.

Consider a multi-agent system with agent set V =
{1, . . . , n}. Let xi ∈ R

d denote the state of agent i. Let

x = (xT
1 , x

T
2 , . . . , x

T
n )

T and denote D = {1, 2, . . . , d}.

3.1 Nonlinear multi-agent dynamics
Let P be a given (finite or infinite) set of indices. An

element in P is denoted by p. For any p ∈ P, we define a

function fp(x1, x2, . . . , xn) : Rdn → R
dn associated with

p, where

fp(x1, x2, . . . , xn) =

⎛
⎜⎝

f1
p (x1, x2, . . . , xn)

...

fn
p (x1, x2, . . . , xn)

⎞
⎟⎠

with f i
p : Rdn → R

d, i = 1, 2, . . . , n.

Let σ(t) : [t0,∞) → P be a piecewise constant func-

tion, so, there exists a sequence of increasing time instances

{tl}∞0 such that σ(t) remains constant for t ∈ [tl, tl+1) and

switches at t = tl.
The dynamics of the multi-agent systems is described by

the switched nonlinear system

ẋ(t) = fσ(t)(x(t)). (3)

We place some mild assumptions on this system.

Assumption 1 (Dwell time). There exists a lower bound
τd > 0, such that inf l(tl+1 − tl) ≥ τd.

Assumption 2 (Uniformly locally Lipschitz). fp(x) is uni-
formly locally Lipschitz on R

dn, i.e., for every x ∈ R
dn, we

can find a neighborhood Uα(x) = {y ∈ R
dn : ‖y−x‖ ≤ α}

for some α > 0 such that there exits a real number L(x) > 0
with ‖fp(a) − fp(b)‖ ≤ L(x)‖a − b‖ for any a, b ∈ Uα(x)
and p ∈ P.

Under Assumptions 1 and 2, the Caratheodory solutions

of (3) exist for arbitrary initial conditions, and they are ab-

solutely continuous functions for almost all t on the maxi-

mum interval of existence [6, 8]. All our further discussions

will be on the Caratheodory solutions of (3) without specific

mention.

3.2 Interaction graph
Having the dynamics defined for the considered multi-

agent system, we introduce next its interaction graph.

Definition 1 (Interaction graph). The graph Gp = (V, Ep)
associated with fp is the directed graph on node set V =
{1, 2, . . . , n} and arc set Ep such that (j, i) ∈ Ep if and only
if f i

p depends on xj , i.e., there exist xj , xj ∈ R
d such that

f i
p(x1, . . . , xj , . . . , xn) �= f i

p(x1, . . . , xj , . . . , xn).

The set of neighbors of node i in Gp is denoted by Ni(p).
The dynamic interaction graph associated with system (3)

is denoted by Gσ(t) = (V , Eσ(t)). The joint graph of Gσ(t)

during time interval [t1, t2) is defined by Gσ(t)([t1, t2)) =

⋃
t∈[t1,t2)

G(t) = (V,⋃t∈[t1,t2)
Eσ(t)). We impose the fol-

lowing definition on the connectivity of Gσ(t).

Definition 2 (Joint connectivity). (i) Gσ(t) is uniformly
jointly quasi-strongly connected if there exists a con-
stant T > 0 such that G([t, t + T )) is quasi-strongly
connected for any t ≥ t0.

(ii) Gσ(t) is uniformly jointly strongly connected if there ex-
ists a constant T > 0 such that G([t, t+T )) is strongly
connected for any t ≥ t0.

For each p ∈ P, the node relation along an interaction

arc (i, j) ∈ Ep may be cooperative, or antagonistic. These

different types of arcs are modeled by signed graphs. We

assume that there is a sign, “+1” or “-1”, associated with

each (i, j) ∈ Ep, denoted by sgnijp . To be precise, if j is

cooperative to i, sgnijp = +1, and if j is antagonistic to i,

sgnijp = −1.

Definition 3 (Cooperative and cooperative-antagonistic net-

works). If sgnijp = +1, for all (j, i) ∈ Ep and all p ∈ P,
the considered multi-agent network is called a cooperative
network. Otherwise, it is called a cooperative-antagonistic
network.

3.3 Compass, hyperrectangle, and strict tangent cone
We assume that each agent has access to a compass cor-

responding to a common Cartesian coordinate system. We

use (−→r1 ,−→r2 , . . . ,−→rd) to represent the basis of the R
d Carte-

sian coordinate system. Here −→rk = (0, . . . , 0, 1, 0, . . . , 0)
denotes the unit vector in the direction of axis k ∈ D. Obvi-

ously, a point in R
d can be described by z = z1

−→r1 + z2
−→r2 +

· · ·+ zd
−→rd , where zk is a real number for all k ∈ D.

A hyperrectangle is the generalization of a rectangle to

higher dimensions. An axis-aligned hyperrectangle is a hy-

perrectangle subject to the constraint that the edges of the

hyperrectangle are parallel to the Cartesian coordinate axes.

Definition 4 (Supporting hyperrectangle). Let C ⊂ R
d be

a bounded set. The supporting hyperrectangle H(C) is the
axis-aligned hyperrectangle

H(C) = [min(C)1,max(C)1]× [min(C)2,max(C)2]× . . .

× [min(C)d,max(C)d],

where min(C)k := min{yk : yk is the kth entry of y ∈ C},
and max(C)k := max{yk : yk is the kth entry of y ∈ C}.

In other words, a supporting hyperrectangle of a bounded

set C is an axis-aligned minimum bounding hyperrectangle.

Definition 5 (Strict tangent cone). Let A ⊂ R
d be an axis-

aligned hyperrectangle and γ > 0 a constant. The γ-strict
tangent cone to A at x ∈ R

d is the set

Tγ(x,A) =

⎧⎪⎨
⎪⎩
cs(A); if x ∈ ri(A)

T (x,A)
⋂{z ∈ R

d : |〈z,−→rk〉| ≥ γDk(A)};
if x ∈ rbk(A),

where rbk(A) denotes one of the two facets of A perpendic-
ular to the axis −→rk , and Dk(A) = |max(A)k − min(A)k|
denotes the side length parallel to the axis −→rk .
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3.4 Uniformly asymptotic agreement, exponential
agreement, and asymptotic modulus agreement

Definition 6 (Uniformly asymptotic agreement). The
switched coupled system (3) is said to achieve uniformly
asymptotic agreement on S0 ⊆ R

d if
1) point-wise uniform agreement can be achieved, i.e., for

all η ∈ J , ∀ε > 0, there exists a positive constant δ(ε)
such that ∀t0 ≥ 0 and x(t0) ∈ Sn

0 , and

‖x(t0)− η‖ < δ ⇒ ‖x(t)− η‖ < ε, ∀t ≥ t0,

where agreement manifold is defined as J = {x ∈ Sn
0 :

x1 = x2 = · · · = xn};
2) uniform agreement attraction can be achieved, i.e.,

∀ε > 0, there exist a η ∈ J and a positive constant
T (ε) such that for all t0 ≥ 0 and x(t0) ∈ Sn

0 ,

‖x(t)− η‖ < ε, ∀t ≥ t0 + T.

Definition 7 (Exponential agreement). The switched cou-
pled system (3) is said to achieve exponential state agree-
ment on S0 ⊆ R

d if
1) point-wise uniform agreement can be achieved; and
2) exponential agreement attraction can be achieved, i.e.,

there exist a η ∈ J and positive constants k(S0),
λ(S0), such that for all t0 ≥ 0 and x(t0) ∈ Sn

0 ,

‖x(t)− η‖ ≤ ke−λ(t−t0)‖x(t0)− η‖.

Asymptotic modulus agreement of system (3) is defined

as follows.

Definition 8 (Asymptotic modulus agreement). System (3)

achieves asymptotic modulus agreement for initial time t0 ≥
0 and initial state x(t0) ∈ R

nd if there exist a η ∈ −→J such
that

lim
t→∞ ‖|x(t)|∗ − η‖ = 0,

where J = {x ∈ R
dn : |x1|∗ = |x2|∗ = · · · = |xn|∗}, and

the componentwise absolute value | · |∗ is defined as |z|∗ =
[|z1|, |z2|, . . . , |zd|]T for the vector z = [z1, z2, . . . , zd]

T.

Remark 1. The concept of “agreement” is just the same
as that of “consensus”, e.g., [17]. “Modulus agreement”
means that the absolute values of the node states eventually
reach the same value. In this case, it is possible that the
agents converge to the orgin, a non-zero state, or two dif-
ferent states. We call the case of converging to the origin a
“trivial” agreement as the agents do not agree on anything
that is a function of their states. Agreement [16] and bi-
partite agreement [1] can be considered as special cases of
modulus agreement.

4 Cooperative Multi-agent Systems: Exponential
Agreement

In this section, we study the convergence property of

the nonlinear switched system (3) over a cooperative net-

work defined by an interaction graph. Introduce Ci
p(x) =

co{xi, xj : j ∈ Ni(p)}. We impose the following assump-

tion.

Assumption 3 (Vector field). For all i ∈ V , p ∈ P, and
x ∈ R

dn, it holds that f i
p(x) ∈ Tγ(xi,H(Ci

p(x))).

Figure 1: Convex hull, supporting hyperrectangle, and feasi-

ble vectors f i
p satisfying Assumption 3

Remark 2. In Assumption 3, the vector field f i
p can be cho-

sen freely from the set Tγ(xi,H(Ci
p(x))). Hence, the as-

sumption specifies constraints on the feasible controls for
the considered multi-agent system. Here Ci

p(x) denotes the
convex hull formed by agent i and its neighbors, H(Ci

p(x))
(defined in Section 3.3) denotes the supporting hyperrectan-
gle of the set Ci

p(x), and Tγ(xi,H(Ci
p(x))) (also defined in

Section 3.3) denotes the γ-strict tangent cone to H(Ci
p(x)) at

xi. Figure 1 gives an example of the convex hull and the sup-
porting hyperrectangle formed by agent i and its’ neighbors.
Three feasible vectors f i

p are presented.

Remark 3. It is essential to capture what information ex-
change is required in a multi-agent system implementing a
control law fulfilling Assumption 3. Each agent uses its
own coordinate system to locate in which orthant each of
its neighbor is. Then the agent constructs the supporting hy-
perrectangle based on the relative states between itself and
its neighbors, similarly to conventional agreement protocols
for multi-agent systems. When the agent is inside its sup-
porting hyperrectangle, the vector field for the agent can be
chosen arbitrary. When the agent is on the boundary of its
supporting hyperrectangle, the feasible control is just any
direction pointing inside the halfspace of its supporting hy-
perrectangle. Note that the absolute state of the agents is
not needed, but each agent needs to identify d − 1 absolute
directions such that it can identify the direction of its neigh-
bors with respect to itself. For example, for the planar case
d = 2, each agent just needs to be equipped with a compass
(providing direction information) to implement this protocol.
The compass provides the quadrant location information of
its neighbors. For d > 2, the (generalized) compass gives
information on which orthant the neighbors belong to.

The main result for the agreement seeking of the nonlinear

multi-agent dynamics over cooperative networks is given as

follows.
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Theorem 1. Suppose S0 is compact and that Assumptions
1–3 hold. The cooperative multi-agent system (3) achieves
exponential agreement on S0 if and only if its interaction
graph Gσ(t) is uniformly jointly quasi-strongly connected.

In order to highlight the improvement of the proposed

“supporting hyperrectangle condition” with respect to the

usual convex hull condition [13, 16], we next present a uni-

formly asymptotic agreement result based on the relative in-

terior condition of a tangent cone formed by the supporting

hyperrectangle.

Assumption 4 (Vector field). For all i ∈ V , p ∈ P, and
x ∈ R

dn, it holds that f i
p(x) ∈ ri

(
T (xi,H(Ci

p(x)))
)
.

Proposition 1. Suppose S0 is compact and that Assumptions
1, 2, and 4 hold. The cooperative multi-agent system (3)

achieves uniformly asymptotic agreement on S0 if and only if
its interaction graph Gσ(t) is uniformly jointly quasi-strongly
connected.

Remark 4. Theorem 1 and Proposition 1 are consistent with
the main results in [13, 14, 16]. Our analysis relies on some
techniques developed in [12]. Proposition 1 allows that the
vector field belongs to a larger set compared with the convex
hull condition proposed in [13, 14, 16]. In addition, we al-
low the agent dynamics to switch over a possibly infinite set
and we show exponential agreement and derive in the proof
the explicit exponential rate for the convergence in Theorem
1.

Due the space limitations, we next prove Theorem 1 by

analyzing a contraction property of (3) and omit the proof

of Proposition 1. Before moving on, we first present several

important lemmas without proofs. Detailed proofs of these

lemmas can be found in [15].

4.1 Technical lemmas
Definition 9 (Invariant set). A set M ⊂ R

dn is an invariant
set for the system (3) if for all t0 ≥ 0,

x(t0) ∈ M =⇒ x(t) ∈ M, ∀t ≥ t0.

For all k ∈ D, define

Mk(x(t)) = max
i∈V

{xik(t)}, mk(x(t)) = min
i∈V

{xik(t)},

where xik denotes kth entry of xi. In addition, define the

supporting hyperrectangle by the initial states of all agents

as H0 := H(C(x(t0))), where C(x) = co{x1, x2, . . . , xn}.

In the following lemma, we show that the supporting hy-

perrectangle formed by the initial states of all agents is non-

expanding over time.

Lemma 2. Let Assumptions 1–3 hold. Then, Hn
0 is an in-

variant set, i.e., xi(t) ∈ H0, ∀i ∈ V , ∀t ≥ t0.

Lemma 3. Let Assumptions 1–3 hold and assume that Gσ(t)

is uniformly jointly quasi-strongly connected. Then, for any
(t1, x(t1)) ∈ R × Hn

0 , any ε > 0, and any T ∗ > 0, if
xik(t2) ≤ Mk(x(t1)) − ε at some t2 ≥ t1 for some k ∈ D,
then xik(t) ≤ Mk(x(t1)) − δ, where δ = e−L∗

1T
∗
ε for all

t ∈ [t2, t2+T ∗], and L∗
1 is a positive constant related to H0.

Lemma 4. Let Assumptions 1–3 hold and assume that
Gσ(t) is uniformly jointly quasi-strongly connected. For any

(t1, x(t1)) ∈ R × Hn
0 , any ε > 0, and any T ∗ > 0, if

xik(t2) ≥ mk(x(t1)) + ε at some t2 ≥ t1 for some k ∈ D,
then xik(t2) ≥ mk(x(t1)) + δ, where δ = e−L∗

2T
∗
ε for all

t ∈ [t2, t2+T ∗], and L∗
2 is a positive constant related to H0.

Lemma 5. Let Assumptions 1–3 hold and assume that
Gσ(t) is uniformly jointly quasi-strongly connected. For any
(t1, x(t1)) ∈ R×Hn

0 , any δ1 > 0 and any T ∗ > 0, if there is
an arc (j, i) and a time t2 ≥ t1 such that j ∈ Ni(σ(t)), and
xjk(t) ≤ Mk(x(t1))− δ1 for all t ∈ [t2, t2 + τd], then there
exists a t3 ∈ [t1, t2+τd] such that xik(t) ≤ Mk(x(t1))−δ2,
for all t ∈ [t3, t3 + T ∗], where δ2 = γτd

L+
1 τd+γτd+1

e−L∗
1T

∗
δ1

for some constants L∗
1 and L+

1 related to H0.

Lemma 6. Let Assumptions 1–3 hold and assume that
Gσ(t) is uniformly jointly quasi-strongly connected. For any
(t1, x(t1)) ∈ R×Hn

0 , any δ1 > 0 and any T ∗ > 0, if there is
an arc (j, i) and a time t2 ≥ t1 such that j ∈ Ni(σ(t)), and
xjk(t) ≥ mk(x(t1))+δ1, then there exists a t3 ∈ [t1, t2+τd]
such that xik(t) ≥ mk(x(t1)) + δ2, for all t ∈ [t3, t3 + T ∗],
where δ2 = γτd

L+
2 τd+γτd+1

e−L∗
2T

∗
δ1 for some constants L∗

2

and L+
2 related to H0.

4.2 Proof of Theorem 1
The necessity proof follows a similar argument as the

proof of Theorem 3.8 of [13]. It is therefore omitted. We

prove the sufficiency.

We first prove point-wise uniform agreement. Choose any

η ∈ J and any ε > 0, where J = {x ∈ Sn
0 : x1 = x2 =

· · · = xn}. We define Aa(η) = {x ∈ Sn
0 : ‖x − η‖∞ ≤

a}. It is obvious from Lemma 2 that Aa(η) is a invariant

set since a hypercube is a special case of a hyperrectangle.

Therefore, by setting δ = ε√
n

, we know that

‖x(t0)− η‖ ≤ δ ⇒ ‖x(t)− η‖ ≤ ε, ∀t ≥ t0.

This shows that point-wise uniform agreement is achieved

on S0.

We next focus on the analysis of agreement attraction. De-

fine

V (x) = ρ(H(C(x))),
where ρ(H(C(x))) denotes the diameter of the hyperrectan-

gle H(C(x)). Clearly, it follows from Lemma 2 that V (x) is

nonincreasing along (3) and xi(t) ∈ H0, ∀i ∈ V , ∀t ≥ t0.

We prove this theorem by showing that V (x) is strictly

shrinking over the time.

Since Gσ(t) is uniformly jointly quasi-strongly connected,

there is a T > 0 such that the union graph G([t0, t0 + T ]) is

quasi-strongly connected. Define T1 = T + 2τd, where τd
is the dwell time. Denote κ1 = t0 + τd, κ2 = t0 + T1 + τd,

. . . , κn2 = t0 + (n2 − 1)T1 + τd. Thus, there exists a node

i0 ∈ V such that i0 has a path to every other nodes jointly

on time interval [κli , κli + T ], where i = 1, 2, . . . , n and

1 ≤ l1 ≤ l2 ≤ · · · ≤ ln ≤ n2. Denote T = n2T1.

We divide the rest of the proof into three steps.

(Step I). Consider the time interval [t0, t0+T ] and k = 1. In

this step, we show that an agent that does not belong to the

interior set will become an interior agent due to the attraction

of interior agent i0.

More specifically, define ε1 = M1(x(t0))−m1(x(t0))
2 . It is

trivial to show that M1(x(t)) = m1(x(t)), ∀t ≥ t0 when
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M1(x(t0)) = m1(x(t0)) based on Definition 5. There-

fore, we assume that M1(x(t0)) �= m1(x(t0)) without loss

of generality. Split the node set into two disjoint subsets

V1 = {j| xj1(t0) ≤ M1(x(t0))−ε1} and V1 = {j|j /∈ V1}.

Assume that i0 ∈ V1. This implies that xi01(t0) ≤
M1(x(t0)) − ε1. It follows from Lemma 3 that xi01(t) ≤
M1(x(t0)) − δ1, ∀t ∈ [t0, t0 + T ], where δ1 = e−L∗

1T ε1.

Considering the time interval [κl1 , κl1 + T ], we can show

that there is an arc (i1, j1) ∈ V1 × V1 such that i1 is a

neighbor of j1 because otherwise there is no arc (i1, j1)
for any i1 ∈ V1 and j1 ∈ V1 (this contradicts the fact

i1 ∈ V1 has a path to every other nodes jointly on time

interval [κl1 , κl1 + T ]). Therefore, there exists a time τ ∈
[κl1 , κl1 + T ] = [t0 + (l1 − 1)T + τd, t0 + l1T − τd] such

that j1 ∈ Ni(σ(τ)). Based on Assumption 1, it follows that

there is time interval [τ1, τ1+τd] ⊂ [t0+(l1−1)T, t0+l1T ]
such that j1 ∈ Ni(σ(τ)), for all t ∈ [τ1, τ1 + τd].

Also note that i1 ∈ V1 implies that xi11(t0) ≤
M1(x(t0)) − ε1. This further shows that xi11(t) ≤
M1(x(t0)) − δ1, ∀t ∈ [t0, t0 + T ] based on Lemma 3.

Therefore, it follows from Lemma 5 that there exists a

t2 ∈ [t0, τ1 + τd] such that xj11(t2) ≤ M1(x(t0)) − ε2
and xj11(t) ≤ M1(x(t0)) − δ2, ∀t ∈ [t2, t2 + T ], where

ε2 = γτd
L+

1 τd+γτd+1
e−L∗

1T ε1 and δ2 = γτd
L+

1 τd+γτd+1
e−L∗

1T δ1.

To this end, we have shown that at least two agents are not

on the upper boundary at t0 + l1T .

(Step II). In this step, we show that the side length of the

hyperrectangle H(C(x)) parallel to the kth axis −→rk at t0 + T
is strictly less than that at t0.

We can now redefine two disjoint subsets V2 =
{j| xj(t0) ≤ M1(x(t0)) − ε2} and V2 = {j|j /∈ V2}. It

then follows that V2 has at least two nodes. By repeating the

above analysis, we can show that xi(t) ≤ M1(x(t0)) − δn,

∀i ∈ V , ∀t ∈ [tn, tn + T ] by noting that δn = mini∈V{δi},

where tn ∈ [t0, τn + τd] ⊆ [t0 + (ln − 1)T1, t0 + lnT1] and

δn = e−nL∗
1T (γτd)

n−1

(L+
1 τd+γτd+1)n−1

ε1.

Instead, if i1 ∈ V1, or what is equivalent, xi11(t0) ≥
m1(x(t0)) + ε1, we can similarly show that xi(t) ≥
m1(x(t0)) − δn, ∀i ∈ V , ∀t ∈ [tn, tn + T ], where

tn ∈ [t0, τn + τd] ⊆ [t0 + (ln − 1)T1, t0 + lnT1] and

δn = e−nL∗
2T (γτd)

n−1

(L+
2 τd+γτd+1)n−1

ε1 using Lemmas 4 and 6.

Therefore, it follows that D1(H(x(t0 + T ))) ≤
D1(H(x(t0))) − β1D1(H(x(t0))), where β1 =

e−nL∗T (γτd)
n−1

2(L+τd+γτd+1)n−1 and L∗ = max{L∗
1, L

∗
2}

and L+ = max{L+
1 , L

+
2 }.

(Step III). In this step, we show that ρ(H(C(x))) at t0 + dT
is strictly less than that at t0 and thus prove the theorem by

showing that V is strictly shrinking.

We consider the time interval [t0+T , t0+2T ] and k = 2.

Following similar analysis as of Step I and Step II, we

can show that D2(H(x(t0 + 2T ))) ≤ D2(H(x(t0))) −
β2D2(H(x(t0))), where β2 = e−nL∗T (γτd)

n−1

2(L+τd+γτd+1)n−1 .

By repeating the above analysis, it follows that

V (x(t0 + dT ))− V (x(t0)) ≤ −βV (x(t0)),

where β = e−nL∗T (γτd)
n−1

2(L+τd+γτd+1)n−1 .

Then, let N be the smallest positive integer such that t ≤
t0 +NdT . It then follows that

V (x(t)) ≤ (1− β)N−1V (x(t0))

≤ 1

1− β
(1− β)

t−t0
dT V (x(t0))

=
1

1− β
e−β∗(t−t0)V (x(t0)),

where β∗ = 1
dT

ln 1
1−β . Denote H(S0) as the supporting hy-

perrectangle of S0. Since x(t0) ∈ Hn
0 ⊆ Hn(S0), it follows

that the above inequality holds for any x(t0) ∈ Hn(S0) or

any x(t0) ∈ Sn
0 . By choosing k = 1

1−β and λ = β∗, we have

that exponential attraction is achieved on S0. This proves the

desired theorem.

5 Cooperative–antagonistic Multi-agent Systems:
Asymptotic Modulus Agreement

In this section, we study state agreement over

cooperative–antagonistic networks. Define Ĉi
p(x) :=

co{xi, xjsgn
ij
p : j ∈ Ni(p)}. For cooperative–antagonistic

networks, we impose the following assumption, instead of

Assumption 3.

Assumption 5 (Vector field). For all i ∈ V , p ∈ P and
x ∈ R

dn, it holds that f i
p(x) ∈ Tγ(xi,H(Ĉi

p(x))).

Assumption 5 follows the model for antagonistic inter-

actions introduced in [1]. Simple examples (see, e.g., [1])

can be found that state agreement cannot be achieved for

cooperative–antagonistic networks. Instead, it is possible

that different agents hold different values with opposite

signs, which is known as bipartite consensus [1]. There-

fore, we are interested in the modulus agreement in this part.

We present the following result on modulus agreement of

cooperative–antagonistic networks.

Theorem 2. Let Assumptions 1, 2 and 5 hold. Then
cooperative-antagonistic multi-agent system (3) achieves
asymptotic modulus agreement for all initial time t0 ≥ 0 and
all initial state x(t0) ∈ R

nd if the interaction graph Gσ(t) is
uniformly jointly strongly connected.

Remark 5. The state agreement result in Theorem 1 re-
lies on uniformly jointly quasi-strong connectivity, while the
modulus agreement result in Theorem 2 needs uniformly
jointly strong connectivity. In fact, we conjecture that strong
connectivity is essential for modulus agreement in the sense
that uniformly jointly quasi-strong connectivity might not be
enough. The reason is that although Lemmas 3 and 5 can be
rebuilt for the upper bound of the node absolute values for
cooperative–antagonistic networks, the corresponding Lem-
mas 4 and 6 no longer hold.

Remark 6. Compared to the results given in [1], Theorem 2
requires no conditions on the structural balance properties.
In other words, Theorem 2 shows that every positive or nega-
tive arc contributes to the convergence of the absolute values
of the nodes’ states, even for general nonlinear multi-agent
dynamics.

The proof of Theorem 2 will be given using a contradic-

tion arguments, with the help of a series of preliminary lem-
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mas. We omit the proofs of these lemmas here due to space

limitation and the detailed proofs can be found in [15].

5.1 Technical Lemmas
We first construct an invariant set for the dynamics under

the cooperative–antagonistic networks. For all k ∈ D, define

M†
k(x(t)) = max

i∈V
|xik(t)|.

In addition, define an origin-symmetric supporting hyper-

rectangle H(Ĉ(x)) ⊂ R
d as

H(Ĉ(x)) := [−M †
1 (x),M

†
1 (x)]× · · · × [−M †

d(x),M
†
d(x)].

The origin-symmetric supporting hyperrectangle formed by

the initial states of all agents Ĥ0 is given by[
−max

i∈V
|xi1(t0)|,max

i∈V
|xi1(t0)|

]
× . . .

×
[
−max

i∈V
|xid(t0)|,max

i∈V
|xid(t0)|

]
.

Introduce the state transformation

yik = x2
ik, ∀i ∈ V , ∀k ∈ D.

The analysis will be carried out on yik, instead of xik to

avoid non-smoothness.

Lemma 7. Let Assumptions 1, 2 and 5 hold. Then, for sys-
tem (3), Ĥn

0 is an invariant set, i.e., xi(t) ∈ Ĥ0, ∀i ∈ V ,
∀t ≥ t0.

Remark 7. In Figures 2-3, we highlight the different invari-
ant sets for cooperative and cooperative–antagonistic net-
works. The supporting hyperrectangle H(C(x)) given in
Lemma 2 is illustrated in Figure 2 and the origin-symmetric
supporting hyperrectangle H(Ĉ(x)) given in Lemma 7 is il-
lustrated in Figure 3.

Lemma 8. Let Assumptions 1, 2, and 5 hold and assume
that Gσ(t) is uniformly jointly strongly connected. For any
(t1, x(t1)) ∈ R × Ĥn

0 , any ε > 0 and any T ∗ > 0, if
yik(t2) ≤ y∗ − ε at some t2 ≥ t1 for some k ∈ D, where
y∗ ≥ yk(x(t1)) is a constant. Then yik(t) ≤ y∗ − δ for all
t ∈ [t2, t2 + T ∗], where δ = e−L∗T∗

ε, and L∗ is a positive
constant related to Ĥ0.

Lemma 9. Let Assumptions 1, 2, and 5 hold and assume
that Gσ(t) is uniformly jointly strongly connected. For any
(t1, x(t1)) ∈ R× Ĥn

0 and any δ > 0, if there is an arc (j, i)
and a time t2 ≥ t1 such that j ∈ Ni(σ(t)), and yjk(t) ≤
y∗ − δ for all t ∈ [t2, t2 + τd] for some k ∈ D, where y∗ ≥
yk(x(t1)) is a constant. Then there exists a t3 ∈ [t1, t2 + τd]
such that yik(t3) ≤ y∗ − ε, where ε = γτdδ

2(L+τd+γτd+1) and

L+ is a constant related to Ĥ0.

5.2 Proof of Theorem 2
The theorem is proved using a contradiction argument.

Lemma 7 implies that for any initial time t0 and initial

value x(t0), there exist y∗k, k ∈ D such that

lim
t→∞ yk(t) = y∗k, k ∈ D.

Define �ik = limt→∞ sup yik(t) and �ik =
limt→∞ inf yik(t), ∀i ∈ V , ∀k ∈ D. Clearly,

Figure 2: An example of the supporting hyperrectangle of

H(C(x)).

Figure 3: An example of the origin-symmetric supporting

hyperrectangle H(Ĉ(x)).

0 ≤ �ik ≤ �ik ≤ y∗k. Based on Definition 8, asymp-

totic modulus agreement is achieved if and only if

�ik = �ik = y∗k, ∀i ∈ V , ∀k ∈ D. The desired conclusion

holds trivially if y∗k = 0, k ∈ D. Therefore, we assume that

y∗k > 0 for some k ∈ D without loss of generality.

Suppose that there exists a node i1 ∈ V such that 0 ≤
�i1k < �i1k ≤ y∗k. Based on the fact that limt→∞ yk(t) =
y∗k, it follows that for any ε > 0, there exists a t̂(ε) > t0
such that

y∗k − ε ≤ yk(t) ≤ y∗k + ε, t ≥ t̂(ε).

Take α1k =
√

1
2 (�i1k + �i1k). Therefore, there exists a time

t1 ≥ t̂(ε) such that |xi1k(t1)| = α1k. This shows that

x2
i1k(t1) = �i1k − (�i1k − α2

1k)

≤ y∗k + ε− (�i1k − α2
1k)

= y∗k + ε− ε1,

where ε1 = �i1k − α2
1k > 0 and the first inequality is based

on the definition of �i1k.

Since Gσ(t) is uniformly jointly strongly connected, there

is a T > 0 such that the union graph G([t1, t1+T ]) is jointly

strongly connected. Define T1 = T + 2τd, where τd is the

dwell time. Denote κ1 = t1 + τd, κ2 = t1 + T1 + τd, . . . ,

κn = t1 + (n − 1)T1 + τd. For each node i ∈ V , i has a
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path to every other nodes jointly on time interval [κl, κl+T ],
where l = 1, 2, . . . , n. Denote T = nT1.

Consider time interval [t1, t1 + T ]. Based on the fact that

yk(x(t1)) ≤ y∗k + ε and considering y∗k + ε as the role of

y∗ in Lemma 8, it follows that yik(t) ≤ y∗k + ε − δ1, ∀t ∈
[t1, t1 + T ], where δ1 = e−L∗T ε1.

Since for each node i ∈ V , i has a path to every other

nodes jointly on time interval [κl, κl + T ], where l =
1, 2, . . . , n, there exists i2 ∈ V such that i1 is a neigh-

bor of i2 during the time interval [κ1, κ1 + T ]. Based on

Lemma 9, it follows that there exists t2 ∈ [t1, τ1 + τd] ⊂
[t1 + T, t1 + 2T ] such that x2

i2k
(t2) ≤ y∗k + ε − ε2,

where ε2 = γτd
2(L+τd+γτd+1)δ1. This further implies that

x2
i2k

(t) ≤ y∗k + ε − δ2, ∀t ∈ [t2, t1 + T ], where δ2 =

e−L∗T ε2. By repeating the above analysis, we can show that

yik(t) ≤ y∗k + ε − δn, ∀t ∈ [tn, t1 + T ], ∀i ∈ V , where

tn ∈ [t1, τn+ τd] ⊂ [t1+(n− 1)T, t1+nT ], and δn can be

iteratively obtained as δn = e−nL∗T γn−1τn−1
d

2n−1(L+τd+γτd+1)n−1 .

This is indeed true because δi ≤ δi−1, ∀i = 2, 3, . . . , n.

This shows that yk(t1 + T ) = maxi∈V yik ≤ y∗k + ε −
δn, which indicates a contradiction for sufficiently small ε
satisfying ε < δn/2. Therefore, �ik = �ik = y∗k, ∀i ∈ V ,

∀k ∈ D. This proves asymptotic modulus agreement and the

theorem holds.

6 Conclusions

Agreement protocols for nonlinear multi-agent dynamics

over cooperative or cooperative–antagonistic networks were

investigated. A class of nonlinear control laws were intro-

duced based on a relaxed convexity condition. The price

was that each agent must get access to the orientation of

a common coordinate system, similar to a compass. Each

agent specified a local supporting hyperrectangle with the

help of the compass, and then a strict tangent cone was de-

termined based on which local control can be found. Un-

der mild conditions on the nonlinear dynamics and the in-

teraction graph, we proved that for cooperative networks,

exponential state agreement is achieved if and only if the

communication topology is uniformly jointly quasi-strongly

connected. For cooperative–antagonistic networks, modulus

agreement is achieved asymptomatically if the time-varying

communication topology is uniformly jointly strongly con-

nected. The results generalized the existing studies on agree-

ment seeking of multi-agent systems. Future works include

higher-order agent dynamics and other dynamics on antago-

nistic arcs.
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