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Abstract— We consider problems in multi-agent systems
where a network of mobile sensors needs to self-organize such
that some global objective function is maximized. To deal with
the agents’ lack of global information we approach the problem
in a game-theoretic framework where agents/players are only
able to access local measurements of their own local utility
functions whose parameters and detailed analytical forms may
be unknown. We then propose a distributed and adaptive
algorithm, where each agent applies a local extremum seeking
feedback adopted to its specific motion dynamics, and prove its
global practical stability, implying that the agents asymptoti-
cally reach a configuration that is arbitrary close to the globally
optimal one. For the stability analysis we introduce a novel
methodology based on a Lie bracket trajectory approximation
and combine it with a potential game approach. We apply the
proposed algorithm to the sensor coverage problem and solve it
in a distributed way where the agents do not need any a priori
knowledge about the distribution of the events to be detected
and about the detection probabilities of the individual agents.
The proposed scheme is illustrated through simulations.

I. INTRODUCTION

We focus on problems in multi-agent systems where the
agents need to autonomously find positions which maximize
some global objective function. These problems are typical
in mobile sensor networks which consist of a collection of
mobile sensing devices that coordinate their actions through
wireless communication, while performing tasks such as
exploration, surveillance, monitoring, target tracking, etc.
The agents may have some specific motion dynamics and
are autonomously moving in the plane by using only locally
available information. There is no global leader and no
omniscient agent that possess global information about the
underlying problem.

To deal with this distributed information structure, we
assign locally defined individual utility functions to each
agent and interpret the problem in a game-theoretic frame-
work. Each agent is equipped with sensors and is able to
communicate with a subset of the other agents, so that it is
capable of obtaining the current value of its local utility at
each time instance. By formulating the problem as a potential
game [8] we propose a method that guarantees convergence
to a neighborhood of the global optimum, where each agent
performs only local utility optimization. Since the agents
can only access current values of the local utilities, whose
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parameters and detailed analytical forms may be unknown,
the proposed algorithms are based on the extremum seeking
scheme with periodic perturbations (see, e.g., [12], [13],
[15], [16]). For the analysis of such systems we propose a
novel method based on a Lie bracket system approximation
(which can also be applied to general multi-variable or multi-
objective ES algorithms with periodic excitations) and apply
it to prove global practical asymptotic stability (cf. [9]) of
the proposed schemes. This Lie bracket based approach has
its origins in the controllability analysis and motion planning
(see, e.g., [5], [10]). For the motion dynamics of the agents,
in this paper we consider velocity actuated vehicles as well
as the unicycle vehicles.

As a specific application of the proposed algorithms we
consider the sensor coverage problem where a group of
sensors are meant to cover a region autonomously such that
the overall event detection probability is maximized. The
sensors have a limited sensing and communication range,
so that they are only able to measure the frequency of local
events. We formulate the problem as a potential game and
construct individual utility functions for each sensor such
that it can be solved in a distributed and adaptive way with
the proposed method.

The extremum seeking with sinusoidal perturbations by
autonomous vehicles has been analyzed in [15] and [16]
using the averaging theorem. The authors proposed similar
schemes as in this work but provided only local stability
analysis for the quadratic utilities by a single agent. In the
case of noisy utility measurements these ideas were extended
in [12] and [13] where the driving sinusoids admit vanishing
gains so that almost sure convergence is achieved. The
analysis provided in this paper, based on the Lie bracket ap-
proximation, applied even to single agent systems, provides a
better qualitative description of the behavior of the original
system compared to existing methods. Also, using the Lie
bracket method, we are able to prove global practical stability
for general nonlinear maps in a straightforward and intuitive
manner. The authors of [11] extended the extremum seeking
schemes to the multi-agent case when the agents are seeking
for a Nash equilibrium in a stochastic environment. In [2]
a similar approach but for local seeking of Nash equilibria
was presented.

In [4] the sensor coverage problem, treated in this paper
was introduced. The authors proposed a gradient method
where each sensor moves into the direction of the steepest
ascent of the utility function, thus requiring its complete
analytical form. This problem was treated in a game theoretic
way by the authors of [6], [7] and [17]. They proposed dif-
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ferent algorithms for a discrete action space where only one
player is allowed to move at predefined time-instances and
examined the convergence properties of different adaptive
best or better response algorithms.

The paper is structured as follows. In Section II we recall
the mathematical preliminaries that we are using throughout
the paper. In Section III we prove the global practical
asymptotic stability of the proposed algorithms, while in
Section IV we apply them to the sensor coverage problem.
In Section V we present simulation results.

II. PREREQUISITES

The set R+ denotes the set of nonnegative real numbers
and Q++ denotes the set of positive rational numbers.

A function f is said to belong to the class C∞ if it is
smooth, or infinitely continuously differentiable (see also
[3]).

A continuous function α : [0,∞) → [0,∞) is said to
belong to class K∞ if it is strictly increasing, α(0) = 0 and
α(r)→∞ as r →∞.

The Jacobian of a continuously differentiable function f :

Rn → Rm with components f(s) =
(
f1(s), . . . , fm(s)

)>
and each fi : Rn → R, is denoted by

∂f(s)

∂s
:=


∂f1(s)
∂s1

. . . ∂f1(s)
∂sn

...
. . .

...
∂fm(s)
∂s1

. . . ∂fm(s)
∂sn

 .

The gradient of a continuously differentiable function
Q : Rn → R with respect to s is denoted by

∇sQ(s) :=
(
∂Q(s)
∂s1

, . . . , ∂Q(s)
∂sn

)>
and (∇sQ)2 stands for

∇sQ(s)>∇sQ(s).
The norm || · ||C[0,T ] denotes ||y||C[0,T ] =

maxt∈[0,T ] |y(t)|.
The Lie bracket (cf. [10]) of two vector fields f and g is

defined as [f, g] = ∂g
∂sf −

∂f
∂s g.

We now show how an input-affine system can be approx-
imated by an extended system consisting of vector-fields
calculated from Lie brackets. Consider the following system

ẋ =

m∑
i=1

bi(x)uεi , x ∈ Rn, bi(x) ∈ C∞ : Rn → Rn (1)

with inputs uεi = ūi(t) + 1√
ε
ũi(t, θ), ε > 0, where ũi

is 2π-periodic in θ = t/ε, and has zero average, i.e.,∫ 2π

0
ũi(t, θ)dθ = 0.

Consider also the system

ż =

m∑
i=1

bi(z)ūi +
1

2π

∑
i<j

[bi, bj ]νi,j , z(0) = x(0), (2)

where

νi,j =

∫ 2π

0

∫ θ

0

ũi(t, τ)ũj(t, θ)dτdθ. (3)

The following lemma states the connection between these
two systems in terms of the difference in their trajectories,

by giving a bound that tends to zero as ε tends to zero.

Lemma 1 (Thm. 2.1 in [5] p. 68): For sufficiently small
ε > 0, the trajectory of the system (1), is bounded by the
solution of the system (2) in the sense that

||x− z||C[0,2π] ≤ ∆ε (4)

where ∆ε is a parameter that tend to zero as ε→ 0.
From Lemma 1 it is easy to show that the trajectory of

system (1) converge uniformly on any compact time interval
to the trajectory of (2) as ε→ 0. Under these conditions the
following holds:

Lemma 2 (cf. [9]): If the origin is a globally uniformly
asymptotically stable equilibrium point of system (2), then
for sufficiently small ε > 0 the origin of system (1) is
practically globally uniformly asymptotically stable.

This lemma is a special case of the original statement in
[9] and can easily be proven using the Gronwall-Bellman
Lemma. By performing a change of variables the result can
be extended to any point in the state space.

Unlike the asymptotic stability in the sense of Lyapunov,
where trajectories converge to the origin as time goes to
infinity, the notion of practical stability of time-varying
systems deals with the trajectory convergence to a region
containing the origin, which can be made arbitrary small
by tuning certain system parameters. The existence of such
parameters makes the notion of practical stability different
to the convergence to a limit cycle.

III. MAIN RESULTS

In this section we propose two distributed multi-agent
extremum seeking algorithms based on a game-theoretic
methodology. The first one is applied to the single integrator
model of the agents’ motion dynamics, whereas the second
one is applied to the unicycle model.

The position vector of each agent, is denoted by si =
(six, siy)> ∈ R2.

Let us assume that the positions of the agents can be inter-
preted as their actions in a potential game ∆ = 〈V,A,U〉,
where V = (1, . . . , N) is the set of players/agents, A :=∏N
i=1 R2 is the action set and U = {vi(s) : A→ R, i ∈ V }

with s = [sT1 , ..., s
T
N ]T , is a set of utility functions. The po-

tential function Q(s) : A→ R is continuously differentiable,
strictly concave and admits a single maximum at s∗ which,
therefore coincides with a unique Nash equilibrium in pure-
strategies. Note that we use the definition for potential games
in [8], where the function Q(s) is a potential function for
the game ∆ if and only if

∇siQ(s) = ∇sivi(s), ∀i ∈ V. (5)

A. Single Integrator Motion Dynamics

Let us consider the state-space of the extremum seeking
feedback given in Fig. 1. We introduce the following as-
sumptions on the parameters of the algorithm and of the
Game ∆:
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shi

C i

C i

ii cos i t 

ii sin i t 

i sin i t−i

−i cos i t−i

Vehicle

ṡ ix

ṡiy

six

siy

vi si , s−i

Fig. 1: Single Agent Equipped with the Extremum Seeking
Feedback

A.1 ωi = aiω and ai 6= aj , ∀i 6= j, ai ∈ Q++, ω ∈ (0,∞),
A.2 −π2 < φi <

π
2 , ∀i ∈ V ,

A.3 hi > 0, αi > 0, ci > 0, ∀i ∈ V ,
A.4 vi(s) is smooth, ∀i ∈ V .
The following theorem deals with the practical stability of
the proposed scheme.

Theorem 1: Consider the system of N agents equipped
with the extremum seeking feedback in Fig. 1. Under the
Assumptions A.1–A.4 and for sufficiently large ω, the Nash
equilibrium s∗ of the Game ∆ is practically globally uni-
formly asymptotically stable.

Proof: We write vi instead of vi(s). The idea is
to bring the system into the form (1) and derive the ap-
proximative system as in (2) that can easily be analyzed
with standard Lyapunov techniques. By using the identities
sin(x−y) = sin(x) cos(y)−cos(x) sin(y) and cos(x−y) =
cos(x) cos(y) + sin(x) sin(y), the system equations for each
agent i have the following structure

ṡix =ci(vi − eihi)
√
ωi sin(aiωt) cos(φi)

− ci(vi − eihi)
√
ωi cos(aiωt) sin(φi)

+ αi
√
ωi cos(aiωt)

ṡiy =− ci(vi − eihi)
√
ωi cos(aiωt) cos(φi)

− ci(vi − eihi)
√
ωi sin(aiωt) sin(φi)

+ αi
√
ωi sin(aiωt)

ėi =− eihi + vi

(6)

where the filter of agent i is represented by the equivalent
state-space model whose internal state is denoted by ei and
whose output is yi = −eihi + vi. The position vectors and
the states of the filter of each agent are stacked in a vector
(s, e)> := (s1x, s1y, e1, . . . , sNx, sNy, eN )> and all driving
sinusoids with the same frequency are collected together to
obtain(
ṡ
ė

)
=

N∑
i=1

bia
√
ωi sin(aiωt)︸ ︷︷ ︸

uia

+bib
√
ωi cos(aiωt)︸ ︷︷ ︸

uib

+bie (7)

where bia and bib are the vector fields with entries only
at the components for the respective agent and all other

components are zero. The vector field bie consists of entries
−eihi + vi for the filter of each agent. These definitions
directly follow from (6).

By Assumption A.1 all ai can be written as ai = pi/qi
with pi, qi ∈ N.

Choose q :=
∏
j qj , ε := q/ω and define

α̃i := αi
√
pi
∏
j 6=i qj , c̃i := ci

√
pi
∏
j 6=i qj , ũia =√

ω/q sin(aiωt) and ũib =
√
ω/q cos(aiωt). Equation (7)

can be written using vector fields b̃ia and b̃ib obtained from
bia and bib using α̃i and c̃i instead of αi and ci. The
corresponding inputs are ũia = 1/

√
ε sin(pi

∏
j 6=i qjt/ε)

and ũib = 1/
√
ε cos(pi

∏
j 6=i qjt/ε) where by assumption

pi
∏
j 6=i qj ∈ N.

The drift influences only the state ei to which a virtual
input ui0 = 1 is associated. All ũia’s and ũib’s are periodic
in 2π and their averages are zero.∫ 2π

0

sin(pi
∏
j 6=i

qjθ)dθ =

∫ 2π

0

cos(pi
∏
j 6=i

qjθ)dθ = 0. (8)

Therefore all assumptions of Lemma 1 are fulfilled, and can
be applied. The approximate system is(

˙̄s
˙̄e

)
=

1

2π

∑
i<j

[b̃i, b̃j ]νi,j +
∑
i

bie (9)

with νi,j =
∫ 2π

0

∫ θ
0
ui(τ)uj(θ)dτdθ. The summation is done

over all i ∈ {1a, 1b, 2a, 2b, . . .}. An important fact now is
that νi,j = 0 for the coupling Lie brackets of agents with
different frequencies. Note that the Lie bracket applied to
one vector field equals zero ([b̃ia, b̃ia] = 0). As in Eq. (2)
the νi,j are only to be calculated for i < j. After a lengthly
calculation we obtain for the approximate system of agent i

˙̄six =
1

2
(ciαi∇s̄ixvi(s̄) cos(φi) + ciαi∇s̄iyvi(s̄) sin(φi)

− c2i∇s̄iyvi(s̄)(vi(s̄)− ēih))

˙̄siy =
1

2
(ciαi∇s̄iyvi(s̄) cos(φi)− ciαi∇s̄ixvi(s̄) sin(φi)

+ c2i∇s̄ixvi(s̄)(vi(s̄)− ēih))

˙̄ei =− ēihi + vi(s̄).

(10)

Note, that the approximate system for each agent is
only coupled in the individual utility functions vi. There-
fore, according to Lemma 1, we can conclude that
the trajectories of the original system are bounded by
the trajectories of the above system in the sense that
||(s, e)> − (s̄, ē)>||C[0,2π] ≤ ∆ε.

The position vectors of each agent can now be treated
separately from the filter states. Let’s consider the re-
duced system consisting only of the position vectors s =
[s1x, s1y, . . . , sNx, sNy].

Using the potential function W = −Q(s̄) + Q(s∗) as a
Lyapunov function and performing the change of variables
s̃ := s̄ − s∗, one obtains for the derivative along the
trajectories of the approximative system

Ẇ =−∇s̃1xQ(s̃+ s∗) ˙̃s1x −∇s̃1yQ(s̃+ s∗) ˙̃s1y

− . . .
−∇s̃Nx

Q(s̃+ s∗) ˙̃s1x −∇s̃Ny
Q(s̃+ s∗) ˙̃sNy.

(11)
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+ xC i

ii cos i t  isin i t−i

Unicycle

vi

ui

i

s
shi

vi si , s−i

s ix

siy

Fig. 2: Unicycle Agent Equipped with the Extremum Seeking
Feedback

As this is a potential game, the individual utility functions
fulfill the identity ∇siQ = ∇sivi. This yields

Ẇ =− c1α1

2
(∇s̃1xQ(s̃+ s∗))2 cos(φ1)

− . . .

− cNαN
2

(∇s̃Ny
Q(s̃+ s∗))2 cos(φN )

< 0 ∀s̃ 6= 0,

(12)

since, by Assumption A.2, cos(φi) is always positive. There-
fore, the maximum s∗ is globally uniformly asymptotically
stable for the first part of the approximate system (10).
Consider now

˙̄ei = −ēihi + vi.

Obviously, all ēi’s are decoupled and input-to-state stable
with respect to vi(s̄) (which are bounded and smooth).
Therefore, ēi → vi(s

∗)/hi for t → ∞, having in mind that
s → s∗. We conclude by Lemma 2 that s∗ is practically
globally uniformly asymptotically stable for the original
system.

B. Unicycle Motion Dynamics

Let us consider the unicycle model for each agent given
by the equations

ṡix =ui cos(θi)

ṡiy =ui sin(θi)

θ̇i =vi.

(13)

The extremum seeking feedback controls only the for-
ward velocity of the vehicle, whereas the angular veloc-
ity is constant, so that the inputs to each vehicle are
ui = (ci(vi − eihi)

√
ωi sin(ωit − φi) + αi

√
ωi cos(ωit))

and vi = Ωi. We make the following assumptions on the
parameters of the scheme:
B.1 ωi = aiω and ai 6= aj , ∀i 6= j, ai ∈ Q++, ω ∈ (0,∞),
B.2 −π2 < φi <

π
2 , ∀i ∈ V ,

B.3 hi > 0, αi > 0, ci > 0, Ωi 6= 0, ∀i ∈ V ,
B.4 vi(s) is smooth, ∀i ∈ V .

Theorem 2: Consider the system of N agents equipped
with the extremum seeking feedback in Fig. 2. Under the
Assumptions B.1–B.4 and for sufficiently large ω, the Nash

equilibrium s∗ of the Game ∆ is practically globally uni-
formly asymptotically stable.

Proof: We first plug the given inputs into the system
equations of the unicycle model. By using the identitiy
sin(x− y) = sin(x) cos(y)− cos(x) sin(y) we obtain

ṡix =(ci(vi − eihi)
√
ωi sin(aiωt) cos(φi)

− ci(vi − eihi)
√
ωi cos(aiωt) sin(φi)

+ αi
√
ωi cos(aiωt)) cos(θi)

ṡiy =(ci(vi − eihi)
√
ωi sin(aiωt) cos(φi)

− ci(vi − eihi)
√
ωi cos(aiωt) sin(φi)

+ αi
√
ωi cos(aiωt)) sin(θi)

θ̇i =Ωi

ėi =− eihi + vi.

(14)

The rest of the proof is similar as for the single-integrator.
By calculating the approximative system using Lie brackets
and by applying standard Lyapunov techniques to prove its
asymptotic stability, we conclude by Lemma 2 that s∗ is
practically globally uniformly asymptotically stable.

C. Remarks

The Assumptions A.1 and B.1 make sure that the mo-
tions of neighboring agents are decoupled. Simulations have
shown that irrational multiples of the same frequency lead to
the same results, whereas the same frequencies for all agents
leads to divergence.

The presented results can be extended to agents with
double-integrator dynamics [1]. By adding low-pass com-
pensators and some additional assumptions, the practical
stability can be proved in the same way.

The choice of the individual utility functions vi(s) will
depend on the particular problem setup. In most of the prac-
tical applications some form of communication among the
agents is needed to obtain local measurements. In such cases,
the utility functions should be designed such that the agents
can obtain local measurements by only communicating with
the neighboring agents. One example of such a design will
be treated in the following section.

IV. SENSOR COVERAGE AS POTENTIAL GAME

We are going to apply the proposed algorithms
to a sensor coverage problem [4]. Given a mission
space Ω ⊆ R2 where an event density function
R(x) : Ω → R+ is defined. N agents are placed
in the mission space, whereas the position of every
agent i is denoted by si ∈ Ω. The detection probability
pi(x, si) : Ω × Ω → [0, 1] is a function, decaying with
||x − si||, giving a measure of the probability that agent i
detects an event at position x.

The overall objective of the multi-agent sensor system can
be written as the integral expression

F (s) =

∫
Ω

R(x)

[
1−

N∏
i=1

(1− pi(x, si))

]
dx. (15)
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It characterizes the overall events detection frequency in
terms of the positions of all the agents, since the term[
1−

∏N
i=1(1− pi(x, si))

]
denotes the probability that an

event at the position x is detected by at least one agent. In
terms of discrete events, the function F (s) can be interpreted
as being proportional to the number of events detected
by at least one agent in some large enough time period.
The following theorem defines the coverage problem as a
potential game.

Theorem 3 (Sensor Coverage Game): The Game Γ =
〈V,A,U〉 where V := {1, . . . , N} is the player set, A =∏N
i=1Ai the mission space, U = {ui(s) : A→ R, i ∈ V }

with

ui(s) =

∫
Ω

R(x)pi(x, si)

 N∏
j=1

j 6=i

(1− pj(x, sj))

 dx (16)

where R(x) and pi(x, si) are continuously differentiable
functions on the domain Ω, is a potential game with potential
function in Eq. (15).

Proof: By differentiating the potential function F (s)
with respect to si one can easily verify that this is equal to
the derivative of ui with respect to si.

∇siF (s) = ∇siui(s), ∀i ∈ V. (17)

The fact that R(x) and pi(x, si) are continuously differen-
tiable allows to exchange the differentiation and integration.

The individual utility functions ui(s) were constructed using
the Wonderful Life Utility introduced by D. Wolpert in [14]
and are the continuous version of the ones proposed by
the authors in [6]. It measures the marginal contribution of
an agent w.r.t. the potential function. The utility functions
also have a physical meaning and define the amount of
detected events only by agent i. Therefore, the individual
utility function can be measured by counting the events that
were only detected by agent i and by none of the others.
Assuming that the detection range of each agent (defined by
pi(x, si)) is restricted to a small region around the agent, it
is obvious that the agents only need the information from
the neighbors.

A. Optimal Positioning in the Sensor Coverage Game

In order to apply the proposed algorithms to the sensor
coverage game, suitable functions R(x) and pi(x, si) have
to be found. We choose the mission space to be Ω = R2 and
we make the following assumptions
C.1 R(x) ∈ C∞,
C.2 pi(x, si) ∈ C∞ with compact support, p(si, si) 6= 0
C.3

∫
R2 R(x)pi(x, si)dx→ 0 with ||si|| → ∞.

C.4 Every local maximum of F (s) is an isolated point
in R2N .

Due to Assumptions C.2 and C.3 the potential function F (s)
admits at least one local maximum. The value of F (s) would
decrease with si →∞ because all pi(x, si) have a compact
support with center at si. The agents search to agglomerate

close to a maximum of R(x) as the probability of detecting
an event is maximal. Therefore, no local maximum of F (s)
is at si →∞.

Although the potential function is in general not strictly
concave, it will still be possible to converge to a local
maximum depending on the initial condition for the Lie
bracket approximation. This result is similar to the notion of
basin of attraction of a dynamical system with multiple local
equilibria. For sufficiently large ω, the original extremum
seeking will be close enough to the trajectories of the Lie
bracket system.

By the same reasoning as in Theorem 1, the next theorem
follows:

Corollary 1: Let the Assumptions A.1 – A.4 and C.1 –
C.4 be satisfied. If the agents are equipped with the extremum
seeking feedback in Fig. 1, with vi(s) = ui(s) as in equation
(16), then, for sufficiently large ω, every local maximum of
F (s) is practically uniformly asymptotically stable.
The same reasoning can be made from Theorem 2 for the
unicycle model.

Corollary 2: Let the assumptions B.1 – B.4 and C.1 – C.4
be satisfied. If the agents are equipped with the extremum
seeking feedback in Fig. 2, with vi(s) = ui(s) as in equation
(16), then, for sufficiently large ω, every local maximum of
F (s) is practically uniformly asymptotically stable.

Practical uniform asymptotic stability can be defined simi-
larly as global practical uniform asymptotic stability (cf. [9])
but for a restricted set of initial conditions.

We assumed that the local maxima of the potential func-
tion F (s) are isolated points. In the sensor coverage problem
this is not always the case, as symmetry leads to a manifold
of equal values of F (s). In this case, by using the proposed
schemes, convergence to a manifold S∗ is achieved in the
above practical sense, where S∗ ⊆ R2, such that for all
s ∈ S∗ the potential function F (s) takes the same local
maximal value.

It is obvious that, in our case, all equilibria of the potential
function are steady states for the approximative Lie bracket
system. Therefore, local minima and saddle-points have to
be excluded as initial conditions. Nevertheless, because of
the periodic excitation in the extremum seeking, the agents
will always diverge from all unstable extremum points of the
potential function, and converge to a local maximum using
the same reasoning as in the proofs of Theorem 1 and 2.

To obtain the current values of the utility functions (16) the
agents can rely only on locally available information having
in mind that the functions pi(x, si) have compact support
so that only the neighboring agents, which are currently in
this small region around the agent, can affect their local
utilities. Furthermore, it is important to observe that our
algorithm is adaptive (based only on the measurements of
the local utilities), so that the agents do not need any a priori
knowledge about the distribution of the events to be detected
R(x) and about the detection probability functions pi(x, si)
of the individual agents.
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V. SIMULATION RESULTS

Consider a Gaussian distribution for R(x) with mean µ
and variance Σ and

pi(x, si) =

{
p0ie

− 1

r2maxi
−||x−si||22

+ 1
r2maxi ||x− si|| ≤ rmaxi

0 else

where ||y||2 denotes the euclidian norm of the vector y. The
parameters p0i define the detection probability at x = si and
rmaxi defines the maximal detection radius of agent i.

We present the results for the single-integrator models. The
simulations are done with N = 6 agents. For the mean of
the Gaussian distribution we choose µ = (0, 0)>, and for the
covariance we choose the identity matrix. For the parameter
of the detection probabilities of the agents, we take p0i = 1
and rmaxi

= 0.3. The individual frequencies for the agents
are ωi = {10, 11, 12, 13, 14, 15} for each agent respectively.
The parameter φi for the phase shift of the sinusoids is
always φi = 0, whereas αi = 0.1, hi = 1 and ci = 10,
for all i.

The resulting trajectories of the agents are shown in Fig.
3a. The detection regions of all the agents are drawn as cir-
cles and the iso-levels where R(x) = const. are drawn in the
background. In Fig. 3b the evolution of the individual utility
functions as well as of the potential function can be seen. The
value of the potential function is monotonically increasing
over time although this cannot be directly concluded from
the values of the individual utility functions.

VI. CONCLUSION

We have proved practical stability of a Nash equilibrium
in a potential game in which the agents are using extremum
seeking as a local optimization algorithm. The agents are
able to converge to an optimum by using only the current
values of their individual utility functions. We analyzed the
proposed systems using the Lie bracket trajectory approxima-
tion which opens up a novel and intuitive view to the general
extremum seeking schemes based on periodic excitations. We
applied the proposed method to the sensor coverage problem
where the individual utility functions were constructed such
that the problem can be formulated as a potential game. All
local Nash equilibria are practically asymptotically stable and
therefore all sensors equipped with the proposed extremum

seeking schemes converge arbitrary close to one of the local
Nash equilibria. Due to the nature of the proposed algorithm,
the agents only need to use locally available information,
without any a priori knowledge about the parameters and
analytical forms of the utility functions.

As a possible future research, the Lie bracket interpretation
of the extremum seeking algorithms opens up possibility to
include additional collision avoidance feedback and to prove
convergence even in the presence of obstacles.
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