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Abstract— This paper considers distributed online optimiza-
tion with time-varying coupled inequality constraints. The
global objective function is composed of local convex cost and
regularization functions and the coupled constraint function
is the sum of local convex constraint functions. A distributed
online primal-dual mirror descent algorithm is proposed to
solve this problem, where the local cost, regularization, and
constraint functions are held privately and revealed only after
each time slot. We first derive regret and constraint violation
bounds for the algorithm and show how they depend on the
stepsize sequences, the accumulated variation of the comparator
sequence, the number of agents, and the network connectivity.
As a result, we prove that the algorithm achieves sublinear
dynamic regret and constraint violation if the accumulated
variation of the optimal sequence also grows sublinearly. We
also prove that the algorithm achieves sublinear static regret
and constraint violation under mild conditions. In addition,
smaller bounds on the static regret are achieved when the
objective functions are strongly convex. Finally, numerical
simulations are provided to illustrate the effectiveness of the
theoretical results.

I. INTRODUCTION

Consider a network of n agents indexed by i = 1, . . . , n.
For each i, let the local decision set Xi ⊆ Rpi be a closed
convex set with pi being a positive integer. Let {fi,t : Xi →
R} and {gi,t : Xi → Rm} be sequences of local convex
cost and constraint functions over time slots t = 1, 2, . . . ,
respectively, where m is a positive integer. At each time t,
the network’s objective is to solve the convex optimization
problem minxt∈X

∑n
i=1 fi,t(xi,t) with coupled constraint∑n

i=1 gi,t(xi,t) ≤ 0m, where the global decision variable
xt = col(x1,t, . . . , xn,t) ∈ X = X1 × · · · ×Xn ⊆ Rp with
p =

∑n
i=1 pi. We are interested in distributed algorithms to

solve this problem, where computations are done by each
agent. It is common to influence the structure of the solution
using regularization. In this case, each agent i introduces a
regularization function ri,t : Xi → R. Examples of regular-
ization include ri,t(xi) = λi‖xi‖1 and ri,t(xi) = λi

2 ‖xi‖
with λi > 0, i.e., `1- and `2-regularization, respectively.
Denote ct(xt) = ft(xt) + rt(xt), ft(xt) =

∑n
i=1 fi,t(xi,t),

rt(xt) =
∑n
i=1 ri,t(xi,t), and gt(xt) =

∑n
i=1 gi,t(xi,t). This
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paper is on solving the constrained optimization problem

min
xt∈X

ct(xt)

subject to gt(xt) ≤ 0m, t = 1, . . . (1)

using distributed algorithms. In order to guarantee that prob-
lem (1) is feasible, we assume that for any T ∈ N+, the
set of all feasible sequences XT = {(x1, . . . , xT ) : xt ∈
X, gt(xt) ≤ 0m, t = 1, . . . , T} is non-empty. With this
standing assumption, an optimal sequence to (1) always
exists.

We consider online algorithms. For a distributed online
algorithm, at time t, each agent i selects a decision xi,t ∈ Xi.
After the selection, the agent receives its cost function fi,t
and regularization ri,t together with its constraint function
gi,t. At the same moment, the agents exchange data with
their neighbors over a time-varying directed graph. The
performance of an algorithm depends on both the amount
of data exchanged between the agents and how they process
the data.

For online algorithms, regret and constraint violation are
often used as performance metrics. The regret is the ac-
cumulation over time of the loss difference between the
decision determined by the algorithm and a comparator
sequence. Specifically, the efficacy of a decision sequence
xT = (x1, . . . , xT ) relative to a comparator sequence
yT = (y1, . . . , yT ) ∈ XT with yt = col(y1,t, . . . , yn,t) is
characterized by the regret

Reg(xT ,yT ) =

T∑
t=1

ct(xt)−
T∑
t=1

ct(yt). (2)

There are two special comparators. One is yT = x∗T =

arg minxT∈XT

∑T
t=1 ct(xt), i.e., an optimal sequence to

(1). In this case Reg(xT ,x
∗
T ) is called the dynamic

regret. Another special comparator is yT = x̌∗T =

arg minxT∈X̌T

∑T
t=1 ct(xt), i.e., a static optimal sequence

to (1), where X̌T is the set of feasible static sequences, i.e,
X̌T = {(x, . . . , x) : x ∈ X, gt(x) ≤ 0m, t = 1, . . . , T} ⊆
XT . In order to guarantee the existence of x̌∗T , we assume
that X̌T is non-empty. In this case Reg(xT , x̌

∗
T ) is called the

static regret. It is straightforward to see that Reg(xT ,yT ) ≤
Reg(xT ,x

∗
T ), ∀yT ∈ XT , and that Reg(xT , x̌

∗
T ) ≤

Reg(xT ,x
∗
T ). For a decision sequence xT , the normally

used constraint violation measure is ‖[
∑T
t=1 gt(xt)]+‖, i.e.,

the accumulation of constraint violations. This definition
implicitly allows constraint violations at some times to be
compensated by strictly feasible decisions at other times.
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This is appropriate for constraints that have a cumulative
nature such as energy budgets enforced through average
power constraints.

The problem considered in this paper is to develop a
distributed online algorithm to solve (1) with guaranteed
performance. The performance is measured by the regret
and constraint violation. We are normally satisfied with low
regret and constraint violation, by which we mean that both
Reg(xT ,yT ) and ‖[

∑T
t=1 gt(xt)]+‖ grow sublinearly with

T , i.e., there exist κ1, κ2 ∈ (0, 1) such that Reg(xT ,yT ) =
O(Tκ1) and ‖[

∑T
t=1 gt(xt)]+‖ = O(Tκ2). This implies that

the upper bound of the time averaged difference between
the accumulated cost of the decision sequence and the
accumulated cost of any comparator sequences tends to zero
as T goes to infinity. The same thing holds for the upper
bound of the time averaged constraint violation.

A. Literature review

The online optimization problem (1) is related to two
bodies of literature: centralized online convex optimiza-
tion with time-varying inequality constraints (n = 1) and
distributed online convex optimization with time-varying
coupled inequality constraints (n ≥ 2). Depending on the
characteristics of the constraint, there are two important
special cases: optimization with static constraints (gi,t ≡ 0
for all t and i) and time-invariant constraints (gi,t = gi for
all t and i). Below, we provide an overview of the related
works.

Centralized online convex optimization with static set
constraints was first studied by Zinkevich [1]. Specifically,
Zinkevich [1] developed a projection-based online gradient
descent algorithm and achieved O(

√
T ) static regret bound

for an arbitrary sequence of convex objective functions
with bounded subgradients, which is a tight bound up to
constant factors [2]. The regret bound can be reduced under
more stringent strong convexity conditions on the objective
functions [2]–[5] or by allowing to query the gradient of
the objective function multiple times [6]. When the static
constrained sets are characterized by inequalities, the con-
ventional projection-based online algorithms are difficult
to implement and may be inefficient in practice due to
high computational complexity of the projection operation.
To overcome these difficulties, some researchers proposed
primal-dual algorithms for centralized online convex opti-
mization with time-invariant inequality constraints, e.g., [7]–
[10]. The authors of [11] showed that the algorithms pro-
posed in [7], [8] are general enough to handle time-varying
inequality constraints. The authors of [12] used the modified
saddle-point method to handle time-varying constraints. The
papers [13], [14] used a virtual queue, which essentially is a
modified Lagrange multiplier, to handle stochastic and time-
varying constraints. One common assumption in [12]–[14]
is that the time-varying constraint functions satisfy Slater’s
condition, which is not assumed in this paper.

Distributed online convex optimization has been exten-
sively studied, so here we only list some of the most relevant
work. Firstly, the authors of [15]–[19] proposed distributed

online algorithms to solve convex optimization problems
with static set constraints and achieved sublinear regret.
Secondly, the paper [20] extended the adaptive algorithm
proposed in [8] to a distributed setting to solve an online con-
vex optimization problem with a static inequality constraint.
Finally, the authors of [21], [22] proposed distributed primal-
dual algorithms to solve an online convex optimization with
static coupled inequality constraints. In the continuous-time
setting, the authors of [23] proposed a distributed algorithm
to solve consensus-based online optimization with time-
varying constraints.

B. Main contributions

In this paper, we propose a novel distributed online primal-
dual mirror descent algorithm to solve the constrained opti-
mization problem (1). The algorithm uses the subgradients
of the local cost and constraint functions at the previous
decision, but the total number of iterations or any parame-
ters related to the objective or constraint functions are not
used. Moreover, in order to influence the structure of the
decision, in the primal update the regularization function is
not linearized.

We derive regret and constraint violation bounds for
the algorithm and show how they depend on the stepsize
sequences, the accumulated variation of the comparator
sequence, the number of agents, and the network connec-
tivity. Specifically, we prove that the algorithm simultane-
ously achieves sublinear dynamic regret and constraint vio-
lation if the accumulated variation of the optimal sequence
grows sublinearly. Moreover, we show that Reg(xT , x̌

∗
T ) =

O(Tmax{1−κ,κ}) and ‖[
∑T
t=1 gt(xt)]+‖ = O(T 1−κ/2),

where κ ∈ (0, 1) is a user-defined trade-off parameter.
Compared with [7], [8], [10], [11], [22] which assumed the
same assumption on the cost and constraint functions as this
paper, the proposed algorithm has the following advantages.
The proposed algorithm achieves the same static bound regret
as in [8] but generalizes the constraint violation bound.
As κ enables the user to trade-off static regret bound for
constraint violation bound, we recover the O(

√
T ) static

regret bound and O(T 3/4) constraint violation bound from
[7], [11] as special cases. However, note that the algorithms
proposed in [7], [8], [11] are centralized and the constraint
functions in [7], [8] are time-invariant. Moreover, in [7],
[11] the total number of iterations and in [7], [8], [11] the
upper bounds of the objective and constraint functions and
their subgradients need to be known in advance to design
the stepsizes. We can also see that the proposed algorithm
achieves smaller static regret and constraint violation bounds
than [22], although time-invariant coupled inequality con-
straints were considered. Although the algorithm proposed
in [10] achieved more strict constraint violation bound than
our Algorithm 1, ithe constraint functions there are time-
invariant and the algorithm is centralized also. We summarize
the detailed results in Table I.

Finally, when the local objective functions are assumed
to be strongly convex, we show that the proposed algorithm
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TABLE I: Summary of related works on online convex optimization.

Reference Problem type Constraint type Static regret and constraint violation

[7] Centralized g(x) ≤ 0m Reg(xT , x̌
∗
T ) ≤ O(T 1/2), ‖[

∑T
t=1 g(xt)]+‖ ≤ O(T 3/4)

[8] Centralized g(x) ≤ 0m
Reg(xT , x̌

∗
T ) ≤ O(Tmax{1−κ,κ}),

‖[
∑T
t=1 g(xt)]+‖ ≤ O(T 1−κ/2), κ ∈ (0, 1)

[10] Centralized g(x) ≤ 0m Reg(xT , x̌
∗
T ) ≤ O(T 1/2),

∑T
t=1 ‖[g(xt)]+‖2 ≤ O(T 1/2)

[11] Centralized gt(x) ≤ 0 Reg(xT , x̌
∗
T ) ≤ O(T 1/2), |[

∑T
t=1 gt(xt)]+| ≤ O(T 3/4)

[22] Distributed g(x) =∑n
i=1 gi(xi) ≤ 0m

Reg(xT , x̌
∗
T ) ≤ O(T 1/2+2κ),

‖[
∑T
t=1 g(xt)]+‖ ≤ O(T 1−κ/2), κ ∈ (0, 1/4)

This paper Distributed gt(x) =∑n
i=1 gi,t(xi) ≤ 0m

Reg(xT , x̌
∗
T ) ≤ O(Tmax{1−κ,κ}),

‖[
∑T
t=1 gt(xt)]+‖ ≤ O(T 1−κ/2), κ ∈ (0, 1)

achieves O(Tκ) static regret bound and O(T 1−κ/2) cumu-
lative constraint violation bound.
Notations: All inequalities and equalities are understood
componentwise. [n] represents the set {1, . . . , n} for any
n ∈ N+. ‖·‖ denotes the Euclidean norm for vectors and the
induced 2-norm for matrices. 〈x, y〉 represents the standard
inner product of two vectors x and y. col(z1, . . . , zk) is the
concatenated column vector of vectors zi ∈ Rni , i ∈ [k].
[z]+ represents the component-wise projection of a vector
z ∈ Rn onto Rn+. For a set S ⊆ Rp, PS(·) is the projection
operator. ∇f(x) denotes the subgradient of function f at
point x.

II. PRELIMINARIES

A. Graph Theory

Interactions between agents in the distributed algorithm
are modeled by a time-varying directed graph. Specifically,
at time t, agents communicate with each other according to a
directed graph Gt = (V, Et), where V = [n] is the vertex set
and Et ⊆ V × V is the edge set. A directed edge (j, i) ∈ Et
means that vertex i can receive data broadcasted by vertex
j at time t. Let N in

i (Gt) = {j ∈ [n] | (j, i) ∈ Et} and
N out
i (Gt) = {j ∈ [n] | (i, j) ∈ Et} be the sets of in- and

out-neighbors, respectively, of vertex i at time t. A directed
path is a sequence of consecutive directed edges, and a graph
is called strongly connected if there is at least one directed
path from any vertex to any other vertex in the graph. The
adjacency matrix Wt ∈ Rn×n at time t fulfills [Wt]ij > 0 if
(j, i) ∈ Et or i = j, and [Wt]ij = 0 otherwise.

B. Bregman Divergences

Each agent i ∈ [n] uses the Bregman divergence Dψi
(x, y)

to measure the distance between x, y ∈ Xi. The Bregman
divergence is defined as

Dψi(x, y) = ψi(x)− ψi(y)− 〈∇ψi(y), x− y〉, (3)

where ψi : Xi → R is a differentiable and strongly convex
function with convexity parameter σi > 0. Then, for all
x, y ∈ Xi, we have ψi(x) ≥ ψi(y)+〈∇ψi(y), x−y〉+σi

2 ‖x−
y‖2. Thus, Dψi(x, y) ≥ σ

2 ‖x − y‖
2, ∀x, y ∈ Xi, ∀i ∈ [n],

where σ = min{σ1, . . . , σn}. Hence, Dψi(·, y) is a strongly
convex function with convexity parameter σ for all y ∈ Xi.

C. Assumptions

The following mild assumption is made on the graph.

Assumption 1. For any t ∈ N+, the graph Gt satisfies the
following conditions:

1) There exists a constant w ∈ (0, 1), such that [Wt]ij ≥
w if [Wt]ij > 0.

2) The adjacency matrix Wt is doubly stochastic, i.e.,∑n
i=1[Wt]ij =

∑n
j=1[Wt]ij = 1, ∀i, j ∈ [n].

3) There exists an integer ι > 0 such that the graph
(V,∪l=0,...,ι−1Et+l) is strongly connected.

We make the following standing assumption on the cost,
regularization, and constraint functions.

Assumption 2. 1) The set Xi is convex and compact for
all i ∈ [n].

2) {fi,t}, {ri,t}, and {gi,t} are convex and uniformly
bounded on Xi, i.e., there exists a constant F > 0
such that ‖fi,t(x)‖ ≤ F, ‖ri,t(x)‖ ≤ F, ‖gi,t(x)‖ ≤
F, ∀t ∈ N+, ∀i ∈ [n], ∀x ∈ Xi.

3) The subgradients of {fi,t}, {ri,t}, and {gi,t} denoted
as {∇fi,t}, {∇ri,t}, and {∇gi,t} exist and they are
uniformly bounded on Xi, i.e., there exists a constant
G > 0 such that ‖∇fi,t(x)‖ ≤ G, ‖∇ri,t(x)‖ ≤
G, ‖∇gi,t(x)‖ ≤ G, ∀t ∈ N+, ∀i ∈ [n], ∀x ∈ Xi.

One mild assumption on the Bregman divergence is stated
as follows.

Assumption 3. For all i ∈ [n] and y ∈ Xi, Dψi
(·, y) : Xi →

R is Lipschitz, i.e., there exists a constant K > 0 such that
|Dψi

(x1, y)−Dψi
(x2, y)| ≤ K‖x1 − x2‖, ∀x1, x2 ∈ Xi.

This assumption is satisfied when ψi is Lipschitz on Xi.
From Assumptions 2 and 3 it follows that

Dψi(x, y) ≤ d(X)K, ∀x, y ∈ Xi, ∀i ∈ [n], (4)

where d(X) is a positive constant such that ‖x − y‖ ≤
d(X), ∀x, y ∈ X .
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III. DISTRIBUTED ONLINE PRIMAL-DUAL MIRROR
DESCENT ALGORITHM

In this section, we propose a distributed online primal-dual
mirror descent algorithm for solving convex optimization
problem (1).

The augmented Lagrangian function associated with prob-
lem (1) at each time t is

At(xt, ut) = ft(xt) + rt(xt) + u>t gt(xt)−
βt+1

2
‖ut‖2,

(5)

where {ut ∈ Rm+} is the dual variable or Lagrange multiplier
vector sequence and {βt > 0} is the regularization sequence.
Inspired by composite objective mirror descent algorithm
[24], a centralized online primal-dual mirror decent algo-
rithm to solve problem (1) is

xt+1 = arg min
x∈X

{αt+1(〈x,∇ft(xt) + (∇gt(xt))>ut〉

+ rt(xt)) +Dψ(x, xt)}, (6a)
ut+1 =[ut + γt+1(gt(xt)− βt+1ut)]+, (6b)

where {αt > 0} and {γt > 0} are the stepsize sequences
used in the primal and dual updates, respectively, and ψ is a
strongly convex function to define the Bregman divergence.
When rt is a constant mapping, then the centralized online
algorithm (6) is Algorithm 1 proposed in [11]. The potential
drawback of that algorithm is that the upper bounds of the
objective and constraint functions and their subgradients need
to be known in advance to choose the stepsize sequences.
In order to avoid using these upper bounds, inspired by
the algorithm proposed in [14], we slightly modify the dual
update equation (6b) as

ut+1 = [ut + γt+1(gt(xt) +∇gt(xt)(xt+1 − xt)
− βt+1ut)]+, (7)

Then we modify the centralized online primal-dual mirror
decent algorithm (6a) and (7) to a distributed manner, which
is given in pseudo-code as in Algorithm 1.

Remark 1. At time t, each agent i needs to know the
regularization function at the previous time t − 1, i.e.,
ri,t−1(·). This is in many situations a mild assumption since
regularization functions are normally predefined to influence
the structure of the decision. Furthermore, gi,t−1(xi,t−1),
∇fi,t−1(xi,t−1), and ∇gi,t−1(xi,t−1) rather than the full
knowledge of fi,t−1(·) and gi,t−1(·) are needed, similar to
the assumption on most online algorithms in the literature,
cf., [7], [8], [10], [11], [22]. Note that the total number
of iterations or any parameters related to the objective or
constraint functions, such as upper bounds of the objective
and constraint functions or their subgradients, are not used
in the algorithm. Also note that no local information related
to the primal is exchanged between the agents, but only the
local dual variables.

Algorithm 1 Distributed Online Primal-Dual Mirror Descent

1: Input: non-increasing sequences {αt > 0}, {βt >
0}, and {γt > 0}; differentiable and strongly convex
functions {ψi, i ∈ [n]}.

2: Initialize: xi,0 ∈ Xi, fi,0(·) = ri,0(·) ≡ 0, gi,0(·) ≡ 0m,
and qi,0 = 0m, ∀i ∈ [n].

3: for t = 1, . . . , T do
4: for i = 1, . . . , n do
5: Observe ∇fi,t−1(xi,t−1), ∇gi,t−1(xi,t−1),

gi,t−1(xi,t−1), and ri,t−1(·);
6: Receive [Wt−1]ijqj,t−1, j ∈ N in

i (Gt−1);
7: Update

q̃i,t =

n∑
j=1

[Wt−1]ijqj,t−1, (8)

ai,t =∇fi,t−1(xi,t−1)

+ (∇gi,t−1(xi,t−1))>q̃i,t, (9)
xi,t = arg min

x∈Xi

{αt〈x, ai,t〉+ αtri,t−1(x)

+Dψi
(x, xi,t−1)}, (10)

bi,t =∇gi,t−1(xi,t−1)(xi,t − xi,t−1)

+ gi,t−1(xi,t−1), (11)
qi,t =[q̃i,t + γt(bi,t − βtq̃i,t)]+; (12)

8: Broadcast qi,t to N out
i (Gt).

9: end for
10: end for
11: Output: xT .

IV. REGRET AND CUMULATIVE CONSTRAINT
VIOLATION BOUNDS

This section presents the main results on regret and con-
straint violation bounds for Algorithm 1. For space purposes,
all proofs are omitted here, but can be found in [25].

A. Dynamic Regret and Constraint Violation Bounds

Theorem 1. Suppose Assumptions 1–3 hold. For any T ∈
N+, let xT be the sequence generated by Algorithm 1 with

αt =
1

tc
, βt =

1

tκ
, γt =

1

t1−κ
, ∀t ∈ N+,

where κ ∈ (0, 1) and c ∈ (0, 1) are constants. Then,

Reg(xT ,x
∗
T ) ≤ C1T

max{1−c,c,κ} + 2KT cV (x∗T ),

‖[
T∑
t=1

gt(xt)]+‖ ≤
√
C2T

max{1−c/2,1−κ/2},

where C1 =
C1,1

κ +
C1,2

1−c +2nd(X)K, C2 = C2,1(2nF+C1),

C1,1 = 3n2τB1F
1−λ + n(B1)2

2 , C1,2 = 4nG2

σ , τ = (1 −
w/2n2)−2 > 1, B1 = 2F + Gd(X), λ = (1 − w/2n2)1/ι

and C2,1 = 2n( 2G2

(1−c)σ + 1
1−κ +2) are constants independent

of T ; and V (x∗T ) =
∑T−1
t=1

∑n
i=1 ‖x∗i,t+1 − x∗i,t‖ is the

accumulated variation of the sequence x∗T .
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Remark 2. Note that the dependence on the stepsize se-
quences, the accumulated variation of the comparator se-
quence, the number of agents, and the network connectivity
is characterized in the regret and constraint violation bounds
above. Sublinear dynamic regret and constraint violation is
thus achieved if V (x∗T ) grows sublinearly. If, in this case,
there exists a constant ν ∈ [0, 1), such that V (x∗T ) =
O(T ν), then setting c ∈ (0, 1 − ν) in Theorem 1 gives
Reg(xT ,x

∗
T ) = o(T ) and ‖[

∑T
t=1 gt(xt)]+‖ = o(T ).

B. Static Regret and Constraint Violation Bounds

Replacing x∗T by the static sequence x̌∗T in Theorem 1
gives the following results.

Corollary 1. Under the same conditions as stated in Theo-
rem 1, it holds that

Reg(xT , x̌
∗
T ) ≤ C1T

max{1−κ,κ},

‖[
T∑
t=1

gt(xt)]+‖ ≤
√
C2T

1−κ/2.

Remark 3. From Corollary 1, we know that Algorithm 1
achieves the same static bound regret as in [8] but general-
izes the constraint violation bound. As discussed in [8], κ ∈
(0, 1) is a user-defined trade-off parameter which enables the
user to trade-off static regret bound for constraint violation
bound depending on the application. Corollary 1 recovers
the O(

√
T ) static regret bound and O(T 3/4) constraint

violation bound from [7], [11] when κ = 0.5. Moreover,
the result extends the O(T 2/3) bound for both static re-
gret and constraint violation achieved in [7] for linear
constraint functions. However, the algorithms proposed in
[7], [8], [11] are centralized and the constraint functions
considered in [7], [8] are time-invariant. Moreover, in [7],
[11] the total number of iterations and in [7], [8], [11]
the upper bounds of the objective and constraint functions
and their subgradients need to be known in advance to
choose the stepsize sequences. Furthermore, Corollary 1
achieves smaller static regret and constraint violation bounds
than [22], although [22] considered time-invariant coupled
inequality constraints. However, [22] did not require the
time-varying directed graph to be balanced. Although the
algorithm proposed in [10] achieved more strict constraint
violation bound than our Algorithm 1, it is time-invariant
constraint functions that were considered and the algorithm
is centralized also.

The static regret bound in Corollary 1 can be reduced, if a
generalized strong convexity of the local objective functions
fi,t+ri,t is assumed. We put the generalized strong convexity
assumption on the local cost functions fi,t, so ri,t can be
simply convex, such as an `1-regularization.

Assumption 4. For any i ∈ [n] and t ∈ N+, {fi,t} are µi-
strongly convex over Xi with respect to ψi with µi > 0, i.e.,
for all x, y ∈ Xi and t ∈ N+,

ft,i(x) ≥ft,i(y) + 〈x− y,∇ft,i(y)〉+ µiDψi(x, y). (13)

Theorem 2. Suppose Assumptions 1–4 hold. For any T ∈
N+, let xT be the sequence generated by Algorithm 1 with

αt =
1

tmax{1−κ,κ} , βt =
1

tκ
, γt =

1

t1−κ
, ∀t ∈ N+,

where κ ∈ (0, 1). Then,

Reg(xT , x̌
∗
T ) ≤ max{C1, C4}Tκ,

‖[
T∑
t=1

gt(xt)]+‖ ≤
√
C2T

1−κ/2,

where C4 = n(B1)2

2κ +
B1C1,1

κ +
C1,2

κ + 2nd(X)K(B4)1−κ,
B4 = (µ)−1/κ + 1, and µ = min{µ1, . . . , µn} are constants
independent of T .

V. NUMERICAL SIMULATIONS

Consider online convex optimization with local cost func-
tions fi,t(xi) = ζi,1〈πi,t, xi〉 + ζi,2‖xi − yi,t‖2, where ζi,1
and ζi,2 are nonnegative constants, and πi,t, yi,t ∈ Rpi are
time-varying and unknown at time t; local regularization
functions ri,t(xi) = λi,1‖xi‖1 + λi,2‖xi‖2, where λi,1 and
λi,2 are nonnegative constants; and local constraint functions
gi,t(xi) = Di,txi−di,t, where Di,t ∈ Rm×pi and di,t ∈ Rm
are time-varying and unknown at time t. The above problem
formulation arises often in network resource allocation, smart
grid control, estimation in sensor networks, and so on.

In the simulations, for each agent i ∈ [n], the strongly con-
vex function ψi(x) = σ‖x‖2 is used to define the Bregman
divergence Dψi . Thus, Dψi(x, y) = σ‖x−y‖2,∀i ∈ [n]. The
stepsize sequences proposed in Theorem 2 are used. At each
time t, an undirected graph is used as the communication
graph. Specifically, connections between vertices are random
and the probability of two vertices being connected is ρ.
Moreover, in order to guarantee Assumption 1 holds, edges
(i, i + 1), i ∈ [n − 1] are added and [Wt]ij = 1

n if
(j, i) ∈ Et and [Wt]ii = 1 −

∑
j∈N in

i (Gt)[Wt]ij . We assume
n = 50, m = 5, σ = 10, pi = 6, Xi = [0, 5]pi ,
ζi,1 = λi,1 = 1, ζi,2 = λi,2 = 30, i ∈ [n], and ρ = 0.2.
Each component of πi,t is drawn from the discrete uniform
distribution in [0, 10] and each component of Di,t is drawn
from the discrete uniform distribution in [−5, 5]. We let
yi,t = [2(ζi,2 + λi,2)x0

i,t + ζi,1πi,t + λi,11pi ]/(2ζi,2), where
x0
i,t+1 = Ai,tx

0
i,t with Ai,t being a doubly stochastic matrix

and x0
i,1 being a vector that is uniformly drawn from Xi.

In order to guarantee the constraints are feasible, we let
di,t = Di,tx

0
i,t.

We compare Algorithm 1 with the centralized online
algorithms in [11], [12], [14]. Here, Algorithm 1 in [11] with
α = 10, δ = 1, and µ = 1/

√
T , Algorithm 1 in [12] with

α = µ = T−1/3, and the virtual queue algorithm in [14] with
V =

√
T and α = V 2 are used. Figs. 1 (a) and (b) show

the evolutions of Reg(xT ,x
∗
T )/T and ‖

∑T
t=1[gt(xt)]+‖/T ,

respectively, for these algorithms. From these two figures, we
can see that in this example Algorithm 1 achieves smaller
dynamic regret and constraint violation than the algorithms
in [12], [14] and almost the same values as the algorithm in
[11].
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Fig. 1: Comparison of different algorithms: (a) Evolutions of
Reg(xT ,x

∗
T )/T ; (b) Evolutions of ‖[

∑T
t=1 gt(xt)]+‖/T .

VI. CONCLUSION

In this paper, we considered an online convex optimization
problem with time-varying coupled inequality constraints.
We proposed a distributed online primal-dual mirror descent
algorithm to solve this problem. We derived regret and
constraint violation bounds for the algorithm and showed
how they depend on the stepsize sequences, the accumulated
variation of the comparator sequence, the number of agents,
and the network connectivity. As a result, we proved that the
algorithm achieves sublinear regret and constraint violation
for both arbitrary and strongly convex objective functions.
We showed that the algorithm and results in this paper can
be cast as extensions of existing algorithms and results.
Future research directions include extending the algorithm
with bandit feedback.
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