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Abstract— In this paper, we propose a fully distributed algo-
rithm for second-order continuous-time multi-agent systems to
solve the distributed optimization problem. The global objective
function is a sum of private cost functions associated with the in-
dividual agents and the interaction between agents is described
by a weighted undirected graph. We show the exponential
convergence of the proposed algorithm if the underlying graph
is connected, each private cost function is locally gradient-
Lipschitz-continuous, and the global objective function is re-
stricted strongly convex with respect to the global minimizer.
Moreover, to reduce the overall need of communication, we then
propose a dynamic event-triggered communication mechanism
that is free of Zeno behavior. It is shown that the exponential
convergence is achieved if the private cost functions are also
globally gradient-Lipschitz-continuous. Numerical simulations
are provided to illustrate the effectiveness of the theoretical
results.

I. INTRODUCTION

Distributed optimization in multi-agent systems is an
important class of distributed optimization problems and
has received great attention in recent years due to its wide
application in wireless networks, sensor networks, smart
grids, and multi-robot systems.

From a control point of view, distributed convex optimiza-
tion in multi-agent systems is the optimal consensus problem,
where the global objective function is a sum of private
convex cost functions associated with the individual agents
and the interaction between agents is described by a graph.
Although classical distributed algorithms based on consensus
theory and (sub)gradient method are discrete-time [1]–[3],
continuous-time algorithms have attracted much attention
recently due to the development of cyber-physical systems
and the well-developed continuous-time control techniques.
For example [4]–[13] propose continuous-time distributed
algorithms to solve (constrained or unconstrained) optimal
consensus problems and analyze the convergence properties
via classic stability analysis.

However, all these existing continuous-time algorithms
require continuous information exchange between agents,
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which may be impractical in physical applications. The
event-triggered communication and control mechanism is
introduced partially to tackle this problem [14], [15]. Event-
triggered communication and control mechanisms for multi-
agent systems have been studied recently [16]–[22]. Key
challenges are how to design the control law, determine the
event threshold, and avoid Zeno behavior. Zeno behavior
means that there are an infinite number of triggers in a finite
time interval [23].

There are few works on the optimal consensus problem
with event-triggered communication. In [24], the authors
design a distributed continuous-time algorithm for first-order
multi-agent systems with event-triggered communication. In
[25], the authors extend the zero-gradient-sum algorithm
proposed in [6] with event-triggered communication. In [26],
the authors propose a distributed continuous-time algorithm
for second-order multi-agent systems with event-triggered
communication. However, these algorithms are not fully dis-
tributed since the gain parameters of the algorithms depends
on some global parameters, such as the eigenvalues of the
graph Laplacian matrix.

In this paper, we consider the distributed optimization
problem for second-order multi-agent systems with undi-
rected and connected topologies. In particular, double-
integrator dynamics are considered since they are widely ap-
plied to mechanical systems. For example, Euler-Lagrangian
systems with exact knowledge of nonlinearities can be
converted into double integrators and they can be used to
describe many mechanical systems, such as autonomous
vehicles, see [27], [28]. Moreover, the considered distributed
optimization problem has many applications, such as the tar-
geted agreement problem for a group of Lagrangian systems
[29]. A fully distributed continuous-time algorithm is first
proposed to solve the problem. One related existing work
is [8], which also proposes a continuous-time distributed
algorithm for second-order multi-agent systems. However,
in [8], the parameters of the algorithm depend on some
global information and the speed information of each agent
has to be exchanged between neighbors, and only asymp-
totic convergence is established for the case where private
cost functions are strongly convex and globally gradient-
Lipschitz-continuous. In contrast, in this paper, no global
information is needed to be known in advance and each
agent does not need its neighbors’ speed information. For
the case where private cost functions are convex, we show
the asymptotic convergence. Furthermore, we establish the
exponential convergence for the case where each private
cost function is locally gradient-Lipschitz-continuous and the
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global objective function is restricted strongly convex with
respect to the global minimizer. Note that not all private cost
functions need to be so or strongly convex, which is a less
restricted condition compared with that in [8]. To reduce the
overall need of communication, inspired by the distributed
dynamic event-triggered control mechanism for multi-agent
systems proposed in [22], we then extend our algorithm
with dynamic event-triggered communication. The proposed
dynamic event-triggered communication mechanism is also
fully distributed since no global information, such as the
Laplacian matrix, is required. We show that the proposed
dynamic event-triggered communication mechanism is free
of Zeno behavior by a contradiction argument. Moreover,
we also show that the extended algorithm with the pro-
posed event-triggered communication mechanism exponen-
tially converges to the global minimizer when each private
cost function is globally gradient-Lipschitz-continuous and
the global objective function is restricted strongly convex.

The rest of this paper is organized as follows. Section II
introduces the preliminaries. The main results are stated in
Sections III and IV. Simulations are given in Section V.
Finally, the paper is concluded in Section VI.
Notations: ‖ · ‖ represents the Euclidean norm for vectors
or the induced 2-norm for matrices. 1n denotes the column
vector with each component being 1 and dimension n.
In is the n-dimensional identity matrix. Given a vector
[x1, . . . , xn]

> ∈ Rn, diag([x1, . . . , xn]) is a diagonal matrix
with the i-th diagonal element being xi. The notation A⊗B
denotes the Kronecker product of matrices A and B. ρ(·)
stands for the spectral radius for matrices and ρ2(·) indicates
the minimum positive eigenvalue for matrices having positive
eigenvalues. Given two symmetric matrices M,N , M ≥ N
means that M −N is positive semi-definite.

II. PRELIMINARIES

In this section, we present some definitions from algebraic
graph theory [30] and the problem formulation.

A. Algebraic Graph Theory

Let G = (V, E , A) denote a weighted undirected graph
with the set of vertices (nodes) V = {1, . . . , n}, the set of
links (edges) E ⊆ V ×V , and the weighted adjacency matrix
A = A> = (aij) with nonnegative elements aij . A link
of G is denoted by (i, j) ∈ E if aij > 0, i.e., if vertices i
and j can communicate with each other. It is assumed that
aii = 0 for all i ∈ V . Let Ni = {j ∈ V | aij > 0} and

degi =
n∑
j=1

aij denotes the neighbor index set and weighted

degree of vertex i, respectively. The degree matrix of graph
G is Deg = diag([deg1, · · · ,degn]). The Laplacian matrix is
L = (Lij) = Deg−A. A path of length k between vertices
i and j is a subgraph with distinct vertices i0 = i, . . . , ik =
j ∈ V and edges (ij , ij+1) ∈ E , j = 0, . . . , k − 1. An
undirected graph is connected if there exists at least one
path between any two vertices.

B. Problem Formulation
Consider a network of n agents and the underlying inter-

action between agents is described by a weighted undirected
graph G = (V, E , A). Each agent is described by a double
integrator

ẍi(t) = ui(t), i ∈ V, t ≥ 0, (1)

where xi ∈ Rp is the state and ui ∈ Rp is the control input
of agent i. Each agent i is also associated with a private
convex cost function fi(xi) : Rp 7→ R.

The goal of the distributed optimization problem is to
design an algorithm, i.e., design the control input ui for every
agent, so that all agents find an optimizer x∗ that minimizes
the sum of the fi’s collaboratively in a distributed manner,
i.e.,

x∗ ∈ argmin
x∈Rp

n∑
i=1

fi(x). (2)

The existence of the global minimizer x∗ is guaranteed by
the following assumption.

Assumption 1. (Convex) For each i ∈ V , the function fi is
continuously differentiable and convex.

Moreover, if the following assumption also holds, then the
global minimizer x∗ is unique.

Assumption 2. (Restricted strongly convex, see [31]) The
global objective function

∑n
i=1 fi(x) is restricted strongly

convex with respect to its global minimizer x∗ with convexity
parameter mf > 0, i.e., for all x ∈ Rp,

n∑
i=1

(∇fi(x)−∇fi(x∗))>(x− x∗) ≥ mf‖x− x∗‖2.

Remark 1. Assumption 2 is weaker than the assumption that
the global object function is strongly convex, thus it is also
weaker than the assumption that each private convex cost
function is strongly convex.

In addition, same as the existing literature, we assume that
each private cost function has a locally (globally) Lipschitz
continuous gradient.

Assumption 3. (Locally gradient-Lipschitz-continuous) For
each i ∈ V , for any compact set D ⊆ Rp, there exists
a constant Mi(D) > 0, such that ‖∇fi(a) − ∇fi(b)‖ ≤
Mi(D)‖a− b‖, ∀a, b ∈ D.

Assumption 4. (Globally gradient-Lipschitz-continuous) For
each i ∈ V , there exists a constant M i > 0, such that
‖∇fi(a)−∇fi(b)‖ ≤M i‖a− b‖, ∀a, b ∈ Rp.

III. DISTRIBUTED CONTINUOUS-TIME ALGORITHMS

In this section, we propose a distributed continuous-time
algorithm to solve the optimization problem stated in (2) and
analyze its convergence.

For each agent i ∈ V , we first design the following
algorithm,

v̇i(t) =β

n∑
j=1

Lijxj(t),

n∑
i=1

vi(0) = 0, (3a)
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ui(t) =− γẋi(t)− αβ
n∑
j=1

Lijxj(t)− θvi(t)

− α∇fi(xi(t)), t ≥ 0, (3b)

where α > 0, β > 0, γ > 0, and θ > 0 are gain parameters.

Remark 2. In the design of right-hand side in (3b), −γẋi(t)
is to ensure the convergence of (3), −αβ

∑n
j=1 Lijxj(t)

is to ensure the consensus among agents, −α∇fi(xi(t)) is
to optimize each agent’s private cost function, and −θvi(t)
together with

∑n
i=1 vi(0) = 0 and (3a) are to maintain the

equilibrium point at the optimal point. Moreover, by setting
vi(0) = 0, ∀i ∈ V , the coordination between agents to let∑n
i=1 vi(0) = 0 can be avoided.

Denote yi(t) = ẋi(t). Then we can rewrite (1) and (3) as

ẋi(t) =yi(t), ∀xi(0), t ≥ 0, (4a)

ẏi(t) =− γyi(t)− αβ
n∑
j=1

Lijxj(t)− θvi(t)

− α∇fi(xi(t)), ∀yi(0), (4b)

v̇i(t) =β

n∑
j=1

Lijxj(t),

n∑
i=1

vi(0) = 0. (4c)

Remark 3. If there is only one agent, the algorithm (4)
becomes the heavy ball with friction system [32]:

ẍ+ γẋ+ α∇f(x) = 0.

Denote x = [x>1 , · · · , x>n ]>, y = [y>1 , · · · , y>n ]>, v =
[v>1 , · · · , v>n ]>, and f(x) =

∑n
i=1 fi(xi). Then, we can

rewrite (4) in the following compact form:

ẋ(t) =y(t), ∀x(0), t ≥ 0, (5a)
ẏ(t) =− γy(t)− αβ(L⊗ Ip)x(t)− θv(t)

− α∇f(x(t)), ∀y(0), (5b)

v̇(t) =β(L⊗ Ip)x(t),
n∑
i=1

vi(0) = 0, (5c)

The following result establishes sufficient conditions on
the private cost function fi; the gain parameters α, γ, θ;
and the underlying graph to guarantee the (exponential)
convergence of (4).

Theorem 1. Suppose that Assumption 1 holds, and that
the underlying undirected graph G is connected. If every
agent i ∈ V runs the distributed algorithm with continuous-
time communication given in (4) and θ < αγ, then every
individual solution xi(t) asymptotically converges to one
global minimizer. Moreover, if Assumptions 2 and 3 are also
satisfied, then every individual solution xi(t) exponentially
converges to the unique global minimizer x∗ with a rate no
less than ε3

2ε4
, where

ε1 =min{γ(1− ε0), αγε0m1} > 0, (6)

ε2 =max
{γ
α
+
γ2

θ
+

θ

α2
,
α2(M(D))2

θ

}
> 0, (7)

ε3 =min
{
ε1,

εθ

2

}
> 0, (8)

ε4 =max
{
1 +

εε2
ε1

+
ε

α
,

(1 +
εε2
ε1

)(γ2ε0 + αβρ(L) +
αM(D)

2
) +

εM(D)

2
,

(1 +
εε2
ε1

)
θγε0
βρ2(L)

+ εα
}
> 1, (9)

where ε > 0 and ε0 ∈ ( θ
αγ , 1) are design parameters

and can be freely chosen in the given intervals, m1 =

min
{
mf

2 ,
ρ2(L)m

2
fαγε0

2(αγε0−θ)(m2
f+16M2(D))

}
> 0 and M(D) =

maxi∈V{Mi(D)} > 0 are constants, and D ⊆ Rp is a
compact convex set and its definition is given in the proof.

Proof. Due to the space limitations, the proof is omitted here,
but can be found in [33]. The proof is based the Lyapunov
stability analysis. A novel Lyapunov function is constructed,
which is different from that in the existing literature.

Remark 4. The algorithm (4) is fully distributed in the sense
that it does not require any global parameters to design the
gain parameters α, β, γ, and θ. On the other hand, the
algorithms proposed in [8], [11] do not have such a property.

Remark 5. We could also construct an alternative algo-
rithm:

ẋi(t) =yi(t), ∀xi(0), t ≥ 0, (10a)

ẏi(t) =− γyi(t)− αβ
n∑
j=1

Lijxj(t)

− θ
n∑
j=1

Lijvj(t)− α∇fi(xi(t)), ∀yi(0), (10b)

v̇i(t) =β

n∑
j=1

Lijxi(t), ∀vi(0). (10c)

Similar results as shown in Theorem 1 could be given and
proven. We omit the details due to space limitations.

Different from the requirement that
∑n
i=1 vi(0) = 0 in

the algorithm (5), vi(0) can be arbitrarily chosen in the
algorithm (10). In other words, the algorithm (10) is robust
to the initial condition vi(0). However, the algorithm (10)
requires additional communication of vj in (10b), compared
to the algorithm (5).

IV. EVENT-TRIGGERED COMMUNICATION

To implement the distributed algorithm (4), every agent
i ∈ V has to know the continuous-time state xj(t), ∀j ∈
Ni. In other words, continuous communication between
agents is needed. However, distributed networks are nor-
mally resources-constrained and communication is energy-
consuming. To avoid continuous communication, inspired
by the idea of event-triggered control for multi-agent sys-
tems [16], we consider event-triggered communication. More
specifically, we extend the algorithm (4) with event-triggered
communication mechanism as:

ẋi(t) =yi(t), ∀xi(0), t ≥ 0, (11a)
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ẏi(t) =− γyi(t)− αβ
n∑
j=1

Lijxj(t
j
kj(t)

)− θvi(t)

− α∇fi(xi(t)), ∀yi(0), (11b)

v̇i(t) =β

n∑
j=1

Lijxj(t
j
kj(t)

),

t ∈ [tik, t
i
k+1), k = 1, 2, . . . ,

n∑
i=1

vi(0) = 0, (11c)

where the increasing sequence {tik}∞k=1, ∀i ∈ V to be
determined later is the triggering times and tjkj(t) =

max{tjk : tjk ≤ t}. We assume tj1 = 0, ∀j ∈ V . For
simplicity, let x̂j(t) = xj(t

j
kj(t)

) and exj (t) = x̂j(t)− xj(t).
Denote x̂ = [x̂>1 , · · · , x̂>n ]> and ex =

[(ex1)
>, · · · , (exn)>]>. Then, we can rewrite (11) in the

following compact form:

ẋ(t) =y(t), ∀x(0), t ≥ 0, (12a)
ẏ(t) =− γy(t)− αβ(L⊗ Ip)x̂(t)− θv(t)

− α∇f(x(t)), ∀y(0), (12b)

v̇(t) =β(L⊗ Ip)x̂(t),
n∑
i=1

vi(0) = 0. (12c)

In the following theorem, we propose a dynamic event-
triggered law to determine the triggering times such that the
solution of the distributed optimization problem can still be
reached exponentially.

Theorem 2. Suppose that Assumptions 1, 2, and 4 hold,
and that the underlying undirected graph G is connected.
Suppose that each agent i ∈ V runs the distributed algorithm
with event-triggered communication given in (11) and θ <
αγ. Given the first triggering time ti1 = 0, every agent i ∈
V determines the triggering times {tik}∞k=2 by the following
dynamic event-triggered law:

tik+1 =min
{
t : κi

(
‖exi (t)‖2 −

(αγε0 − θ)βσi
4ϕi

q̂i(t)
)

≥ χi(t), t ≥ tik
}
, k = 1, 2, . . . (13)

q̂i(t) =−
1

2

∑
j∈Ni

Lij‖x̂j(t)− x̂i(t)‖2 ≥ 0, (14)

χ̇i(t) =− δi
(
‖exi (t)‖2 −

(αγε0 − θ)βσi
4ϕi

q̂i(t)
)

− φiχi(t), ∀χi(0) > 0, (15)

where σi ∈ [0, 1), φi > 0, δi ∈ [0, 1], and κi >
1−δi
φi

are
design parameters and can be freely chosen in the given
interval; and

m2 =min
{mf

2
,

4ρ2(L)m
2
fα

(αγε0 − θ)β(m2
f + 16M

2
)

}
, (16)

ε5 =min
{γ(1− ε0)

2
, m2α

}
> 0, (17)

ε6 =max
{γ
α
+
γ2

θ
+

θ

α2
,
α2M

2

θ

}
> 0, (18)

ε7 =1 +
εε6
ε5

> 1, (19)

ε8 =
ε

4ε7
> 0, (20)

ϕi =
(αγε0 − θ)β

4
Lii + (αγε0 − θ)βLii +

γ2θε20
4ε8

+
α2β2

γ(1− ε0)

(
Lii −

n∑
j=1,j 6=i

LjjLij

)
(21)

with M = maxi∈V{M i} is a constant, ε > 0 and ε0 ∈
( θ
αγ , 1) are design parameters, then (i) there is no Zeno be-

havior, and (ii) every individual solution xi(t) exponentially
converges to the unique global minimizer x∗ with a rate no
less than ε9

2ε10
, where

ε9 =min
{
ε5,

εθ

4
, kd

}
> 0, (22)

ε10 =max
{
ε7 +

ε

α
, ε7

(
γ2ε0 + αβρ(L) +

αM

2

)
+
εM

2
,

ε7
θγε0
βρ2(L)

+
εα

ρ2(L)

}
> 1, (23)

with kd = mini∈V

{
φi − 1−δi

κi

}
> 0.

Proof. Due to the space limitations, the proof is omitted here,
but can be found in [33].

Remark 6. The proposed dynamic event-triggered commu-
nication has several nice features: i) the exchange of xi(t)
only occurs at the discrete time points {tik, i ∈ V}∞k=1, ii)
it is free of Zeno behavior, and iii) the implementation does
not require any global information such as the Laplacian
matrix. One potential drawback of the proposed dynamic
event-triggered law is that when determining ϕi the global
parameters ρ2(L), mf , and M are needed. One solution to
overcome this drawback is let σi = δi = 0, i ∈ V , since in
this case we do not need to know ϕi.

Remark 7. If we let δ1 = · · · = δn = 0 and φ1 = · · · =
φn ∈ (0, ε9ε10 ] in (15), where ε9 and ε10 is defined in (22)
and (23), respectively, then similar to the proof of Theorem
3.2 in [17], for each agent i ∈ V , we can find a positive
constant τi, such that tik+1 − tik ≥ τi, k = 1, 2, . . . . Since
the proof is similar, we omit the detailed analysis here.

V. SIMULATIONS
In this section, we illustrate and validate the proposed

algorithm through numerical examples and compare the
results with other existing algorithms. Consider a simple
network of n = 3 agents with the Laplacian matrix

L =

 1 −1 0
−1 2 −1
0 −1 1

 .
We first consider the case that the private cost functions fi

and the global objective function
∑n
i=1 fi(x) are just convex.

We choose fi(x) = 1
2 (x− ai)

>Ai(x− ai),

A1 =

 2 −1 −1
−1 1.5 −0.5
−1 −0.5 1.5

 , A2 =

 3 −3 0
−3 4 −1
0 −1 1

 ,
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0 5 10 15 20 25 30 35 40 45 50

 t

0

0.5

1

1.5

2

2.5

3
 t

2
|f

(x
)-

f(
x* )|

 Algorithm (4)
 Algorithm (3) in [24]
 Algorithm (6) in [8]
 Algorithm (3) in [11]

Fig. 1: Simulation results for non-strongly convex private
cost and global objective functions.

A3 =

 2.5 0 −2.5
0 10 −10

−2.5 −10 12.5

 , a1 =

 0.6132
−0.5278
1.2416

 ,
a2 =

 −0.1576−1.3736
0.8708

 , a3 =

 −1.5685−1.8443
0.2884

 .
Fig. 1 shows the comparison between the distributed algo-
rithm (4) with α = β = 2, γ = 6, θ = 5; algorithm
(3) in [24] with α = β = 2; algorithm (6) in [8] with
α = β = 2, k = 6; and algorithm (3) in [11] with k = 6.
It can be seen that distributed gradient descent algorithm
(algorithm (3) in [24]) cannot achieve a O( 1

t2 ) convergence
when the global objective and all the private cost functions
are just convex.

We then consider the case that the private cost functions
fi are just convex but

∑n
i=1 fi(x) is strongly convex. We

choose fi(x) = ‖x− bi‖4 with x ∈ R3,

b1 =

 0
0
0

 , b2 =

 2.5
2
3

 , b3 =

 −3.5−2.7
−1

 .
Fig. 2 shows the comparison between the distributed algo-
rithm (4) with α = β = 2, γ = 6, θ = 5; algorithm
(3) in [24] with α = β = 2; algorithm (6) in [8] with
α = β = 2, k = 6; and algorithm (3) in [11] with k = 6.
We can see that the proposed algorithm (4) achieves a faster
convergence in this simulation.

Next, we consider the case where all private cost functions
fi are strongly convex. In particular, fi(x) = 1

2x
>Cix+a

>
i x

with

C1 =

 4.7471 1.2843 0.5836
1.2843 5.0861 −2.4209
0.5836 −2.4209 2.2270

 ,
C2 =

 1.3528 0.5141 −2.1684
0.5141 1.2333 −0.5857
−2.1684 −0.5857 4.0361

 ,

0 10 20 30 40 50 60 70 80 90 100

 t

-12

-10

-8

-6

-4

-2

0

2

4

6

 ln
|f

(x
(t

))
-f

(x
* )|

 Algorithm (4)
 Algorithm (3) in [24]
 Algorithm (6) in [8]
 Algorithm (3) in [11]

Fig. 2: Simulation results for non-strongly convex private
cost functions but strongly convex global objective function.

0 5 10 15 20 25 30 35 40 45 50

 t

-20

-15

-10

-5

0

 ln
|f

(x
(t

))
-f

(x
* )|

 Algorithm (4)
 Algorithm (3) in [24]
 Algorithm (6) in [8]
 Algorithm (3) in [11]
 Algorithm (11)

Fig. 3: Simulation results for strongly convex private cost
functions.

C3 =

 1.0223 1.2630 −0.4907
1.2630 2.1391 −0.1378
−0.4907 −0.1378 0.7207

 .
Fig. 3 shows the comparison between the distributed al-
gorithm (4) with α = β = 2, γ = 6, θ = 3.5;
algorithm (3) in [24] with α = β = 2; algorithm (6) in
[8] with α = β = 2, k = 6; algorithm (3) in [11] with
k = 6; and the distributed event-triggered algorithm (11)
with dynamic event-triggered communication determined by
(13). In our simulation, the sample length is 0.01. During
time interval [0, 50], agents 1–3 triggered 1199, 139, and
664 times, respectively, under our dynamic event-triggered
communication mechanism. Therefore, our dynamic event-
triggered communication mechanism is very efficient and
avoids about 85% sampling in this simulation.

VI. CONCLUSION
In this paper, we considered the distributed optimization

problem for second-order continuous-time multi-agent sys-
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tems. We first proposed a fully distributed continuous-time
algorithm that does not require to know any global informa-
tion in advance. We established the asymptotic convergence
when the private cost functions are convex and exponen-
tial convergence when each private cost function is locally
gradient-Lipschitz-continuous and the global objective func-
tion is restricted strongly convex with respect to the global
minimizer. To avoid continuous communication, we then
extended the continuous-time algorithm with dynamic event-
triggered communication. We again showed that the global
minimizer can be reached exponentially when each private
cost function is globally gradient-Lipschitz-continuous and
the global objective function is restricted strongly convex.
Furthermore, the dynamic event-triggered communication
was shown to be free of Zeno behavior. Future research
directions include quantifying the convergence speed when
the private cost functions are just convex.
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