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Abstract—In this paper, we investigate a distributed Nash equi-
librium computation problem for a time-varying multi-agent net-
work consisting of two subnetworks, where the two subnetworks
share the same objective function. We first propose a subgradient-
based distributed algorithm with heterogeneous stepsizes to com-
pute a Nash equilibrium of a zero-sum game. We then prove that
the proposed algorithm can achieve a Nash equilibrium under
uniformly jointly strongly connected (UJSC) weight-balanced di-
graphs with homogenous stepsizes. Moreover, we demonstrate that
for weighted-unbalanced graphs a Nash equilibrium may not be
achieved with homogenous stepsizes unless certain conditions on
the objective function hold. We show that there always exist het-
erogeneous stepsizes for the proposed algorithm to guarantee that
a Nash equilibrium can be achieved for UJSC digraphs. Finally, in
two standard weight-unbalanced cases, we verify the convergence
to a Nash equilibrium by adaptively updating the stepsizes along
with the arc weights in the proposed algorithm.

Index Terms—Heterogeneous stepsizes, joint connection, multi-
agent systems, Nash equilibrium, weight-unbalanced graphs.

I. INTRODUCTION

IN recent years, distributed control and optimization of
multi-agent systems have drawn much research attention

due to their broad applications in various fields of science, en-
gineering, computer science, and social science. Various tasks
including consensus, localization, and convex optimization can
be accomplished cooperatively for a group of autonomous
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agents via distributed algorithm design and local information
exchange [8], [9], [14], [15], [20]–[22], [37].

Distributed optimization has been widely investigated for
agents to achieve a global optimization objective by cooper-
ating with each other [14], [15], [20]–[22]. Furthermore, dis-
tributed optimization algorithms in the presence of adversaries
have gained rapidly growing interest [2], [3], [23], [30]–[32].
For instance, a non-model based approach was proposed for
seeking a Nash equilibrium of noncooperative games in [30],
while distributed methods to compute Nash equilibria based on
extreme-seeking technique were developed in [31]. A distrib-
uted continuous-time set-valued dynamical system solution to
seek a Nash equilibrium of zero-sum games was first designed
for undirected graphs and then for weight-balanced directed
graphs in [23]. It is worthwhile to mention that, in the special
case of additively separable objective functions, the considered
distributed Nash equilibrium computation problem is equiva-
lent to the well-known distributed optimization problem: mul-
tiple agents cooperatively minimize a sum of their own convex
objective functions [11], [12], [14]–[19], [24], [29].

One main approach to distributed optimization is based on
subgradient algorithms with each node computing a subgra-
dient of its own objective function. Distributed subgradient-
based algorithms with constant and time-varying stepsizes,
respectively, were proposed in [14] and [15] with detailed con-
vergence analysis. A distributed iterative algorithm that avoids
choosing a diminishing stepsize was proposed in [29]. Both de-
terministic and randomized versions of distributed projection-
based protocols were studied in [20]–[22].

In existing works on distributed optimization, most of the
results were obtained for switching weight-balanced graphs
because there usually exists a common Lyapunov function to
facilitate the convergence analysis in this case [14], [15], [18],
[23], [24]. Sometimes, the weight-balance condition is hard
to preserve in the case when the graph is time-varying and
with communication delays [38], and it may be quite restrictive
and difficult to verify in a distributed setting. However, in
the case of weight-unbalanced graphs, there may not exist a
common (quadratic) Lyapunov function or it may be very hard
to construct one even for simple consensus problems [10],
and hence, the convergence analysis of distributed problems
become extremely difficult. Recently, many efforts have been
made to handle the weight unbalance problem, though very
few results have been obtained on distributed optimization.
For instance, the effect of the Perron vector of the adjacency
matrix on the optimal convergence of distributed subgradient
and dual averaging algorithms were investigated for a fixed
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weight-unbalanced graph in [39] and [40]. Some methods were
developed for the unbalanced graph case such as the reweight-
ing technique [39] (for a fixed graph with a known Perron vec-
tor) and the subgradient-push methods [41], [42] (where each
node has to know its out-degree all the time). To our knowledge,
there are no theoretical results on distributed Nash equilibrium
computation for switching weight-unbalanced graphs.

In this paper, we consider the distributed zero-sum game
Nash equilibrium computation problem proposed in [23], where
a multi-agent network consisting of two subnetworks, with
one minimizing the objective function and the other maxi-
mizing it. The agents play a zero-sum game. The agents in
two different subnetworks play antagonistic roles against each
other, while the agents in the same subnetwork cooperate. The
objective of the network is to achieve a Nash equilibrium via
distributed computation based on local communications under
time-varying connectivity. The considered Nash equilibrium
computation problem is motivated by power allocation prob-
lems [23] and saddle point searching problems arising from
Lagrangian dual optimization problems [13], [18], [25]–[28].
The contribution of this paper can be summarized as follows:

• We propose a subgradient-based distributed algorithm to
compute a saddle-point Nash equilibrium under time-
varying graphs, and show that our algorithm with homo-
geneous stepsizes can achieve a Nash equilibrium under
uniformly jointly strongly connected (UJSC) weight-
balanced digraphs.

• We further consider the weight-unbalanced case, though
most existing results on distributed optimization were
obtained for weight-balanced graphs, and show that dis-
tributed homogeneous-stepsize algorithms may fail in the
unbalanced case, even for the special case of identical
subnetworks.

• We propose a heterogeneous stepsize rule and study
how to cooperatively find a Nash equilibrium in general
weight-unbalanced cases. We find that, for UJSC time-
varying digraphs, there always exist (heterogeneous) step-
sizes to make the network achieve a Nash equilibrium.
Then we construct an adaptive algorithm to update the
stepsizes to achieve a Nash equilibrium in two standard
cases: one with a common left eigenvector associated with
eigenvalue one of adjacency matrices and the other with
periodically switching graphs.

The paper is organized as follows. Section II gives some
preliminary knowledge, while Section III formulates the dis-
tributed Nash equilibrium computation problem and proposes a
novel algorithm. Section IV provides the main results followed
by Section V that contains all the proofs of the results. Then
Section VI provides numerical simulations for illustration. Fi-
nally, Section VII gives some concluding remarks.

Notations: | · | denotes the Euclidean norm, 〈·, ·〉 the
Euclidean inner product and ⊗ the Kronecker product. B(z, ε)
is a ball with z the center and ε > 0 the radius, S+

n ={μ|μi>
0,
∑n

i=1 μi=1} is the set of all n-dimensional positive stochas-
tic vectors. z′ denotes the transpose of vector z, Aij the i-th

row and j-th column entry of matrix A and diag{c1, . . . , cn}
the diagonal matrix with diagonal elements c1, . . . , cn. 1=
(1, . . . , 1)′ is the vector of all ones with appropriate dimension.

II. PRELIMINARIES

In this section, we give preliminaries on graph theory [4],
convex analysis [5], and Nash equilibrium.

A. Graph Theory

A digraph (directed graph) Ḡ = (V̄ , Ē) consists of a node
set V̄ = {1, . . . , n̄} and an arc set Ē ⊆ V̄ × V̄ . Associated with
graph Ḡ, there is a (weighted) adjacency matrix Ā = (āij) ∈
R

n̄×n̄ with nonnegative adjacency elements āij , which are
positive if and only if (j, i) ∈ Ē . Node j is a neighbor of node
i if (j, i) ∈ Ē . Assume (i, i) ∈ Ē for i = 1, . . . , n̄. A path in Ḡ
from i1 to ip is an alternating sequence i1e1i2e2 · · · ip−1ep−1ip
of nodes ir, 1 ≤ r ≤ p and arcs er = (ir, ir+1) ∈ Ē , 1 ≤ r ≤
p− 1. Ḡ is said to be bipartite if V̄ can be partitioned into two
disjoint parts V̄1 and V̄2 such that Ē ⊆

⋃2
�=1(V̄� × V̄3−�).

Consider a multi-agent network Ξ consisting of two sub-
networks Ξ1 and Ξ2 with respective n1 and n2 agents. Ξ
is described by a digraph, denoted as G = (V , E), which
contains self-loops, i.e., (i, i) ∈ E for each i. Here G can
be partitioned into three digraphs: G� = (V�, E�) with V� =
{ω�

1, . . . , ωn�
�
}, � = 1, 2, and a bipartite graph G�� = (V , E��),

where V = V1

⋃
V2 and E = E1

⋃
E2

⋃
E��. In other words, Ξ1

and Ξ2 are described by the two digraphs, G1 and G2, respec-
tively, and the interconnection between Ξ1 and Ξ2 is described
by G��. Here G�� is called bipartite without isolated nodes if,
for any i ∈ V�, there is at least one node j ∈ V3−� such that
(j, i) ∈ E for � = 1, 2. Let A� denote the adjacency matrix of
G�, � = 1, 2. Digraph G� is strongly connected if there is a
path in G� from i to j for any pair node i, j ∈ V�. A node is
called a root node if there is at least a path from this node to
any other node. In the sequel, we still write i ∈ V� instead of
ω�
i ∈ V�, � = 1, 2 for simplicity if there is no confusion.
Let A� = (aij ,i,j∈V�

) ∈ R
n�×n� be the adjacency matrix of

G�. Graph G� is weight-balanced if
∑

j∈V�
aij =

∑
j∈V�

aji for
i ∈ V�; and weight-unbalanced otherwise.

A vector is said to be stochastic if all its components are
nonnegative and the sum of its components is one. A matrix
is a stochastic matrix if each of its row vectors is stochastic. A
stochastic vector is positive if all its components are positive.

Let B = (bij) ∈ R
n×n be a stochastic matrix. Define GB =

({1, . . . , n}, EB) as the graph associated with B, where (j, i) ∈
EB if and only if bij > 0 (its adjacency matrix is B). According
to Perron-Frobenius theorem [1], there is a unique positive
stochastic left eigenvector of B associated with eigenvalue one
if GB is strongly connected. We call this eigenvector the Perron
vector of B.

B. Convex Analysis

A set K ⊆ R
m is convex if λz1 + (1− λ)z2 ∈ K for any

z1, z2 ∈ K and 0 < λ < 1. A point z is an interior point of K if
B(z, ε) ⊆ K for some ε > 0. For a closed convex set K in R

m,
we can associate with any z ∈ R

m a unique element PK(z) ∈
K satisfying |z − PK(z)| = infy∈K |z − y|, where PK is the
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projection operator onto K . The following property for the
convex projection operator PK holds by Lemma 1 (b) in [15]

|PK(y)− z| ≤ |y − z| for any y ∈ R
m and any z ∈ K. (1)

A function ϕ(·) : Rm → R is (strictly) convex if ϕ(λz1 +
(1−λ)z2)(<)≤λϕ(z1) + (1−λ)ϕ(z2) for any z1 
= z2 ∈ R

m

and 0 < λ < 1. A function ϕ is (strictly) concave if −ϕ is
(strictly) convex. A convex function ϕ : Rm→R is continuous.

For a convex function ϕ, v(ẑ) ∈ R
m is a subgradient of

ϕ at point ẑ if ϕ(z) ≥ ϕ(ẑ) + 〈z − ẑ, v(ẑ)〉, ∀z ∈ R
m. For

a concave function ϕ, v(ẑ) ∈ R
m is a subgradient of ϕ at

ẑ if ϕ(z) ≤ ϕ(ẑ) + 〈z − ẑ, v(ẑ)〉, ∀z ∈ R
m. The set of all

subgradients of (convex or concave) function ϕ at ẑ is denoted
by ∂ϕ(ẑ), which is called the subdifferential of ϕ at ẑ.

C. Saddle Point and Nash Equilibrium

A function φ(·, ·) : Rm1 × R
m2 → R is (strictly) convex-

concave if it is (strictly) convex in first argument and (strictly)
concave in second one. Given a point (x̂, ŷ), we denote by
∂xφ(x̂, ŷ) the subdifferential of convex function φ(·, ŷ) at x̂ and
∂yφ(x̂, ŷ) the subdifferential of concave function φ(x̂, ·) at ŷ.

A pair (x∗, y∗) ∈ X × Y is a saddle point of φ on X × Y if

φ(x∗, y) ≤ φ(x∗, y∗) ≤ φ(x, y∗), ∀x ∈ X, y ∈ Y.

The next lemma presents a necessary and sufficient condition
to characterize the saddle points (see Proposition 2.6.1 in [33]).

Lemma 2.1: Let X ⊆ R
m1 , Y ⊆ R

m2 be two closed convex
sets. Then a pair (x∗, y∗) is a saddle point of φ on X × Y if and
only if

sup
y∈Y

inf
x∈X

φ(x, y) = inf
x∈X

sup
y∈Y

φ(x, y) = φ(x∗, y∗)

and x∗ is an optimal solution of optimization problem

minimize sup
y∈Y

φ(x, y) subject to x ∈ X (2)

while y∗ is an optimal solution of optimization problem

maximize inf
x∈X

φ(x, y) subject to y ∈ Y. (3)

From Lemma 2.1, we find that all saddle points of φ on
X × Y yield the same value. The next lemma can be obtained
from Lemma 2.1.

Lemma 2.2: If (x∗
1, y

∗
1) and (x∗

2, y
∗
2) are two saddle points of

φ on X × Y , then (x∗
1, y

∗
2) and (x∗

2, y
∗
1) are also saddle points

of φ on X × Y .
Remark 2.1: Denote by Z̄ the set of all saddle points of

function φ on X × Y , X̄ and Ȳ the optimal solution sets of
optimization problems (2) and (3), respectively. Then from
Lemma 2.1 it is not hard to find that if Z̄ is nonempty, then
X̄ , Ȳ are nonempty, convex, and Z̄ = X̄ × Ȳ . Moreover, if X
and Y are convex, compact and φ is convex-concave, then Z̄ is
nonempty (see Proposition 2.6.9 in [33]).

The saddle point computation can be related to a zero-
sum game. In fact, a (strategic) game is described as a triple
(I,W ,U), where I is the set of all players; W = W1 × · · · ×

Wn, n is the number of players, Wi is the set of actions
available to player i; U = (u1, . . . , un), ui : W → R is the
payoff function of player i. The game is said to be zero-sum
if

∑n
i=1 ui(wi, w−i) = 0, where w−i denotes the actions of

all players other than i. A profile action w∗ = (w∗
1, . . . , w

∗
n)

is said to be a Nash equilibrium if ui(w
∗
i , w

∗
−i) ≥ ui(wi, w

∗
−i)

for each i ∈ V and wi ∈ Wi. The Nash equilibria set of a
two-person zero-sum game (n = 2, u1 + u2 = 0) is exactly the
saddle point set of payoff function u2.

III. DISTRIBUTED NASH EQUILIBRIUM COMPUTATION

In this section, we introduce a distributed Nash equilibrium
computation problem and then propose a subgradient-based
algorithm as a solution.

Consider a network Ξ consisting of two subnetworks Ξ1

and Ξ2. Agent i in Ξ1 is associated with a convex-concave
objective function fi(x, y) : R

m1 × R
m2 → R, and agent i in

Ξ2 is associated with a convex-concave objective function
gi(x, y) : R

m1 × R
m2 → R. Each agent only knows its own

objective function. The two subnetworks have a common sum
objective function with closed convex constraint sets X ⊆
R

m1 , Y ⊆ R
m2

U(x, y) =

n1∑
i=1

fi(x, y) =

n2∑
i=1

gi(x, y), x ∈ X, y ∈ Y.

Then the network is engaged in a (generalized) zero-sum game
({Ξ1,Ξ2}, X × Y, u), where Ξ1 and Ξ2 are viewed as two
players, their respective payoff functions are uΞ1

= −
∑n1

i=1 fi
and uΞ2

=
∑n2

i=1 gi. The objective of Ξ1 and Ξ2 is to achieve a
Nash equilibrium of the zero-sum game.

Remark 3.1: Despite that the contribution of this paper
is mainly theoretical, the considered model appears also in
applications. Here we illustrate that by discussing two practical
examples in the literature. In the first example, from [23]
note that for multiple Gaussian communication channels with
budget constrained signal power and noise levels, the capacity
of each channel is concave in signal power and convex in noise
level. Suppose there are two subnetworks, one of which is
more critical than the other. The critical subnetwork aims to
maximize its capacity by raising its transmission power while
the other aims to reduce the interference to other channels by
minimizing its transmission power (and thus the capacity). The
objective of the two subnetworks is then to find the Nash equi-
librium of the sum of all channels’ capacities, see Remark 3.1
in [23] for more details. For the second example, recall that
many practical problems (for example, distributed estimation,
resource allocation, optimal flow control) can be formulated
as distributed convex constrained optimization problems, in
which the associated Lagrangian function can be expressed as
a sum of individual Lagrangian functions, which are convex
in the optimization variable and linear (hence concave) in the
Lagrangian multiplier. Under Salter’s condition, the optimal
solutions can be found by computing the saddle-points of the
convex-concave Lagrangian function, or equivalently, the Nash
equilibrium of the corresponding zero-sum game, see [18] for
further discussions.
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Fig. 1. The zero-sum game communication graph.

We next provide a basic assumption.
A1 (Existence of Saddle Points) For each stochastic vector μ,∑n1

i=1 μifi has at least one saddle point over X × Y .
Clearly, A1 holds if X and Y are bounded (see

Proposition 2.6.9 in [33] for other conditions guaranteeing the
existence of saddle points). However, in this paper we do not
require X and Y to be bounded. Let

Z∗ = X∗ × Y ∗ ⊆ X × Y

denote the set of all saddle points of U on X×Y . Notice that
X∗×Y ∗ is also the set of Nash equilibria of the generalized
zero-sum game.

Denote the state of node i ∈ V1 as xi(k) ∈ R
m1 and the state

of node i ∈ V2 as yi(k) ∈ R
m2 at time k = 0, 1, . . ..

Definition 3.1: The network Ξ is said to achieve a Nash equi-
librium if, for any initial condition xi(0) ∈ R

m1 , i ∈ V1 and
yi(0) ∈ R

m2 , i ∈ V2, there are x∗ ∈ X∗ and y∗ ∈ Y ∗ such that

lim
k→∞

xi(k) = x∗, i ∈ V1, lim
k→∞

yi(k) = y∗, i ∈ V2.

The interconnection in the network Ξ is time-varying and
modeled as three digraph sequences

G1 = {G1(k)} , G2 = {G2(k)} , G�� = {G��(k)}

where G1(k) = (V1, E1(k)) and G2(k) = (V2, E2(k)) are the
graphs to describe subnetworks Ξ1 and Ξ2, respectively, and
G��(k) = (V , E��(k)) is the bipartite graph to describe the
interconnection between Ξ1 and Ξ2 at time k ≥ 0 (see Fig. 1).
For k2 > k1 ≥ 0, denote by G��([k1, k2)) the union graph with
node set V and arc set

⋃k2−1
s=k1

E��(s), and G�([k1, k2)) the union

graph with node set V� and arc set
⋃k2−1

s=k1
E�(s) for � = 1, 2.

The following assumption on connectivity is made.
A2 (Connectivity) (i) The graph sequence G�� is uniformly

jointly bipartite; namely, there is an integer T�� > 0 such that
G��([k, k + T��)) is bipartite without isolated nodes for k ≥ 0.

(ii) For � = 1, 2, the graph sequence G� is uniformly jointly
strongly connected (UJSC); namely, there is an integer T� > 0
such that G�([k, k + T�)) is strongly connected for k ≥ 0.

Remark 3.2: The agents in Ξ� connect directly with those in
Ξ3−� for all the time in [23], while the agents in two subnet-
works are connected at least once in each interval of length T��

according to A2 (i). In fact, it may be practically hard for the
agents of different subnetworks to maintain communications all
the time. Moreover, even if each agent in Ξ� can receive the
information from Ξ3−�, agents may just send or receive once
during a period of length T�� to save energy or communication
cost.

To handle the distributed Nash equilibrium computation
problem, we propose a subgradient-based algorithm, called
Distributed Nash Equilibrium Computation Algorithm⎧⎪⎪⎪⎨

⎪⎪⎪⎩
xi(k + 1) = PX (x̂i(k)− αi,kq1i(k)) ,

q1i(k) ∈ ∂xfi (x̂i(k), x̆i(k)) , i ∈ V1

yi(k + 1) = PY (ŷi(k) + βi,kq2i(k)) ,

q2i(k) ∈ ∂ygi (y̆i(k), ŷi(k)) , i ∈ V2

(4)

with

x̂i(k)=
∑

j∈N 1
i (k)

aij(k)xj(k), x̆i(k)=
∑

j∈N 2
i (k̆i)

aij(k̆i)yj(k̆i)

ŷi(k)=
∑

j∈N 2
i (k)

aij(k)yj(k), y̆i(k)=
∑

j∈N 1
i (k̆i)

aij(k̆i)xj(k̆i)

where αi,k > 0, βi,k > 0 are the stepsizes at time k, aij(k)
is the time-varying weight of arc (j, i), N �

i (k) is the set of
neighbors in V� of node i at time k, and

k̆i = max
{
s|s ≤ k,N 3−�

i (s) 
= ∅
}
≤ k (5)

which is the last time before k when node i ∈ V� has at least
one neighbor in V3−�.

Remark 3.3: When all objective functions fi, gi are ad-
ditively separable, i.e., fi(x, y) = f1

i (x) + f2
i (y), gi(x, y) =

g1i (x) + g2i (y), the considered distributed Nash equilibrium
computation problem is equivalent to two separated distrib-
uted optimization problems with respective objective functions∑n1

i=1 f
1
i (x),

∑n2

i=1 g
2
i (y) and constraint sets X , Y . In this case,

the set of Nash equilibria is given by

X∗ × Y ∗ = argmin
X

n1∑
i=1

f1
i × argmax

Y

n2∑
i=1

g2i .

Since ∂xfi(x, y) = ∂xf
1
i (x) and ∂ygi(x, y) = ∂yg

2
i (y), algo-

rithm (4) becomes in this case the well-known distributed
subgradient algorithms [14], [15].

Remark 3.4: To deal with weight-unbalanced graphs, some
methods, the rescaling technique [34] and the push-sum proto-
cols [35], [36], [38] have been proposed for average consensus
problems; reweighting the objectives [39] and the subgradient-
push protocols [41], [42] for distributed optimization problems.
Different from these methods, in this paper we propose a
distributed algorithm to handle weight-unbalanced graphs when
the stepsizes taken by agents are not necessarily the same.

Remark 3.5: Different from the extreme-seeking techniques
used in [30] and [31], our method uses the subgradient to
compute the Nash equilibrium.

The next assumption was also used in [14], [15], [18], and [21].
A3 (Weight Rule) (i) There is 0 < η < 1 such that aij(k) ≥ η

for all i, k and j ∈ N 1
i (k) ∪ N 2

i (k);

(ii)
∑

j∈N �
i (k)

aij(k) = 1 for all k and i ∈ V�, � = 1, 2;

(iii)
∑

j∈N 3−�
i (k̆i)

aij(k̆i) = 1 for i ∈ V�, � = 1, 2.

Conditions (ii) and (iii) in A3 state that the information from
an agent’s neighbors is used through a weighted average. The
next assumption is about subgradients of objective functions.
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A4 (Boundedness of Subgradients) There is L > 0 such that,
for each i, j

|q| ≤ L, ∀q ∈ ∂xfi(x, y) ∪ ∂ygj(x, y), ∀x ∈ X, y ∈ Y.

Obviously, A4 holds if X and Y are bounded. A similar
bounded assumption has been widely used in distributed op-
timization [12]–[15].

Note that the stepsize in our algorithm (4) is heterogenous,
i.e., the stepsizes may be different for different agents, in
order to deal with general unbalanced cases. One challenging
problem is how to select the stepsizes {αi,k} and {βi,k}. The
homogenous stepsize case is to set αi,k = βj,k = γk for i ∈
V1, j ∈ V2 and all k, where {γk} is given as follows.

A5 {γk} is non-increasing,
∑∞

k=0 γk=∞ and
∑∞

k=0 γ
2
k<∞.

Conditions
∑∞

k=0 γk = ∞ and
∑∞

k=0 γ
2
k < ∞ in A5 are

well-known in homogeneous stepsize selection for distributed
subgradient algorithms for distributed optimization problems
with weight-balanced graphs, e.g., [15], [16], [18].

Remark 3.6: While weight-balanced graphs are considered
in [14], [15], [18], [23] and [24], we consider general (weight-
unbalanced) digraphs, and provide a heterogeneous stepsize
design method for the desired Nash equilibrium convergence.

IV. MAIN RESULTS

In this section, we start with homogeneous stepsizes to
achieve a Nash equilibrium for weight-balanced graphs (in
Section IV-A). Then we focus on a special weight-unbalanced
case to show how a homogeneous-stepsize algorithm may fail
to achieve our aim (in Section IV-B). Finally, we show that the
heterogeneity of stepsizes can help us achieve a Nash equilib-
rium in some weight-unbalanced graph cases (in Section IV-C).

A. Weight-Balanced Graphs

Here we consider algorithm (4) with homogeneous stepsizes
αi,k = βi,k = γk for weight-balanced digraphs. The following
result, in fact, provides two sufficient conditions to achieve a
Nash equilibrium under switching weight-balanced digraphs.

Theorem 4.1: Suppose A1–A5 hold and digraph G�(k) is
weight-balanced for k ≥ 0 and � = 1, 2. Then the multi-agent
network Ξ achieves a Nash equilibrium by algorithm (4) with
the homogeneous stepsizes {γk} if either of the following two
conditions holds:

(i) U is strictly convex-concave;
(ii) X∗ × Y ∗ contains an interior point.

The proof can be found in Section V-B.
Remark 4.1: The authors in [23] developed a continuous-

time dynamical system to solve the Nash equilibrium compu-
tation problem for fixed weight-balanced digraphs, and showed
that the network converges to a Nash equilibrium for a strictly
convex-concave differentiable sum objective function. Differ-
ent from [23], here we allow time-varying communication
structures and a non-smooth objective function U . The same
result may also hold for the continuous-time solution in [23]
under our problem setup, but the analysis would probably be
much more involved.

B. Homogenous Stepsizes vs. Unbalanced Graphs

In the preceding subsection, we showed that a Nash equi-
librium can be achieved with homogeneous stepsizes when
the graphs of two subnetworks are weight-balanced. Here we
demonstrate that the homogenous stepsize algorithm may fail
to guarantee the Nash equilibrium convergence for general
weight-unbalanced digraphs unless certain conditions about the
objective function hold.

Consider a special case, called the completely identical sub-
network case, i.e., Ξ1 and Ξ2 are completely identical

n1 =n2, fi = gi, i = 1, . . . , n1; A1(k) = A2(k)

G��(k) =
{(

ω�
i , ω

3−�
i

)
, � = 1, 2, i = 1, . . . , n1

}
, k ≥ 0.

In this case, agents ω�
i , ω

3−�
i have the same objective function,

neighbor set and can communicate with each other at all times.
Each pair of agents ω�

i , ω
3−�
i can be viewed as one agent labeled

as “i”. Then algorithm (4) with homogeneous stepsizes {γk}
reduces to the following form:{

xi(k + 1) = PX(
∑

j∈N 1
i (k)

aij(k)xj(k)− γkq1i(k))

yi(k + 1) = PY(
∑

j∈N 1
i (k)

aij(k)yj(k) + γkq2i(k))
(6)

for i = 1, . . . , n1, where q1i(k) ∈ ∂xfi(x̂i(k), yi(k)), q2i(k) ∈
∂yfi(xi(k), ŷi(k)).

Remark 4.2: Similar distributed saddle point computation al-
gorithms have been proposed in the literature, for example, the
distributed saddle point computation for the Lagrange function
of constrained optimization problems in [18]. In fact, algorithm
(6) can be used to solve the following distributed saddle-point
computation problem: consider a network Ξ1 consisting of n1

agents with node set V1 = {1, . . . , n1}, its objective is to seek
a saddle point of the sum objective function

∑n1

i=1 fi(x, y) in a
distributed way, where fi can only be known by agent i. In (6),
(xi, yi) is the state of node “i.” Moreover, algorithm (6) can
be viewed as a distributed version of the following centralized
algorithm:{
x(k+1)=PX(x(k)−γq1(k)) , q1(k)∈∂xU (x(k), y(k))

y(k+1)=PY (y(k)+γq2(k)) , q2(k)∈∂yU (x(k), y(k))

which was proposed in [13] to solve the approximate saddle
point problem with a constant stepsize.

We first show that, algorithm (4) with homogeneous stepsizes
[or equivalently (6)] cannot seek the desired Nash equilib-
rium though it is convergent, even for fixed weight-unbalanced
graphs.

Theorem 4.2: Suppose A1, A3–A5 hold, and fi, i =
1, . . . , n1 are strictly convex-concave and the graph is fixed
with G1(0) strongly connected. Then, with (6), all the agents
converge to the unique saddle point, denoted as (
x, 
y), of
an objective function

∑n1

i=1 μifi on X × Y , where μ =
(μ1, . . . , μn1

)′ is the Perron vector of the adjacency matrix
A1(0) of graph G1(0).

The proof is almost the same as that of Theorem 4.1,
by replacing

∑n1

i=1 |xi(k)− x∗|2,
∑n2

i=1 |yi(k)− y∗|2 and
U(x, y) with

∑n1

i=1 μi|xi(k)− 
x|2,
∑n1

i=1 μi|yi(k)− 
y|2 and∑n1

i=1 μifi(x, y), respectively. Therefore, the proof is omitted.
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Although it is hard to achieve the desired Nash equilibrium
with the homogeneous-stepsize algorithm in general, we can
still achieve it in some cases. Here we can give a necessary and
sufficient condition to achieve a Nash equilibrium for any UJSC
switching digraph sequence.

Theorem 4.3: Suppose A1, A3–A5 hold and fi, i =
1, . . . , n1 are strictly convex-concave. Then the multi-agent
network Ξ achieves a Nash equilibrium by algorithm (6) for
any UJSC switching digraph sequence G1 if and only if fi, i =
1, . . . , n1 have the same saddle point on X × Y .

The proof can be found in Section V-C.
Remark 4.3: The strict convexity-concavity of fi implies that

the saddle point of fi is unique. From the proof we can find that
the necessity of Theorem 4.3 does not require that each objective
function fi is strictly convex-concave, but the strict convexity-
concavity of the sum objective function

∑n1

i=1 fi suffices.

C. Weight-Unbalanced Graphs

The results in the preceding subsections showed that the
homogenous-stepsize algorithm may not make a weight-
unbalanced network achieve its Nash equilibrium. Here we
first show the existence of a heterogeneous-stepsize design to
make the (possibly weight-unbalanced) network achieve a Nash
equilibrium.

Theorem 4.4: Suppose A1, A3, A4 hold and U is strictly
convex-concave. Then for any time-varying communication
graphs G�, � = 1, 2 and G�� that satisfy A2, there always exist
stepsize sequences {αi,k} and {βi,k} such that the multi-agent
network Ξ achieves a Nash equilibrium by algorithm (4).

The proof is in Section V-D. In fact, it suffices to design
stepsizes αi,k and βi,k as follows:

αi,k =
1

αi
k

γk, βi,k =
1

βi
k

γk (7)

where (α1
k, . . . , α

n1

k )
′
= φ1(k + 1), (β1

k, . . . , β
n2

k )
′
= φ2(k +

1), φ�(k + 1) is the vector for which limr→∞ Φ�(r, k + 1) =:

1(φ�(k + 1))
′
, Φ�(r, k + 1) := A�(r)A�(r − 1) · · ·A�(k + 1),

� = 1, 2, {γk} satisfies the following conditions:

lim
k→∞

γk

k−1∑
s=0

γs =0, {γk} is non-increasing

∞∑
k=0

γk =∞,
∞∑

k=0

γ2
k < ∞. (8)

Remark 4.4: The stepsize design in Theorem 4.4 is motivated
by the following two ideas. On one hand, agents need to elim-
inate the imbalance caused by the weight-unbalanced graphs,
which is done by {1/αi

k}, {1/βi
k}, while on the other hand,

agents also need to achieve a consensus within each subnetwork
and cooperative optimization, which is done by {γk}, as in the
balanced graph case.

Remark 4.5: Condition (8) can be satisfied by letting γk =
c/(k + b)1/2+ε for k ≥ 0, c > 0, b > 0, 0 < ε ≤ 1/2. More-
over, from the proof of Theorem 4.4 we find that, if the sets
X and Y are bounded, the system states are naturally bounded,
and then (8) can be relaxed as A5.

Clearly, the above choice of stepsizes at time k depend on the
adjacency matrix sequences {A1(s)}s≥k+1 and {A2(s)}s≥k+1,
which is not so practical. Therefore, we will consider how to
design adaptive algorithms to update the stepsize sequences
{αi,k} and {βi,k} such that the Nash equilibrium can be
achieved, where the (heterogeneous) stepsizes at time k just
depend on the local information that agents can obtain before
time k.

Take

αi,k =
1

α̂i
k

γk, βi,k =
1

β̂i
k

γk (9)

where {γk} satisfies (8). The only difference between stepsize
selection rule (9) and (7) is that αi

k and βi
k are replaced with

α̂i
k and β̂i

k, respectively. We consider how to design distributed
adaptive algorithms for α̂i and β̂i such that

α̂i
k = α̂i

(
aij(s), j ∈ N 1

i (s), s ≤ k
)

β̂i
k = β̂i

(
aij(s), j ∈ N 2

i (s), s ≤ k
)

(10)

lim
k→∞

(
α̂i
k − αi

k

)
= 0, lim

k→∞

(
β̂i
k − βi

k

)
= 0. (11)

Note that (α1
k, . . . , α

n1

k )
′ and (β1

k, . . . , β
n2

k )
′ are the Perron

vectors of the two limits limr→∞ Φ1(r, k + 1) and limr→∞
Φ2(r, k + 1), respectively.

The next theorem shows that, in two standard cases, we can
design distributed adaptive algorithms satisfying (10) and (11)
to ensure that Ξ achieves a Nash equilibrium. How to design
them is given in the proof.

Theorem 4.5: Consider algorithm (4) with stepsize selection
rule (9). Suppose A1–A4 hold, U is strictly convex-concave.
For the following two cases, with the adaptive distributed
algorithms satisfying (10) and (11), network Ξ achieves a Nash
equilibrium.

(i) For � = 1, 2, the adjacency matrices A�(k), k ≥ 0 have a
common left eigenvector with eigenvalue one;

(ii) For � = 1, 2, the adjacency matrices A�(k), k ≥ 0 are
switching periodically, i.e., there exist positive inte-
gers p� and two finite sets of stochastic matrices

A0
� , . . . , A

p�−1
� such that A�(rp

� + s) = As
� for r ≥ 0 and

s = 0, . . . , p� − 1.

The proof is given in Section V-E.
Remark 4.6: Regarding case (i), note that for a fixed graph,

the adjacency matrices obviously have a common left eigen-
vector. Moreover, periodic switching can be interpreted as a
simple scheduling strategy. At each time agents may choose
some neighbors to communicate with in a periodic order.

Remark 4.7: In the case of a fixed unbalanced graph, the opti-
mization can also be solved by either reweighting the objectives
[39], or by the subgradient-push protocols [41], [42], where the
Perron vector of the adjacency matrix is required to be known
in advance or each agent is required to know its out-degree.
These requirements may be quite restrictive in a distributed
setting. Theorem 4.5 shows that, in the fixed graph case, agents
can adaptively learn the Perron vector by the adaptive learn-
ing scheme and then achieve the desired convergence without
knowing the Perron vector and their individual out-degrees.
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When the adjacency matrices A�(k) have a common left
eigenvector, the designed distributed adaptive learning strategy
(43) can guarantee that the differences between α̂i

k = αi
i(k),

β̂i
k = βi

i(k) and the “true stepsizes” φ1
i (k + 1), φ2

i (k + 1) as-
ymptotically tend to zero. The converse is also true for some
cases. In fact, if the time-varying adjacency matrices are switch-
ing within finite matrices and limk→∞(αi

i(k)− φ1
i (k + 1)) =

0, limk→∞(βi
i(k)− φ2

i (k + 1)) = 0, then we can show that
the finite adjacency matrices certainly have a common left
eigenvector.

Moreover, when the adjacency matrices have no common
left eigenvector, the adaptive learning strategy (43) generally
cannot make α̂i

k, β̂i
k asymptotically learn the true stepsizes and

then cannot achieve a Nash equilibrium. For instance, consider
the special distributed saddle-point computation algorithm (6)
with strictly convex-concave objective functions fi. Let ᾱ =
(ᾱ1, . . . , ᾱn1

)′, α̂ = (α̂1, . . . , α̂n1
)′ be two different positive

stochastic vectors. Suppose A1(0) = 1ᾱ′ and A1(k) = 1α̂′ for
k ≥ 1. In this case, αi

i(k) = ᾱi, φ1
i (k + 1) = α̂i for all k ≥ 0

and then (11) is not true. According to Theorem 4.2, the
learning strategy (43) can make (xi(k), yi(k)) converge to the
(unique) saddle point of the function

∑n1

i=1(α̂i/ᾱi)fi(x, y)
on X × Y , which is not necessarily the saddle point of∑n1

i=1 fi(x, y) on X × Y .

V. PROOFS

In this section, we first introduce some useful lemmas and
then present the proofs of the theorems in last section.

A. Supporting Lemmas

First of all, we introduce two lemmas. The first lemma is the
deterministic version of Lemma 11 on page 50 in [6], while the
second one is Lemma 7 in [15].

Lemma 5.1: Let {ak}, {bk}, and {ck} be non-negative
sequences with

∑∞
k=0 bk < ∞. If ak+1 ≤ ak + bk − ck holds

for any k, then limk→∞ ak is a finite number.
Lemma 5.2: Let 0 < λ < 1 and {ak} be a positive sequence.

If limk→∞ ak = 0, then limk→∞
∑k

r=0 λ
k−rar = 0. Moreover,

if
∑∞

k=0 ak < ∞, then
∑∞

k=0

∑k
r=0 λ

k−rar < ∞.
Next, we show some useful lemmas.
Lemma 5.3: For any μ ∈ S+

n , there is a stochastic matrixB=
(bij) ∈ R

n×n such that GB is strongly connected and μ′B = μ′.
Proof: Take μ=(μ1, . . . , μn)

′ ∈ S+
n . Without loss of

generality, we assume μ1=min1≤i≤n μi (otherwise we can
rearrange the index of agents). Let B be a stochastic matrix
such that the graph GB associated with B is a directed cycle:
1enn · · · 2e11 with er=(r+1, r), 1≤r≤n−1 and en=(1, n).
Clearly, GB is strongly connected. Then all nonzero entries
of B are {bii, bi(i+1), 1 ≤ i ≤ n− 1, bnn, bn1} and μ′B = μ′

can be rewritten as b11μ1 + (1 − bnn)μn = μ1, (1− brr)μr +
b(r+1)(r+1)μr+1 = μr+1, 1 ≤ r ≤ n− 1. Equivalently⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1− b22)μ2 = (1− b11)μ1

(1− b33)μ3 = (1− b11)μ1

...

(1− bnn)μn = (1− b11)μ1

(12)

Let b11 = b∗11 with 0 < b∗11 < 1. Clearly, there is a solution to
(12): b11=b∗11, 0 < brr=1−(1− b∗11)μ1/μr < 1, 2 ≤ r ≤ n.
Then the conclusion follows. �

The following lemma is about stochastic matrices, which can
be found from Lemma 3 in [7].

Lemma 5.4: Let B=(bij) ∈ R
n×n be a stochastic matrix and

�(μ) = max1≤i,j≤n |μi − μj |, μ = (μ1, . . . , μn)
′ ∈ R

n. Then
�(Bμ)≤μ(B)�(μ), where μ(B)=1−minj1,j2

∑n
i=1min{bj1i,

bj2i}, is called “the ergodicity coefficient” of B.
We next give a lemma about the transition matrix sequence

Φ�(k, s) = A�(k)A�(k − 1) · · ·A�(s), k ≥ s, � = 1, 2, where
(i), (ii), and (iv) are taken from Lemma 4 in [14], while (iii)
can be obtained from Lemma 2 in [14].

Lemma 5.5: Suppose A2 (ii) and A3 (i), (ii) hold. Then for
� = 1, 2, we have

(i) The limit limk→∞ Φ�(k, s) exists for each s;
(ii) There is a positive stochastic vector φ�(s) = (φ�

1(s), . . . ,

φ�
n�
(s))′ such that limk→∞ Φ�(k, s) = 1(φ�(s))

′
;

(iii) For every i = 1, . . . , n� and s, φ�
i(s) ≥ η(n�−1)T� ;

(iv) For every i, the entries Φ�(k, s)ij , j = 1, . . . , n�

converge to the same limit φ�
j(s) at a geometric rate,

i.e., for every i = 1, . . . , n� and all s ≥ 0

∣∣Φ�(k, s)ij − φ�
j(s)

∣∣ ≤ C�ρ
k−s
�

for all k≥s and j=1, . . . , n�, where C�=2(1+η−M�)/

(1−ηM�), ρ� = (1− ηM�)
1/M� , and M� = (n� − 1)T�.

The following lemma shows a relation between the left
eigenvectors of stochastic matrices and the Perron vector of the
limit of their product matrix.

Lemma 5.6: Let {B(k)} be a sequence of stochastic ma-
trices. Suppose B(k), k ≥ 0 have a common left eigenvector
μ corresponding to eigenvalue one and the associated graph
sequence {GB(k)} is UJSC. Then, for each s

lim
k→∞

B(k) · · ·B(s) =
1μ′

μ′1
.

Proof: Since μ is the common left eigenvector of B(r),
r ≥ s associated with eigenvalue one, μ′ limk→∞ B(k) · · ·
B(s)=limk→∞μ′B(k) · · ·B(s)=μ′. In addition, by Lemma 5.5,
for each s, the limit limk→∞ B(k) · · ·B(s) =: 1φ′(s) ex-
ists. Therefore, μ′ = μ′(1φ′(s)) = (μ′1)φ′(s), which implies
(μ′1)φ(s) = μ. The conclusion follows. �

Basically, the two dynamics of algorithm (4) are in the same
form. Let us check the first one

xi(k + 1) = PX (x̂i(k)− αi,kq1i(k)) ,

q1i(k) ∈ ∂xfi (x̂i(k), x̆i(k)) , i ∈ V1. (13)

By treating the term containing yj (j ∈ V2) as “disturbance,”
we can transform (13) to a simplified model in the following
form with disturbance εi:

xi(k + 1) =
∑

j∈N 1
i (k)

aij(k)xj(k) + εi(k), i ∈ V1 (14)
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where εi(k) = PX(x̂i(k) + wi(k))− x̂i(k). It follows from
xj(k) ∈ X , the convexity of X and A3 (ii) that x̂i(k) =∑

j∈N 1
i (k)

aij(k)xj(k) ∈ X . Then from (1), |εi(k)| ≤ |wi(k)|.
The next lemma is about a limit for the two subnetworks.

Denote

ᾱk = max
1≤i≤n1

αi,k, β̄k = max
1≤i≤n2

βi,k.

Lemma 5.7: Consider algorithm (4) with A3 (ii) and A4. If
limk→∞ ᾱk

∑k−1
s=0 ᾱs=limk→∞ β̄k

∑k−1
s=0 β̄s=0, then for any

x,y, limk→∞ᾱkmax1≤i≤n1
|xi(k)−x|=limk→∞ β̄kmax1≤i≤n2

|yi(k)− y| = 0.
Proof: We will only show limk→∞ ᾱk max1≤i≤n1

|xi(k)−
x| = 0 since the other one about β̄k can be proved simi-
larly. At first, it follows from limk→∞ ᾱk

∑k−1
s=0 ᾱs = 0 that

limk→∞ ᾱk = 0. From A4 we have |εi(k)| ≤ ᾱkL. Then from
(14) and A3 (ii) we obtain

max
1≤i≤n1

|xi(k + 1)− x| ≤ max
1≤i≤n1

|xi(k)− x|+ ᾱkL, ∀ k.

Therefore, max1≤i≤n1
|xi(k)− x| ≤ max1≤i≤n1

|xi(0)−x|+
L
∑k−1

s=0 ᾱs and then, for each k

ᾱk max
1≤i≤n1

|xi(k)− x| ≤ ᾱk max
1≤i≤n1

|xi(0)− x|+ ᾱk

k−1∑
s=0

ᾱsL.

Taking the limit over both sides of the preceding inequality
yields the conclusion. �

We assume without loss of generality that m1 = 1 in the se-
quel of this subsection for notational simplicity. Denote x(k) =
(x1(k), . . . , xn1

(k))′, ε(k) = (ε1(k), . . . , εn1
(k))′. Then sys-

tem (14) can be written in a compact form

x(k + 1) = A1(k)x(k) + ε(k), k ≥ 0.

Recall transition matrix

Φ�(k, s) = A�(k)A�(k − 1) · · ·A�(s), k ≥ s, � = 1, 2.

Therefore, for each k

x(k+1)=Φ1(k, s)x(s)+

k−1∑
r=s

Φ1(k, r+1)ε(r)+ε(k). (15)

At the end of this section, we present three lemmas for (4)
(or (14) and the other one for y). The first lemma gives an esti-
mation for h1(k) = max1≤i,j≤n1

|xi(k)− xj(k)| and h2(k) =
max1≤i,j≤n2

|yi(k)− yj(k)| over a bounded interval.
Lemma 5.8: Suppose A2 (ii), A3 and A4 hold. Then for

� = 1, 2 and any t ≥ 1, 0 ≤ q ≤ T � − 1

h�(tT
� + q) ≤ (1 − ηT

�

)h�

(
(t− 1)T � + q

)
+ 2L

tT �+q−1∑
r=(t−1)T �+q

λ�
r (16)

where λ1
r = ᾱr, λ2

r = β̄r, T � = (n�(n� − 2) + 1)T� for a con-
stant T� given in A2 and L as the upper bound on the subgradi-
ents of objective functions in A4.

Proof: Here we only show the case of � = 1 since the
other one can be proven in the same way. Consider n1(n1 −
2) + 1 time intervals [0, T1 − 1], [T1, 2T1 − 1], . . . , [n1(n1 −
2)T1, (n1(n1 − 2) + 1)T1 − 1]. By the definition of UJSC
graph, G1([tT1, (t+ 1)T1 − 1]) contains a root node for 0 ≤
t ≤ n1(n1 − 2). Clearly, the set of the n1(n1 − 2) + 1 root
nodes contains at least one node, say i0, at least n1 − 1 times.
Assume without loss of generality that i0 is a root node of
G1([tT1, (t+ 1)T1 − 1]), t = t0, . . . , tn1−2.

Take j0 
= i0 from V1. It is not hard to show that there exist
a node set {j1, . . . , jq} and time set {k0, . . . , kq}, q ≤ n1 − 2
such that (jr+1, jr) ∈ E1(kq−r), 0 ≤ r ≤ q − 1 and (i0, jq) ∈
E1(k0), where k0 < · · · < kq−1 < kq and all kr belong to dif-
ferent intervals [trT1, (tr + 1)T1 − 1], 0 ≤ r ≤ n1 − 2.

Noticing that the diagonal elements of all adjacency matrices
are positive, and moreover, for matrices D1, D2 ∈ R

n1×n1 with
nonnegative entries

(D1)r0r1 > 0, (D2)r1r2 > 0 =⇒ (D1D2)r0r2 > 0

so we have Φ1(T 1 − 1, 0)j0i0 > 0. Because j0 is taken from V1

freely, Φ1(T 1−1, 0)ji0 > 0 for j∈V1. As a result, Φ1(T 1 −
1, 0)ji0 ≥ ηT

1

for j ∈ V1 with A3 (i) and so μ(Φ1(T 1 −
1, 0)) ≤ 1− ηT

1

by the definition of ergodicity coefficient
given in Lemma 5.4. According to (15), the inequality �(μ+
ν) ≤ �(μ) + 2maxi νi, Lemma 5.4 and A4

h1(T
1) ≤ h1

(
Φ1(T 1 − 1, 0)x(0)

)
+ 2L

T 1−1∑
r=0

ᾱr

≤ μ
(
Φ1(T 1 − 1, 0)

)
h1(0) + 2L

T 1−1∑
r=0

ᾱr

≤ (1− ηT
1

)h1(0) + 2L
T 1−1∑
r=0

ᾱr

which shows (16) for � = 1, t = 1, q = 0. Analogously, we can
show (16) for � = 1, 2 and t ≥ 1, 0 ≤ q ≤ T � − 1. �

Lemma 5.9: Suppose A2 (ii), A3 and A4 hold.

(i) If
∑∞

k=0 ᾱ
2
k < ∞ and

∑∞
k=0 β̄

2
k < ∞, then

∑∞
k=0 ᾱk

h1(k) < ∞,
∑∞

k=0 β̄kh2(k) < ∞;
(ii) If for each i, limk→∞ αi,k = 0 and limk→∞ βi,k = 0,

then the subnetworks Ξ1 and Ξ2 achieve a consensus,
respectively, i.e., limk→∞ h1(k) = 0, limk→∞ h2(k) = 0.

Note that (i) is an extension of Lemma 8 (b) in [15] deal-
ing with weight-balanced graph sequence to general graph
sequence (possibly weight-unbalanced), while (ii) is about the
consensus within the subnetworks, and will be frequently used
in the sequel. This lemma can be shown by Lemma 5.8 and
similar arguments to the proof of Lemma 8 in [15], and hence,
the proof is omitted here.

The following provides the error estimation between agents’
states and their average.

Lemma 5.10: Suppose A2–A4 hold, and {ᾱ(k)}, {β̄(k)} are
non-increasing with

∑∞
k=0 ᾱ

2
k < ∞,

∑∞
k=0 β̄

2
k < ∞. Then for

each i ∈ V1 and j ∈ V2,
∑∞

k=0 β̄k|x̆i(k)− ȳ(k)| < ∞,
∑∞

k=0

ᾱk|y̆j(k)−x̄(k)|<∞, where x̄(k)=(1/n1)
∑n1

i=1 xi(k) ∈ X ,
ȳ(k) = (1/n2)

∑n2

i=1 yi(k) ∈ Y .
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Proof: We only need to show the first conclusion since
the second one can be obtained in the same way. At first, from
A3 (iii) and |yj(k̆i)− ȳ(k̆i)| ≤ h2(k̆i) we have

∞∑
k=0

β̄k|x̆i(k)− ȳ(k̆i)| ≤
∞∑

k=0

β̄kh2(k̆i). (17)

Let {sir, r ≥ 0} be the set of all moments when N 2
i (sir) 
= ∅.

Recalling the definition of k̆i in (5), k̆i = sir when sir ≤ k <
si(r+1). Since {β̄k} is non-increasing and

∑∞
k=0 β̄kh2(k) < ∞

(by Lemma 5.9), we have

∞∑
k=0

β̄kh2(k̆i) ≤
∞∑

k=0

β̄k̆i
h2(k̆i)

=
∞∑
r=0

β̄sir |si(r+1) − sir|h2(sir)

≤T��

∞∑
r=0

β̄sirh2(sir) ≤ T��

∞∑
k=0

β̄kh2(k) < ∞

where T�� is the constant in A2 (i). Thus, the preceding inequal-
ity and (17) imply

∑∞
k=0 β̄k|x̆i(k)− ȳ(k̆i)| < ∞.

Since yi(k) ∈ Y for all i and Y is convex, ȳ(k) ∈ Y . Then,
from the non-expansiveness property of the convex projection
operator

|ȳ(k + 1)− ȳ(k)|

=

∣∣∣∣
∑n2

i=1 (PY (ŷi(k) + βi,kq2i(k))− PY (ȳ(k)))

n2

∣∣∣∣
≤ 1

n2

n2∑
i=1

|ŷi(k) + βi,kq2i(k)− ȳ(k)|

≤ h2(k) + β̄kL. (18)

Based on (18), the non-increasingness of {β̄k} and k̆i ≥ k −
T�� + 1, we also have

∞∑
k=0

β̄k|ȳ(k̆i)− ȳ(k)|

≤
∞∑

k=0

β̄k

k−1∑
r=k̆i

|ȳ(r) − ȳ(r + 1)|

≤
∞∑

k=0

β̄k

k−1∑
r=k̆i

(
h2(r) + β̄rL

)

≤
∞∑

k=0

β̄k

k−1∑
r=k−T��+1

(
h2(r) + β̄rL

)

≤
∞∑

k=0

β̄k

k−1∑
r=k−T��+1

h2(r) +
(T�� − 1)L

2

∞∑
k=0

β̄2
k

+
L

2

∞∑
k=0

k−1∑
r=k−T��+1

β̄2
r

≤ (T�� − 1)

∞∑
k=0

β̄kh2(k) +
(T�� − 1)L

2

∞∑
k=0

β̄2
k

+
(T�� − 1)L

2

∞∑
k=0

β̄2
k < ∞

where h2(r)= β̄r=0, r < 0. Since |x̆i(k)− ȳ(k)| ≤ |x̆i(k)−
ȳ(k̆i)|+ |ȳ(k̆i)− ȳ(k)|, the first conclusion follows. �

Remark 5.1: From the proof we find that Lemma 5.10 still
holds when the non-increasing condition of {ᾱk} and {β̄k} is
replaced by that there are an integer T ∗ > 0 and c∗ > 0 such
that ᾱk+T∗ ≤ c∗ᾱk and β̄k+T∗ ≤ c∗β̄k for all k.

B. Proof of Theorem 4.1

We complete the proof by the following two steps.
Step 1: We first show that the states of (4) are bounded. Take

(x, y) ∈ X × Y . By (4) and (1)

|xi(k + 1)− x|2 ≤ |x̂i(k)− γkq1i(k)− x|2 = |x̂i(k)− x|2

+ 2γk 〈x̂i(k)− x,−q1i(k)〉+ γ2
k |q1i(k)|

2 . (19)

It is easy to see that | · |2 is a convex function from the con-
vexity of | · | and the convexity of scalar functionh(c)=c2. From
this and A3 (ii), |x̂i(k)− x|2 ≤

∑
j∈N 1

i (k)
aij(k)|xj(k)− x|2.

Moreover, since q1i(k) is a subgradient of fi(·, x̆i(k)) at
x̂i(k), 〈x− x̂i(k), q1i(k)〉 ≤ fi(x, x̆i(k))− fi(x̂i(k), x̆i(k)).
Thus, based on (19) and A4,

|xi(k + 1)− x|2 ≤
∑

j∈N 1
i (k)

aij(k) |xj(k)− x|2 + L2γ2
k

+ 2γk (fi (x, x̆i(k))− fi (x̂i(k), x̆i(k))) . (20)

Again employing A4, |fi(x, y1)−fi(x,y2)|≤L|y1−y2|, |fi(x1,
y)− fi(x2, y)| ≤ L|x1 − x2|, ∀x, x1, x2 ∈ X, y, y1, y2 ∈ Y .
This imply

|fi (x, x̆i(k))− fi (x, ȳ(k))| ≤ L |x̆i(k)− ȳ(k)| (21)
|fi(x̂i(k), x̆i(k))− fi (x̄(k), ȳ(k))|

≤ L (|x̂i(k)− x̄(k)|+ |x̆i(k)− ȳ(k)|)
≤ L (h1(k) + |x̆i(k)− ȳ(k)|) . (22)

Hence, by (20)–(22)

|xi(k + 1)− x|2 ≤
∑

j∈N 1
i (k)

aij(k) |xj(k)− x|2

+ 2γk (fi (x, ȳ(k))−fi (x̄(k), ȳ(k))) + L2γ2
k + 2Lγkei1(k)

(23)

where ei1(k) = h1(k) + 2|x̆i(k)− ȳ(k)|.
It follows from the weight balance of G1(k) and A3 (ii) that∑
i∈V1

aij(k) = 1 for all j ∈ V1. Then, from (23), we have

n1∑
i=1

|xi(k + 1)− x|2 ≤
n1∑
i=1

|xi(k)− x|2 + 2γk (U (x, ȳ(k))

−U (x̄(k), ȳ(k))) + n1L
2γ2

k + 2Lγk

n1∑
i=1

ei1(k). (24)

Analogously

n2∑
i=1

|yi(k + 1)− y|2 ≤
n2∑
i=1

|yi(k)− y|2 + 2γk (U (x̄(k), ȳ(k))

−U (x̄(k), y)) + n2L
2γ2

k + 2Lγk

n2∑
i=1

ei2(k) (25)
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where ei2(k)=h2(k)+2|y̆i(k)−x̄(k)|. Let (x, y) =(x∗, y∗)∈
X∗ × Y ∗, which is nonempty by A1. Denote ξ(k, x∗, y∗) =∑n1

i=1 |xi(k)− x∗|2 +
∑n2

i=1 |yi(k)− y∗|2. Then adding (24)
and (25) together leads to

ξ(k + 1, x∗, y∗) ≤ ξ(k, x∗, y∗)− 2γkΥ(k)

+ (n1 + n2)L
2γ2

k + 2Lγk

2∑
�=1

n�∑
i=1

ei�(k) (26)

where

Υ(k) =U (x̄(k), y∗)− U (x∗, ȳ(k))
=U(x∗, y∗)− U (x∗, ȳ(k)) + U (x̄(k), y∗)− U(x∗, y∗)
≥ 0 (27)

following from U(x∗, y∗)− U(x∗, ȳ(k)) ≥ 0, U(x̄(k), y∗)−
U(x∗, y∗) ≥ 0 for k ≥ 0 since (x∗, y∗) is a saddle point of U on
X × Y . Moreover, by

∑∞
k=0 γ

2
k < ∞ and Lemmas 5.9, 5.10

∞∑
k=0

γk

2∑
�=1

n�∑
i=1

ei�(k) < ∞. (28)

Therefore, by virtue of
∑∞

k=0 γ
2
k < ∞ again, (28), (26) and

Lemma 5.1, limk→∞ ξ(k, x∗, y∗) is a finite number, denoted as
ξ(x∗, y∗). Thus, the conclusion follows. �

Step 2: We next show that the limit points of all agents satisfy
certain objective function equations, and then prove the Nash
equilibrium convergence under either of the two conditions:
(i) and (ii).

As shows in Step 1, (xi(k), yi(k)), k ≥ 0 are bounded.
Moreover, it also follows from (26) that

2
k∑

r=0

γrΥ(r) ≤ ξ(0, x∗, y∗) + (n1 + n2)L
2

k∑
r=0

γ2
r

+ 2L
k∑

r=0

γr

2∑
�=1

n�∑
i=1

ei�(r)

and then by
∑∞

k=0 γ
2
k < ∞ and (28) we have

0 ≤
∞∑

k=0

γkΥ(k) < ∞. (29)

The stepsize condition
∑∞

k=0 γk = ∞ and (29) imply
lim infk→∞ Υ(k) = 0. As a result, there is a subsequence
{kr} such that limr→∞ U(x∗, ȳ(kr)) = U(x∗, y∗) and limr→∞
U(x̄(kr), y

∗) = U(x∗, y∗). Let (x̃, ỹ) be any limit pair of
{(x̄(kr), ȳ(kr))} (noting that the finite limit pairs exist by the
boundedness of system states). Because U(x∗, ·), U(·, y∗) are
continuous and the Nash equilibrium point (x∗, y∗) is taken
from X∗ × Y ∗ freely, the limit pair (x̃, ỹ) must satisfy that for
any (x∗, y∗) ∈ X∗ × Y ∗

U(x∗, ỹ) = U(x̃, y∗) = U(x∗, y∗). (30)

We complete the proof by discussing the proposed two
sufficient conditions: (i) and (ii).

(i). For the strictly convex-concave function U , we claim
that X∗ × Y ∗ is a single-point set. If it contains two
different points (x∗

1, y
∗
1) and (x∗

2, y
∗
2) (without loss of

generality, assume x∗
1 
= x∗

2), it also contains point

(x∗
2, y

∗
1) by Lemma 2.2. Thus, U(x∗

1, y
∗
1) ≤ U(x, y∗1) and

U(x∗
2, y

∗
1) ≤ U(x, y∗1) for any x ∈ X , which yields a

contradiction since U(·, y∗1) is strictly convex and then the
minimizer of U(·, y∗1) is unique. Thus, X∗ × Y ∗ contains
only one single-point (denoted as (x∗, y∗)).

Then x̃ = x∗, ỹ = y∗ by (30). Consequently, each limit
pair of {(x̄(kr), ȳ(kr))} is (x∗, y∗), i.e., limr→∞ x̄(kr)=x∗

and limr→∞ ȳ(kr)=y∗. By Lemma 5.9, limr→∞ xi(kr)=
x∗, i ∈ V1 and limr→∞ yi(kr) = y∗, i ∈ V2. Moreover,
limk→∞ ξ(k, x∗, y∗) = ξ(x∗, y∗) as given in Step 1, so
ξ(x∗, y∗) = limr→∞ ξ(kr, x

∗, y∗) = 0, which in return
implies limk→∞ xi(k)=x∗, i∈V1 and limk→∞ yi(k) =
y∗, i∈V2.

(ii). In Step 1, we proved limk→∞ ξ(k, x∗, y∗) = ξ(x∗, y∗) for
any (x∗, y∗) ∈ X∗ × Y ∗. We check the existence of the
two limits limk→∞ x̄(k) and limk→∞ ȳ(k). Let (x+, y+)
be an interior point of X∗ × Y ∗ for which B(x+, ε) ⊆
X∗ and B(y+, ε) ⊆ Y ∗ for some ε > 0. Clearly, any two
limit pairs (x̀1, ỳ1), (x̀2, ỳ2)of{(x̄(k), ȳ(k))}must satisfy
n1|x̀1 − x|2 + n2|ỳ1 − y|2=n1|x̀2 − x|2 + n2|ỳ2 −y|2,
∀x∈B(x+, ε), y ∈ B(y+, ε). Take y = y+. Then for any
x ∈ B(x+, ε)

n1|x̀1−x|2=n1|x̀2−x|2+n2

(
|ỳ2−y+|2−|ỳ1−y+|2

)
.

(31)

Taking the gradient with respect to x on both sides of
(31) yields 2n1(x− x̀1) = 2n1(x− x̀2), namely, x̀1 =
x̀2. Similarly, we can show ỳ1 = ỳ2. Thus, the limits,
limk→∞ x̄(k) = x̀ ∈ X and limk→∞ ȳ(k) = ỳ ∈ Y , ex-
ist. Based on Lemma 5.9 (ii), limk→∞ xi(k) = x̀, i ∈ V1

and limk→∞ yi(k) = ỳ, i ∈ V2.
We claim that (x̀, ỳ)∈X∗×Y ∗. First it follows from

(24) that, for any x∈X ,
∑∞

k=0 γk
∑n1

i=1(U(x̄(k), ȳ(k))−
U(x, ȳ(k))) < ∞. Moreover, recalling

∑∞
k=0 γk = ∞,

we obtain

lim inf
k→∞

(U (x̄(k), ȳ(k))− U (x, ȳ(k))) ≤ 0. (32)

Then U(x̀, ỳ)− U(x, ỳ) ≤ 0 for all x ∈ X due to
limk→∞ x̄(k) = x̀, limk→∞ ȳ(k) = ỳ, the continuity of
U , and (32). Similarly, we can showU(x̀, y)− U(x̀, ỳ) ≤
0 for all y ∈ Y . Thus, (x̀, ỳ) is a saddle point of U on
X × Y , which implies (x̀, ỳ) ∈ X∗ × Y ∗.

Thus, the proof is completed. �

C. Proof of Theorem 4.3

(Necessity) Let (x∗, y∗) be the unique saddle point of
strictly convex-concave function U on X × Y . Take μ =
(μ1, . . . , μn1

)′ ∈ S+
n1

. By Lemma 5.3 again, there is a sto-
chastic matrix A1 such that μ′A1 = μ′ and GA1

is strongly
connected. Let G1 = {G1(k)} be the graph sequence of al-
gorithm (4) with G1(k) = GA1

for k ≥ 0 and A1 being the
adjacency matrix of G1(k). Clearly, G1 is UJSC. On one hand,
by Proposition 4.2, all agents converge to the unique saddle
point of

∑n1

i=1 μifi on X × Y . On the other hand, the necessity
condition states that limk→∞ xi(k) = x∗ and limk→∞ yi(k) =
y∗ for i = 1, . . . , n1. Therefore, (x∗, y∗) is a saddle point of∑n1

i=1 μifi on X × Y .
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Because μ is taken from S+
n1

freely, we have that, for any
μ ∈ S+

n1
, x ∈ X , y ∈ Y

n1∑
i=1

μifi(x
∗, y) ≤

n1∑
i=1

μifi(x
∗, y∗) ≤

n1∑
i=1

μifi(x, y
∗). (33)

We next show by contradiction that, given any i = 1, . . . , n1,
fi(x

∗, y∗) ≤ fi(x, y
∗) for all x ∈ X . Hence suppose there are

i0 and x̂ ∈ X such that fi0(x
∗, y∗) > fi0(x̂, y

∗). Let μi, i 
= i0
be sufficiently small such that |

∑
i
=i0

μifi(x
∗, y∗)| < (μi0/2)

(fi0(x
∗, y∗)− fi0(x̂, y

∗)) and |
∑

i
=i0
μifi(x̂, y

∗)| < (μi0/2)

(fi0(x
∗, y∗)− fi0(x̂, y

∗)). Consequently,
∑n1

i=1 μifi(x
∗, y∗)>

(μi0/2)(fi0(x
∗, y∗)+fi0(x̂, y

∗)) >
∑n1

i=1 μifi(x̂, y
∗), which

contradicts the second inequality of (33). Thus, fi(x∗, y∗) ≤
fi(x, y

∗) for all x∈X . Analogously, we can show from the
first inequality of (33) that for each i, fi(x∗, y) ≤ fi(x

∗, y∗)
for all y ∈ Y . Thus, we obtain that fi(x

∗, y) ≤ fi(x
∗, y∗) ≤

fi(x, y
∗), ∀x ∈ X, y ∈ Y , or equivalently, (x∗, y∗) is the

saddle point of fi on X × Y .
(Sufficiency) Let (x∗, y∗) be the unique saddle point of

fi, i = 1, . . . , n1 on X × Y . Similar to (23), we have

|yi(k + 1)− y∗|2 ≤
∑

j∈N 1
i (k)

aij(k) |yj(k)− y∗|2

+ 2γk (fi (x̄(k), ȳ(k))− fi (x̄(k), y
∗)) + L2γ2

k + 2Lγku2(k)
(34)

where u2(k) = 2h1(k) + h2(k). Merging (23) and (34) gives

ζ(k + 1)
≤ ζ(k) + 2γk max

1≤i≤n1

(fi (x
∗, ȳ(k))− fi (x̄(k), y

∗))

+ 2L2γ2
k + 2Lγk (u1(k) + u2(k))

= ζ(k)+2γk max
1≤i≤n1

(fi (x
∗, ȳ(k))− fi(x

∗, y∗)

+fi(x
∗, y∗)−fi (x̄(k), y

∗)) + 2L2γ2
k

+ 6Lγk (h1(k) + h2(k)) (35)

where ζ(k)=max1≤i≤n1
(|xi(k)−x∗|2+|yi(k)−y∗|2),u1(k)=

h1(k) + 2h2(k). Since fi(x
∗, ȳ(k)) − fi(x

∗, y∗) ≤ 0 and
fi(x

∗, y∗)− fi(x̄(k), y
∗) ≤ 0 for all i, k, the second term in

(35) is non-positive. By Lemma 5.1

lim
k→∞

ζ(k) = ζ∗ ≥ 0 (36)

for a finite number ζ∗, which implies that (xi(k), yi(k)), k ≥ 0
are bounded.

Denote ℘(k)=min1≤i≤n1
(fi(x

∗, y∗)−fi(x
∗, ȳ(k))+fi(x̄(k),

y∗)− fi(x
∗, y∗)). From (35), we also have

0 ≤ 2

k∑
l=0

γl℘(l) ≤ ζ(0)− ζ(k + 1) + 2L2
k∑

l=0

γ2
l

+ 6L
k∑

l=0

γl (h1(l) + h2(l)) , k ≥ 0

and hence 0≤
∑∞

k=0γk℘(k)<∞. The stepsize condition
∑∞

k=0

γk=∞ implies that there is a subsequence {kr} such that

lim
r→∞

℘(kr) = 0.

We assume without loss of generality that limr→∞ x̄(kr) = x́,
limr→∞ ȳ(kr) = ý for some x́, ý (otherwise we can find a
subsequence of {kr} recalling the boundedness of system
states). Due to the finite number of agents and the continuity
of fis, there exists i0 such that fi0(x

∗, y∗) = fi0(x
∗, ý) and

fi0(x́, y
∗) = fi0(x

∗, y∗). It follows from the strict convexity-
concavity of fi0 that x́ = x∗, ý = y∗.

Since the consensus is achieved within two subnetworks,
limr→∞ xi(kr) = x∗ and limr→∞ yi(kr) = y∗, which leads to
ζ∗ = 0 based on (36). Thus, the conclusion follows. �

D. Proof of Theorem 4.4

We design the stepsizes αi,k and βi,k as that given be-
fore Remark 4.4. First by Lemma 5.5 (i) and (ii), the limit
limr→∞ Φ�(r, k) = 1(φ�(k))

′
exists for each k. Let (x∗, y∗) be

the unique Nash equilibrium. From (23) we have

|xi(k + 1)− x∗|2 ≤
∑

j∈N 1
i (k)

aij(k) |xj(k)− x∗|2

+ 2αi,k (fi (x
∗, ȳ(k))−fi (x̄(k), ȳ(k)))

+ L2α2
i,k + 2Lαi,kei1(k). (37)

Analogously

|yi(k + 1)− y∗|2 ≤
∑

j∈N 2
i (k)

aij(k) |yj(k)− y∗|2

+ 2βi,k (gi (x̄(k), ȳ(k))− gi (x̄(k), y
∗))

+ L2β2
i,k + 2Lβi,kei2(k). (38)

Denote

Λ1
k =diag

{
1

α1
k

, . . . ,
1

αn1

k

}
, Λ2

k=diag

{
1

β1
k

, . . . ,
1

βn2

k

}
;

ψ�(k) =
(
ψ�
1(k), . . . , ψ

�
n�
(k)

)′
, � = 1, 2

ψ1
i (k) = |xi(k)− x∗|2 , ψ2

i (k) = |yi(k)− y∗|2 ;
ϑ�(k) =

(
ϑ�
1(k), . . . , ϑ

�
n�
(k)

)′
ϑ1
i (k) = fi (x̄(k), ȳ(k))− fi (x

∗, ȳ(k))

ϑ2
i (k) = gi (x̄(k), y

∗)− gi (x̄(k), ȳ(k)) ;

e�(k) = (e1�(k), . . . , en��(k))
′ .

Then it follows from (37) and (38) that

ψ�(k+1)≤A�(k)ψ
�(k)−2γkΛ

�
kϑ

�(k)+δ2∗L
2γ2

k1+2δ∗Lγke�(k)

where δ∗ = supi,k{1/αi
k, 1/β

i
k}. By Lemma 5.5 (iii), αi

k ≥
η(n1−1)T1 , βi

k ≥ η(n2−1)T2 , ∀i, k and then δ∗ is a finite number.
Therefore

ψ�(k + 1) ≤Φ�(k, r)ψ�(r) − 2
k−1∑
s=r

γsΦ
�(k, s+ 1)Λ�

sϑ
�(s)

+ δ2∗L
2

k∑
s=r

γ2
s1+2δ∗L

k−1∑
s=r

γsΦ
�(k, s+ 1)e�(s)

− 2γkΛ
�
kϑ

�(k) + 2δ∗Lγke�(k). (39)



LOU et al.: NASH EQUILIBRIUM COMPUTATION IN SUBNETWORK ZERO-SUM GAMES WITH SWITCHING COMMUNICATIONS 2931

Then (39) can be written as

ψ�(k + 1)

≤ Φ�(k, r)ψ�(r) − 2

k−1∑
s=r

γs1
(
φ�(s+ 1)

)′
Λ�
sϑ

�(s)

+ δ2∗L
2

k∑
s=r

γ2
s1+ 2δ∗L

k−1∑
s=r

γs1
(
φ�(s+ 1)

)′
e�(s)

+ 2

k−1∑
s=r

γs

(
1
(
φ�(s+ 1)

)′ − Φ�(k, s+ 1)
)
Λ�
sϑ

�(s)

− 2γkΛ
�
kϑ

�(k) + 2δ∗Lγke�(k)

+ 2δ∗L
k−1∑
s=r

γs

(
Φ�(k, s+1)−1

(
φ�(s+1)

)′)
e�(s). (40)

The subsequent proof is given as follows. First, we show that
the designed stepsizes (7) can eliminate the imbalance caused
by the weight-unbalanced graphs [see the second term in (40)],
and then we prove that all the terms from the third one to
the last one in (40) is summable based on the geometric rate
convergence of transition matrices. Finally, we show the desired
convergence based on inequality (40), as (26) for the weight-
balance case in Theorem 4.1.

Clearly, 1(φ�(s+ 1))
′
Λ�
s = 11′, � = 1, 2. From Lemma 5.5

(iv) we also have that |Φ�(k, s)ij − φ�
j(s)| ≤ Cρk−s for � = 1,

2, every i = 1, . . . , n�, s ≥ 0, k ≥ s, and j = 1, . . . , n�, where
C = max{C1, C2}, 0 < ρ = max{ρ1, ρ2} < 1. Moreover, by
A4, |ϑ1

i (s)| = |fi(x̄(s), ȳ(s))− fi(x
∗, ȳ(s))| ≤ L|x̄(s)− x∗|

for i ∈ V1, and |ϑ2
i (s)| = |fi(x̄(s), y∗)− fi(x̄(s), ȳ(s))| ≤

L|ȳ(s)− y∗| for i ∈ V2. Based on these observations, multiply-
ing (1/n�)1

′ on the both sides of (40) and taking the sum over
� = 1, 2 yield

2∑
�=1

1

n�
1′ψ�(k+1)≤

2∑
�=1

1

n�
1′Φ�(k, r)ψ�(r)

−2
k−1∑
s=r

γs

2∑
�=1

n�∑
i=1

ϑ�
i(s)+2δ2∗L

2
k∑

s=r

γ2
s

+ 2δ∗L
k−1∑
s=r

γs

2∑
�=1

n�∑
i=1

ei�(s)

+ 2CLδ∗(n1+n2)

k−1∑
s=r

ρk−s−1γsς(s)

+2Lδ∗γkς(k)+2δ∗Lγk

2∑
�=1

1

n�

n�∑
i=1

ei�(k)

+ 2CLδ∗

k−1∑
s=r

γsρ
k−s−1

2∑
�=1

n�∑
i=1

ei�(s)

(41)

=:

2∑
�=1

1

n�
1′Φ�(k, r)ψ�(r)

−2

k−1∑
s=r

γs

2∑
�=1

n�∑
i=1

ϑ�
i(s) + �(k, r) (42)

where ς(s)=max{|xi(s)−x∗|, i∈V1, |yj(s)− y∗|, j ∈ V2},
�(k, r) is the sum of all terms from the third one to the last one
in (41).

We next show limr→∞ supk≥r �(k, r) = 0. First by
Lemmas 5.9, 5.10, and Remark 5.1,

∑∞
s=r γs

∑2
�=1

∑n�

i=1

ei�(s) < ∞ and hence limk→∞ γk
∑2

�=1

∑n�

i=1 ei�(k) = 0. It
follows from 0 < ρ < 1 that for each k

k−1∑
s=r

γsρ
k−s−1

2∑
�=1

n�∑
i=1

ei�(s) ≤
∞∑
s=r

γs

2∑
�=1

n�∑
i=1

ei�(s) < ∞.

Moreover, by Lemma 5.7, limr→∞ γrς(r) = 0, which implies
limr→∞ supk≥r+1

∑k−1
s=r ρ

k−s−1γsς(s) = 0 along with
∑k−1

s=r

ρk−s−1γsς(s) ≤ (1/(1− ρ)) sups≥r γsς(s). From the preced-
ing zero limit results, we have limr→∞ supk≥r �(k, r) = 0.
Then from (42)

∑∞
s=r γs

∑2
�=1

∑n�

i=1 ϑ
�
i(s) < ∞. Clearly,

from (27)
∑2

�=1

∑n�

i=1 ϑ
�
i(s) = Υ(s) ≥ 0. By the similar pro-

cedures to the proof of Theorem 4.1, we can show that
there is a subsequence {kl} such that liml→∞ x̄(kl) = x∗,
liml→∞ ȳ(kl) = y∗.

Now let us show limk→∞
∑2

�=1(1/n�)1
′ψ�(k) = 0. First

it follows from limr→∞ supk≥r �(k, r) = 0 that, for any
ε > 0, there is a sufficiently large l0 such that when l ≥
l0, supk≥kl

�(k, kl) ≤ ε. Moreover, since the consensus is
achieved within the two subnetworks, l0 can be selected suffi-
ciently large such that |xi(kl0)− x∗| ≤ ε and |yi(kl0)− y∗| ≤
ε for each i. With (42), we have that, for each k ≥ kl
2∑

�=1

1

n�
1′ψ�(k + 1) ≤

2∑
�=1

1

n�
1′Φ�(k, kl)ψ

�(kl)

+ sup
k≥kl

�(k, kl) ≤ 2ε2 + ε

which implies limk→∞
∑2

�=1(1/n�)1
′ψ�(k)=0. Therefore,

limk→∞ xi(k) = x∗, i ∈ V1 and limk→∞ yi(k) = y∗, i ∈ V2.
Thus, the proof is completed. �

E. Proof of Theorem 4.5

(i). In this case we design a dynamics for auxiliary states αi=
(αi

1, . . . , α
i
n1
)
′ ∈R

n1 for i∈V1 and βi=(βi
1, . . . , β

i
n2
)′ ∈R

n2

for i ∈ V2 to estimate the respective desired stepsizes{
αi(k + 1) =

∑
j∈N 1

i (k)
aij(k)α

j(k), k ≥ 0

βi(k + 1) =
∑

j∈N 2
i (k)

aij(k)β
j(k), k ≥ 0

(43)

with the initial value αi
i(0) = 1, αi

j(0) = 0, ∀j 
= i; βi
i(0) = 1,

βi
j(0) = 0, ∀j 
= i.

Then for each i and k, let α̂i
k = αi

i(k), β̂
i
k = βi

i(k). Clearly,
(10) holds.

First by A3 (i) and algorithm (43), αi
i(k) ≥ ηk > 0 and

βi
i(k) ≥ ηk > 0 for each k, which guarantees that the stepsize

selection rule (9) is well-defined. Let φ� = (φ�
1, . . . , φ

�
n�
)
′

be
the common left eigenvector of A�(r), r ≥ 0 associated with
eigenvalue one, where

∑n�

i=1 φ
�
i = 1. According to Lemma 5.6,

limr→∞ Φ�(r, k) = limr→∞ A�(r) · · ·A�(k) = 1(φ�)
′
for each

k. As a result, αi
k = φ1

i , i = 1, . . . , n1; βi
k = φ2

i , i = 1, . . . , n2

for all k.
Let θ(k) = ((α1(k))

′
, . . . , (αn1(k))′)

′
. From (43) we have

θ(k + 1) = (A1(k)⊗ In1
) θ(k)
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and then limk→∞ θ(k)=limk→∞(Φ1(k, 0)⊗In1
)θ(0)=(1(φ1)

′⊗
In1

)θ(0) = 1⊗ φ1. Therefore, limk→∞ αi
i(k) = φ1

i for i ∈ V1.
Similarly, limk→∞ βi

i(k) = φ2
i for i ∈ V2. Since αi

k = φ1
i and

βi
k = φ2

i for all k, (11) holds. Moreover, the above convergence
is achieved with a geometric rate by Lemma 5.5. Without loss
of generality, suppose |αi

i(k)− φ1
i | ≤ C̄ρ̄k and |βi

i(k)− φ2
i | ≤

C̄ρ̄k for some C̄ > 0, 0 < ρ̄ < 1, and all i, k.
The only difference between the models in Theorem 4.4 and

the current one is that the terms αi
k and βi

k (equal to φ1
i and φ2

i in
case (i), respectively) in stepsize selection rule (7) are replaced
with α̂i

k and β̂i
k (equal to αi

i(k) and βi
i(k), respectively) in

stepsize selection rule (9). We can find that all lemmas involved
in the proof of Theorem 4.4 still hold under the new stepsize
selection rule (9). Moreover, all the analysis is almost the same
as that in Theorem 4.4 except that the new stepsize selection
rule will yield an error term (denoted as ��(k, r)) on the right-
hand side of (39). In fact

��(k, r) = 2
k−1∑
s=r

γsΦ
�(k, s+ 1)��

sϑ
�(s) + 2γk�

�
kϑ

�(k)

where �1
s =diag{1/φ1

1−1/α1
1(s), . . . ,1/φ

1
n1
−1/αn1

n1
(s)},

�2
s = diag { 1/φ2

1 − 1/β1
1 (s) , . . . , 1/φ2

n2
− 1/βn2

n2
(s) }.

Moreover, since lims→∞αi
i(s)=φ1

i ,αi
i(s)≥φ1

i /2≥η(n1−1)T1/2∣∣∣∣ 1

αi
i(s)

− 1

φ1
i

∣∣∣∣=
∣∣∣∣αi

i(s)−φ1
i

αi
i(s)φ

1
i

∣∣∣∣≤ 2
∣∣αi

i(s)− φ1
i

∣∣(
η(n1−1)T1

)2 ≤ 2C̄ρ̄s

η2(n1−1)T1

for a sufficiently large s. Analogously, |(1/βi
i(s))− (1/φ2

i )| ≤
(2C̄ρ̄s/η2(n2−1)T2). Then for a sufficiently large r and any
k ≥ r + 1∣∣∣∣∣

2∑
�=1

1

n�
1′��(k, r)

∣∣∣∣∣
≤ 4C̄Lε1

k−1∑
s=r

γsρ̄
s max

i,j
{|xi(s)− x∗| , |yj(s)− y∗|}

≤ 4C̄Lε1ε2

k−1∑
s=r

ρ̄s ≤ 4C̄Lε1ε2ρ̄
r/(1− ρ̄) (44)

where ε1=max{1/η2(n1−1)T1 , 1/η2(n2−1)T2}, ε2=sups{γs
maxi,j{|xi(s)−x∗|, |yj(s)−y∗|}}<∞ due to lims→∞ γs
maxi,j{|xi(s)− x∗|, |yj(s)− y∗|} = 0 by Lemma 5.7. From
the proof of Theorem 4.4, we can find that the relation (44)
makes all the arguments hold and then a Nash equilibrium is
achieved for case (i).

(ii). Here we design a dynamics for the auxiliary states

α(ν)i = (α
(ν)i
1 , . . . , α

(ν)i
n1 )

′
, ν = 0, . . . , p1 − 1 for i ∈ V1 and

β(ν)i = (β
(ν)i
1 , . . . , β

(ν)i
n2 )′, ν = 0, . . . , p2 − 1 for i ∈ V2 to es-

timate the respective desired stepsizes:{
α(ν)i(s+ 1) =

∑
j∈N 1

i (s) aij(s)α
(ν)j(s)

β(ν)i(s+ 1) =
∑

j∈N 2
i (s)

aij(s)β
(ν)j(s),

s ≥ ν + 1

(45)
with the initial value α

(ν)i
i (ν + 1) = 1, α(ν)i

j (ν + 1) = 0, j 
=
i; β(ν)i

i (ν + 1) = 1, β(ν)i
j (ν + 1) = 0, j 
= i.

Then, for each r ≥ 0, let α̂i
rp1+ν = α

(ν)i
i (rp1 + ν) for i ∈

V1, ν = 0, . . . , p1 − 1; let β̂i
rp2+ν = β

(ν)i
i (rp2 + ν) for i ∈ V2,

ν = 0, . . . , p2 − 1.
Note that A2 implies that the union graphs

⋃p�−1
s=0 GAs

�
, �=1, 2

are strongly connected. Let φ�(0) be the Perron vector of
limr→∞ Φ�(rp�−1, 0), i.e., limr→∞ Φ�(rp� − 1, 0) = limr→∞

(Ap�−1
� · · ·A0

�)
r = 1(φ�(0))

′
. Then for ν = 1, . . . , p� − 1

lim
r→∞

Φ�(rp� + ν − 1, ν)

= lim
r→∞

(
Aν−1

� · · ·A0
�A

p�−1
� · · ·Aν+1

� Aν
�

)r

= lim
r→∞

(Ap�−1
� · · ·A0

� )
rAp�−1

� · · ·Aν+1
� Aν

�

= 1
(
φ�(0)

)′
Ap�−1

� · · ·Aν+1
� Aν

� = 1
(
φ�(ν)

)′
. (46)

Consequently, for each r ≥ 0, αi
rp1+ν = φ

1(ν+1)
i , ν = 0, 1,

. . . , p1 − 2, αi
rp1+p1−1 = φ

1(0)
i . Moreover, from (45) and (46)

we obtain that for ν = 0, 1, . . . , p1 − 1

lim
r→∞

θν(r)

=
(
lim
r→∞

Φ1(r, ν + 1)⊗ In1

)
θν(ν + 1)

=
(
lim
r→∞

Φ1(r, 0)Ap1−1
� · · ·Aν+1

� ⊗ In1

)
θν(ν + 1)

= (1(φ1(ν+1))′ ⊗ In1
)θν(ν + 1)

where θν = ((α(ν)1)
′
, . . . , (α(ν)n1)

′
)
′
, φ1(p1) = φ1(0). Then

limr→∞ α
(ν)i
i (r) = φ

1(ν+1)
i for i ∈ V1. Hence

lim
r→∞

(
α̂i
rp1+ν − αi

rp1+ν

)
= 0, ν = 0, . . . , p1 − 1.

Analogously, we have limr→∞(β̂i
rp2+ν − βi

rp2+ν) = 0, ν = 0,

. . . , p2 − 1. Moreover, the above convergence is achieved with
a geometric rate. Similar to the proof of case (i), we can prove
case (ii). Thus, the conclusion follows. �

VI. NUMERICAL EXAMPLES

In this section, we provide examples to illustrate the obtained
results in both the balanced and unbalanced graph cases.

Consider a network of five agents, where n1 = 3, n2 = 2,
m1 = m2 = 1, X = Y = [−5, 5], f1(x, y) = x2 − (20− x2)
(y − 1)2, f2(x, y) = |x− 1| − |y|, f3(x, y) = (x − 1)4 − 2y2

and g1(x, y) = (x−1)4−|y|−(5/4)y2 − (1/2)(20− x2)(y −
1)2, g2(x, y) = x2 + |x− 1| − (3/4)y2 − (1/2)(20− x2)(y
− 1)2. Notice that

∑3
i=1fi =

∑2
i=1 gi and all objective

functions are strictly convex-concave on [−5, 5]× [−5, 5]. The
unique saddle point of the sum objective function g1 + g2 on
[−5, 5]× [−5, 5] is (0.6102, 0.8844).

Take initial conditions x1(0) = 2, x2(0) = −0.5, x3(0) =
−1.5 and y1(0) = 1, y2(0) = 0.5. When x̂2(k) = 1, we take
q12(k) = 1 ∈ ∂xf2(1, x̆2(k)) = [−1, 1]; when ŷ1(k) = 0, we
take q21(k)=−1+(20− y̆21(k))∈∂yg1(y̆1(k), 0)={r+(20−
y̆21(k))|−1 ≤ r ≤ 1}. Let γk = 1/(k + 50), k ≥ 0, which
satisfies A5.
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Fig. 2. Two possible communication graphs in Example 6.1.

Fig. 3. The Nash equilibrium is achieved (i.e., xi → x∗ and yi → y∗) for the
time-varying weight-balanced digraphs with homogeneous stepsizes.

We discuss three examples. The first example is given for ver-
ifying the convergence of the proposed algorithm with homoge-
neous stepsizes in the case of weight-balanced graphs, while the
second one is for the convergence with the stepsizes provided in
the existence theorem in the case of weight-unbalanced graphs.
The third example demonstrates the efficiency of the proposed
adaptive learning strategy for periodical switching unbalanced
graphs.

Example 6.1: The communication graph is switching peri-
odically over the two graphs Ge,G0 given in Fig. 2, where
G(2k) = Ge, G(2k + 1) = Go, k ≥ 0. Denote by Ge

1 and Ge
2 the

two subgraphs of Ge describing the communications within the
two subnetworks. Similarly, the subgraphs of Go are denoted as
Go
1 and Go

2 . Here the adjacency matrices of Ge
1 , Ge

2 and Go
1 are as

follows:

A1(2k) =

⎛
⎝0.6 0.4 0
0.4 0.6 0
0 0 1

⎞
⎠ , A2(2k) =

(
0.9 0.1
0.1 0.9

)

A1(2k + 1) =

⎛
⎝1 0 0
0 0.7 0.3
0 0.3 0.7

⎞
⎠ .

Clearly, with the above adjacency matrices, the three di-
graphs Ge

1 , Ge
2 and Go

1 are weight-balanced. Let the stepsize
be αi,k = βj,k = γk for all i, j and k ≥ 0. Fig. 3 shows that
the agents converge to the unique Nash equilibrium (x∗, y∗) =
(0.6102, 0.8844).

Example 6.2: Consider the same switching graphs given in
Example 6.1 except that a new arc (2, 3) is added in Ge

1 . The new

Fig. 4. The Nash equilibrium is achieved for weight-unbalanced digraphs with
heterogenous stepsizes.

graph is still denoted as Ge
1 for simplicity. Here the adjacency

matrices of the three digraphs Ge
1 , Ge

2 , and Go
1 are given by

A1(2k) =

⎛
⎝0.8 0.2 0
0.7 0.3 0
0 0.6 0.4

⎞
⎠, A2(2k)=

(
0.9 0.1
0.8 0.2

)

A1(2k + 1) =

⎛
⎝1 0 0
0 0.3 0.7
0 0.4 0.6

⎞
⎠ .

In this case, Ge
1 , Ge

2 and Go
1 are weight-unbalanced with (α1

2k,
α2
2k, α

3
2k)=(0.5336, 0.1525, 0.3139),(α1

2k+1, α
2
2k+1, α

3
2k+1)=

(0.5336,0.3408, 0.1256) and (β1
k, β

2
k)=(0.8889, 0.1111), ∀k≥

0. We design the heterogeneous stepsizes as follows: αi,2k =
(1/αi

1)γ2k,αi,2k+1=(1/αi
0)γ2k+1, i=1, 2, 3;βi,k=(1/βi

0)γk,
i = 1, 2. Fig. 4 shows that the agents converge to the unique
Nash equilibrium with those heterogeneous stepsizes.

Example 6.3: Here we verify the result obtained in
Theorem 4.5 (ii). Consider Example 6.2, where p1 = p2 = 2.
Design adaptive stepsize algorithms: for ν = 0, 1

θν(r) = (A1(r) · · ·A1(ν + 1)⊗ I3) θ
ν(ν + 1), r ≥ ν + 1

where θν(r) = ((α(ν)1(r))
′
, (α(ν)2(r))

′
, (α(ν)3(r))

′
)
′
, θν(ν +

1) = (1, 0, 0, 0, 1, 0, 0, 0, 1)′; for ν = 0, 1

ϑν(r) = (A2(r) · · ·A2(ν + 1)⊗ I2)ϑ
ν(ν + 1), r ≥ ν + 1

where ϑν(r)=((β(ν)1(r))
′
, (β(ν)2(r))

′
)
′
, θν(ν+1)=(1, 0, 0, 1)′.

Let α̂i
2k=α

(0)i
i (2k), α̂i

2k+1=α
(1)i
i (2k+1), β̂i

2k=β
(0)i
i (2k),

β̂i
2k+1=β

(1)i
i (2k + 1) and

αi,2k =
1

α̂i
2k

γ2k, αi,2k+1 =
1

α̂i
2k+1

γ2k+1, i = 1, 2, 3

βi,2k =
1

β̂i
2k

γ2k, βi,2k+1 =
1

β̂i
2k+1

γ2k+1, i = 1, 2.

Fig. 5 shows that the agents converge to the unique Nash
equilibrium under the above designed adaptive stepsizes.
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Fig. 5. The Nash equilibrium is achieved for weight-unbalanced digraphs by
adaptive stepsizes.

VII. CONCLUSION

A subgradient-based distributed algorithm was proposed to
solve a Nash equilibrium computation problem as a zero-sum
game with switching communication graphs. Sufficient condi-
tions were provided to achieve a Nash equilibrium for switching
weight-balanced digraphs by an algorithm with homogenous
stepsizes. In the case of weight-unbalanced graphs, it was
demonstrated that the algorithm with homogeneous stepsizes
might fail to reach a Nash equilibrium. Then the existence
of heterogeneous stepsizes to achieve a Nash equilibrium was
established. Furthermore, adaptive algorithms were designed to
update the hoterogeneous stepsizes for the Nash equilibrium
computation in two special cases.
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