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Stability of Positive Switched Linear Systems: Weak
Excitation and Robustness to Time-Varying Delay

Ziyang Meng, Weiguo Xia, Karl H. Johansson, and Sandra Hirche

Abstract—This article investigates the stability of pos-
itive switched linear systems. We start from motivating
examples and focus on the case when each switched sub-
system is marginally stable (in the sense that all the eigen-
values of the subsystem matrix are in the closed left-half
plane with those on the imaginary axis simple) instead
of asymptotically stable. A weak excitation condition is
first proposed such that the considered positive switched
linear system is exponentially stable. An extension to the
case without dwell time assumption is also presented.
Then, we study the influence of time-varying delay on the
stability of the considered positive switched linear system.
We show that the proposed weak excitation condition for
the delay-free case is also sufficient for the asymptotic
stability of the positive switched linear system under un-
bounded time-varying delay. In addition, it is shown that
the convergence rate is exponential if there exists an upper
bound for the delay, irrespective of the magnitude of this
bound. The motivating examples are revisited to illustrate
the theoretical results.

Index Terms—Eigenvalues, positive switched linear sys-
tems, time-varying delay.

|. INTRODUCTION

Over the past few decades, huge efforts have been devoted to the
study of switched systems as such systems are often encountered in
practical applications [1], [2]. A switched system can give rise to
rich dynamics as it switches between a family of subsystems and the
switching signal can be arbitrary. Stability analysis has been one of the
main focuses of the research on switched systems, e.g., [2], [3].

More recently, switched positive linear systems have attracted at-
tention from many areas, e.g., economics, biology, sociology, and
communication. A typical switched positive system is the virus mu-

Manuscript received August 11, 2015; revised January 26, 2016;
accepted February 10, 2016. Date of publication February 18, 2016;
date of current version December 26, 2016. This work was supported in
part by the National Natural Science Foundation of China under Grant
61503249, the Knut and Alice Wallenberg Foundation, the Swedish
Research Council, the Alexander von Humboldt Foundation of Germany,
and the TUM Institute for Advanced Study. Recommended by Associate
Editor F. Blanchini.

Z. Meng is with the State Key Laboratory of Precision Measure-
ment Technology and Instruments, Department of Precision Instrument,
Tsinghua University, Beijing 100084, China (e-mail: ziyangmeng @mail.
tsinghua.edu.cn).

W. Xia is with the School of Control Science and Engineering,
Dalian University of Technology, Dalian 116024, China (e-mail:
wgxiaseu @dlut.edu.cn).

K. H. Johansson is with the ACCESS Linnaeus Centre and School of
Electrical Engineering, Royal Institute of Technology, 10044 Stockholm,
Sweden (e-mail: kallej@kth.se).

S. Hirche is with the Chair of Information-Oriented Control, Depart-
ment of Electrical and Computer Engineering, Technical University of
Munich, D-80290 Munich, Germany (e-mail: hirche @tum.de).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2016.2531044

tation treatment model [4]. For a switched positive linear system, each
subsystem is a positive linear system, so the state remains nonnegative
when the initial condition is nonnegative. It was shown in [5] that
Hurwitz stability of the convex hull of a set of Metzler matrices is
necessary for the stability of the associated switched positive linear
system under arbitrary switching, and that this condition becomes
sufficient for two-dimensional systems. Furthermore, Fainshil ez al.
showed that the above condition is not sufficient for three- or higher-
dimensional systems [6]. Some weaker condition was proposed in
[7] for a class of continuous-time positive switched systems with
subsystems described by Metzler matrices taking the form A + bcT,
i €{1,2,...,n}, where A is adiagonal n X n matrix. In addition, the
stability of a class of nonlinear positive systems, i.e., subhomogeneous
cooperative systems, was studied in [8].

In many biological and engineered systems, time delays occur in
the system dynamics. In biological systems they arise in the signal
transduction. Analogously, in engineered networked systems they are
often caused by data transmissions via wired or wireless communi-
cation channels. The case of constant delay was studied in [9], [10]
for some classes of nonlinear positive systems and delay-independent
conditions for stability were established. The stability and input-output
gain of linear systems with time delays and cone invariance were
considered in [11]. Here, the cone invariance property can be viewed
as a generalization of the nonnegativity property of a positive system.
It was shown in [12] that a positive system is asymptotically stable for
any bounded delay if and only if the sum of all the system matrices is a
Hurwitz matrix. In certain applications, the delay can grow unbounded,
which may have a significant impact on the system behavior. In [13],
it was shown that a class of positive systems, whose vector fields are
homogeneous and order-preserving, are insensitive to a general class
of time delays that may be unbounded and time-varying. For switched
positive systems, such a robustness property to unbounded delay
still holds under certain conditions. In [14], some stability criteria
were established for switched positive linear systems with unbounded
time delay. However, the criteria were derived under conservative
assumptions on the excitation conditions. In addition, it should be
noted that in most of the above results for positive switched linear
systems, it is assumed that each subsystem is asymptotically stable.

In this article, we focus on the stability of positive switched linear
systems with and without delay. Each subsystem is assumed to be
marginally stable. The motivation includes consensus and congestion
control problems [15], [16]. Similar problems were also considered in
analyzing the convergence of the products of stochastic matrices for
discrete-time systems [17]-{20]. The main contributions of this article
are conditions for the stability of positive switched linear systems
with time-varying delay. To this end, we propose a weak excitation
condition such that the considered system is exponentially stable and
extend the discussion to the case without a dwell time assumption.
In addition, it is shown that the proposed weak excitation condition
for the delay-free case is sufficient for asymptotic stability under
unbounded time-varying delay. It is further shown that the delayed
positive switched linear system is exponentially stable when there
exists an arbitrary upper bound for the time-varying delay.

0018-9286 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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The structure of the article is as follows. We introduce the consid-
ered problems in Section II and provide two motivating examples in
Section III. The exponential stability result for positive switched sys-
tems without delays is established in Section IV. Then, the robustness
of the system to unbounded time-varying delay is studied in Section V
together with the case of arbitrary bounded delay. Simulation results
for the motivating examples are given in Section VI and a brief
concluding remark in Section VII.

Notation: The set {1,2,...,n} is denoted by A. The nonnegative
orthant of n—dimensional real space is represented by R} . Z3 denotes
the nonnegative integer set. 0 and 1 denote the all-zero and all-
one vectors with compatible dimensions, respectively. C([a, b], R"})
denotes the space of all real-valued continuous functions on [a, b]
taking values in R"}. A <X B means that a;; < b;; for all 7, j, where
a;;, b;; denote entry (7, j) of matrices A and B. Similarly, we define
A > B, A< B,and A = B. A matrix M is a Metzler matrix if the
off diagonal entries of M are nonnegative. [z] denotes the smallest
integer larger than or equal to a real number z. ||z|| denotes the
Euclidean norm of a vector x.

Il. PROBLEM STATEMENT

In this article, we first study the stability of delay-free switched
positive linear systems. The dynamics is given by

(t) = Agyz(t),

where z(t) € R™ is the system state, zo € R} is a constant vector,
and o(t) : [0,00) — P is a piecewise constant function, i.e., there
exists a sequence of increasing time instants {¢;},~ such that o(t)
remains constant for ¢ € [¢t;,¢;41) and switches at ¢t = ¢;, to = 0, and
P =1{1,2,...,p} is a finite set. We place a common assumption on
the switching signal.

Assumption 1 (Dwell Time): There exists a lower bound 7, >
0, such that inf; (¢, 11 — t;) > 74.

Remark 1: The dwell time assumption is extensively used in
the analysis of convergence of switched systems, e.g., [2]. The lower
bound 7; can be arbitrarily small. Therefore, Assumption 1 can
be easily satisfied in many practical applications. The relaxation of
Assumption 1 will be discussed in Section I'V-B.

In practice, the existence of delays in control systems are often
inevitable. This motivates us to study the influence of a time-varying
delay on the stability of the considered switched positive linear system.
The system is described by

t>0, z(0)=u=xo @)

&(t) =Asmyx(t) + Boyz (t —7(1)),

z(t) = (1),

where 7(¢) : RT — R* is a continuous function, 7o >0, ¢(t) €
C([—70,0],R7}) is a vector-valued function specifying the initial state
of the system. We impose the following mild assumption on 7(¢).

Assumption 2 (Unbounded Delay): lim;_, .. (t —7(t)) =
~+00. Assumption 2 means that as ¢ increases, 7(¢) should grow slower.
It is not hard to check that all bounded delays satisfy this assumption.
However, the converse is not true in general:

Example 1: Let 7(t) = t/¢, where ¢ > 1 is a constant. It is
clear that lim;_, ;oo (t — 7(¢)) = lims—, 1 oo (({ — 1) /¢)t = +00 and
therefore Assumption 2 holds. However, 7(t) is not bounded.

We next define positivity and introduce a necessary assumption that
guarantees positivity.

Definition 1: System (1) or (2) is said to be positive if for any
switching signal o and any nonnegative initial condition =(0) € R’
(for (1)), or ¢(t) € C([—70,0],R7}) (for (2)), the state trajectory x(t) €
Rﬁ, for all t > 0.

t>0 (2a)

—T0<t<0 (2b)

Assumption 3 (Positivity):

e For system (1), A, is a Metzler matrix, for all p € P.
* For system (2), A, is a Metzler matrix and B, =0, for all pe P.

Remark 2: Assumption 3 is a necessary and sufficient condition
to guarantee that system (1) or (2) is positive (Lemma 3, [21]).
The objective of this article is to establish stability conditions for
systems (1) and (2).

IIl. MOTIVATING EXAMPLES

In this section, we present two motivating examples on vehicle
formation control. We show that these examples fit (1) or (2) proposed
in Section II.

Consider that there are four vehicles to maintain a stable formation.
Letxq, ..., x4 represent the position of each vehicle. The dynamics of
the vehicles are described by [22]

E1(t)= —z1(t) + liz (0(t)) (w3 (t) — 21(2)) (3a)
Ba(t)=la1 (0 (1)) (21 () —22(t)) +laz (o (1)) (23(t) —22(t))

(3b)
B3(t) =1ls2 (0 (1)) (22(t) —23(t)) +134 (0 (1)) (walt) —23(t))

(30)
Ta(t)= —4wa(t) + laz (0 (1)) (z3(t) — za(?)) (3d)

where vehicles 1 and 4 can maintain stable positions on their own, but
vehicles 2 and 3 rely on the position information of their neighbor-
ing vehicles for stabilization. The parameters I;; (o (t)) represent the
position adjustment based on neighboring position information. Due
to possible communication failure, o (t) : [0,00) — P is a switching
signal specifying when the communication topology changes. For all
peP,and i,j € {1,2,3,4}, l;;(p) is positive if the information is
successfully delivered and zero, otherwise.

We can easily show that (3) can be written in the form of (1) with

—1—13 0 l13 0
loy —la1 —las las 0
Aty = , Where
® 0 l32 —l33—134 l34
0 0 lys —4—ly3

lij :== l;;(o(t)). It is not hard to show that A, is Metzler for all p € P
since ;;(p) is nonnegative for all p € P, and 7, 5 € {1,2,3,4}.

We further consider the scenario that there exists a communication
delay when sending information to neighboring vehicles. Then, the
dynamics of the vehicles become

@1 (t) = — @1 (t) + lig (o(1)) (w3 (t — 7(8)) —x2(t)) (o)
@a(t) =121 (o () (w1 (t — 7(t)) — w2(t))

+laz (0 (1)) (23 (t — (1)) — 2a(t)) (4b)
@3(t) =132 (0(t)) (w2 (t — 7(t)) — x3(t))

+ 134 (0(t)) (za (t — 7(1)) — 23(1)) (4¢)
Ba(t) = —daa(t) +laz (o) (z3 (t —7()) —2a(t)) (4d)

where 7(t) represents the communication delay.
It is not hard to show that (4) can be written in the form of (2)

1=l 0 0 0

. _ 0 —l21 — l23 0 0

with Aoy =1 0 gy — sy o I
0 0 0 4= Ly
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0 0 l13 0
loy 0 las 0
0 l32 0 l34
0 0 lys 0
hard to show that A, is Metzler and B, = O for allp € P.

Assumption 3 is thus satisfied for these examples and systems (3)
and (4) can be represented by the models (1) and (2).

B(r(t) = , where lij = lij (O’(t)) It is not

IV. EXPONENTIAL STABILITY WITHOUT DELAY

Most works on switched positive linear systems assume that each
element of {AP}peP is a Hurwitz matrix [21], [23], [24]. In this article,
however, we focus on the situation that each element is only marginally
stable. We first in Section IV-A state a weak excitation condition and
show that system (1) is exponentially stable under this assumption.
Then, in Section IV-B, we consider the case when the dwell time
assumption (Assumption 1) does not hold.

Before moving on, we first define Dini derivatives and give a useful
lemma. Let DTV (¢,z(t)) be the upper Dini derivative of V (¢, z(t))
withrespectto ¢, i.e., DTV (¢, 2(t)) = limsup,_,o+ (V(t + &, z(t +
e)) = V(t,z(t)))/e).

Lemma 1 [25]: Suppose for each i €¢ N, V; : R x R™ = R
is continuously differentiable. Let V (¢, x) = max;en Vi(t, x), and
let N'(t) = {i € N: Vi(t,z(t)) = V(t,2(t))} be the set of indices
where the maximum is reached at time ¢. Then D¥V(¢,2(t)) =
max, 7 Vi(t, z(1)).

A. Weak Excitation

Assumption 4 (Weak Excitation): There exists a vector v > 0
such that A,v =<0, for all p € P. In addition, there exist a time
sequence {7, }0 and a positive constant 7' with ¢, , —¢;, < T such

+
that Zze{leZﬂt* <t<tn }Aa(t yv < 0 for all m € Z

m =

Remark 3: Firstly, the time sequenc. {t},}° in Assumption IV
can be different from the switching sequence {¢;},°. Secondly, the
existence of a common vector v is not restrictive as it seems to be. In
fact, it corresponds to the existence of a common Lyapunov function
for the stability analysis of the switched system (e.g., [1]) and can
be realized in many applications (soon to be verified in Section VI).
The extension to the case of multiple vectors v,, is possible and can
be derived easily by following a similar analysis as in the proof of
Theorem 1. Thirdly, the existence of the positive constant 7" for the
weak excitation condition is indispensable for the states of the system
to asymptotically converge to zero. Note that 7" can be arbitrarily large
and therefore the exciting frequency can be very small. In addition, the
set of excitation is not necessarily periodic and a non-periodic example
is given as follows.

Example 2: Consider system (1) with A, ) switching between
Aj and A,, where A; = {1(.)5 701} and As = {_(2)'5 (1)} . The
nonperiodic signal o(t) switches at time instants k1, k1 + Ko, k1 +
Ko + K3, ..., where Ky, h = 1,2, ..., is randomly chosen from the
uniform distribution on the interval (1, 2) with kg = 0. In addition,
for each h =0,2,4,..., o(t)=1for t € [Z?:o m,ZerOl ;) and

o(t) =0, fort e [2“01;@1,2“0 k) if Kk, < 1.5; or o(t) = 0 for
te [ZZ o nh,Z?:O k;)and o(t) =1, fort € [Zf+01 NZ,Z;H'OQ K;)
if K, > 1.5. It is clear that o (¢) is not periodic but Assumptions 1 and
4 are still satisfied with v = [1,2]T and T' = 4.

Theorem 1: Suppose that Assumptions 1, 3, and 4 hold. Then,
system (1) is exponentially stable.

Proof: Define V(x(t)) = max;en x;(t)/vi, where v; > 0 de-
notes entry ¢ of v in Assumption 4. As x;(t) > 0, for all ¢ > 0 and for

all i € N from Remark 2, V ((t)) > O forall t > 0. Let N'(¢) = {i €
N :x;(t)/v; = V(z(t))} be the set of indices where the maximum is
reached at time ¢. Then

. n ij .
DTV = max T max —Zj:l aa(t)x](t)
PEN(t) Vi ieN(D) V4

all i (t) + > al ozt
— max 20 i(8) + 205 05 % ()
i€EN (1) Vi

where a?(t) denotes entry (4, j) of A, and x; denotes entry ¢ of .
Note that for the above equation, (x;/v;) < (z;/v;), for all j € N.
We thus know that

DTV < max ag(t)xi(t) i Ej# Uj%g(t)xi(t)
T ieN(t) V5

<Uiafri(t) + 2 vja::—(t)) (1)
< max

T EN(t) v2

where we have used Assumption 3 and the fact that z;(¢) > 0. It thus
follows from the first part of Assumption 4 that D™V (z(t)) < 0, for
allt > 0.

We next show that V' (x(t¢)) decreases exponentially with respect
to time. Firstly, it is easy to check that the cardinality of the set {/ €
Z§ |65, <ty <ty .y} is finite and bounded by [(T'/74)] for all m €
Z§ . Since P is finite, we know that Y- _ L) As(e)

takes values in a finite set of matrices for all m € Z+. It follows

from Assumption 4 that there exists a constant > 0 such that
+ .

ZZE{lezﬂti‘nSt,q* o y Ao(t)V = =01 for all m € Zg. We will

also need the fact that there exists a constant a* > 0 such that |a§| <
a* forall 4,5 € AN and all p € P, since P and N\ are finite.

It is not hard to show that for any ¢ € [0, 00), [¢, ¢ + 27T") contains at
least one interval [t,, £, +1) for some m, where 71" is the constant from
Assumption 4. In addition, in view of the first part of Assumption 4,
it is not hard to check that Zze{leZS’\tﬁt;«-&-ZT} Ay v = —0L
Now, fix any to > 0. Let {ti,,%1,,...,t,} be the subsequence of
{t:};° containing all the switching points of o (t) during (o, to + 27T").
Add ty and to + 27 into this subsequence forming the new subse-
quence {t,,t1,,.- -, q+1} with &, =to and ¢, = to + 27T
Note that ¢ < [(QT/Td)] Let o(t) = p. for t € [t;,,t, ), where
z=1,2...,q. Based on the fact that D"V (z(¢)) < 0, for all ¢ > 0,
it follows that z;(t) < v;Vj, for all i € N and all ¢ > ty, where
Vo = V(z(to))-

For all t > tg, it then follows that

)+ ala(t)

J#i

c{lend |y, <t <t

m =

i () = al (ywi(

) T Z“a(t)

J#i

< aioi(t) (z:(t) — viVo) + (

) ’UzVO

Thus, q 1a <

< —a” (x(t) — Vo) + af,(t)viVo

where af,(t) =g+ Z]-# a:i(t)(vj/vi)

—(6/v;) for each ¢ € N. It follows from the comparison prmmple
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(see Lemma 3.4 of [26]) that for all i € N,

Ti (th+1)
< (1 —e (tlﬁ-l 7”1)) v; Vo + e (tlﬁ-l 7“1)96’1'(150)

try

—a™(t —s 1
+U'L‘/O/e (l11+1 )a;1d5
tll
tl3
—a*(t —s) i
+UiV0/€ (lq+1 )oﬂpzds

try
fla1

+ vV /

tiy

“ . al
< v, Vo +v;Voe * (th+17t12) (1 _e @ (tzzftzl)> _p1

a*

e—a* (th+1 —s) Of;q dS

@
+ vi%e—a (th+1 —t1,3) (1 o e_a*(t"s_t’ﬂ)) % I

) a
* al
+v;Vp (1 —e (t’q+17t’4)) —La

a*
Moreover,
e—a* (t:,q+1 —tl,l) (1 _ e—a*Td)
i (t,,,) <viVo+ Vo e
X (a;fn -1—0522 +...+a1i7q)
—2a*T 1— e—a*Td q )
<v; Vo +v; Vo (a* ) Za;z
=1
e—Qa*T (1 e—a Td)
S U,L'Vo — U,L'Vo - —.
a V;
This implies that V' (z(to+27T)) =max;en (@i (t,, ) /vi) < (L=n)Vo,

where n=(e~2%"T (1 — e=%"7) § /a* max;en{v;}) describes how
much V' can be decreased after 27". Consider the time interval
[to 4+ 2T, to + 4T7]. Based on that DTV (x(¢)) < 0, Vt > 0, we can
similarly show that V (z(to +47)) < (1 —n)V(z(to + 27")). Let N
be the smallest positive integer such that ¢ <ty + 2N7T'. It then
follows that V (z(¢)) < (1 — )N~V < Be™ (=t 1, where

_ a” maxien{vi}
T a*maxsen{vi} —e 20T (1 —e—a"7a)§

is a constant and

1 ) a* max;en{v; }
=_—In
2T " a* max;en{v;} —e 2T (1 —e=2"7a)§

gl ®)
describes the decreasing speed of V. By choosing ¢, = 0, we obtain
exponential stability for any switching signal o and any nonnegative
initial condition z(0) = z¢ € R}. [ ]

Remark 4: In addition to proving the exponential stability of
system (1), we also explicitly derive the convergence rate. From (5),
we know that a smaller 7" will induce a faster convergence rate. This
fact agrees with the intuition because a smaller 7" means the excitation
is more frequent.

B. No Dwell Time Assumption

Note that Theorem 1 relies on Assumption 1 on the existence of the
dwell time. We show in the following proposition that Assumption 1
can be removed if the weak excitation condition of Assumption 4 is
changed to an integral excitation condition.

Assumption 5 (Integral Weak Excitation): There exists a
vector v > 0 such that A,v <0, for all p € P. In addition, there

exist a time sequence {t¥,},” and positive constants & and 7" with

th, 41 — t, < T such that ([, A, ds)v < €1 forallm € Zg .
Proposition 1: Suppose that Assumptions 3 and 5 hold. Then,
system (1) is exponentially stable.

Proof:  Define the same Lyapunov function V(z(t)) =
max;en ©;(t)/v; as given in the proof of Theorem 1. We can
show that DTV (x(t)) <0, for all ¢ > 0 based on the first part of
Assumption 5. We also know that there exists a constant a* > 0 such
that |ag| < a*foralli,j € N andall p € P.Forallt > tg, it follows
that @;(t) < alf,(zi(t) — viVo) + ;s v:Vo, where o ) and Vp
are defined in the proof of Theorem 1.

It is not hard to check that for all ¢ € [0, c0), ( :JFQT Ay (sds)v =
—£1 from Assumption 5. Fix any ¢y, > 0. Same as in the proof of
Theorem 1, we define the subsequence {tll,tlz,...,th,th+l} of
{t:}o°, where t;, = to and ti,,, = to + 27" It then follows from the
comparison principle that for all i € N,

tiy

T (th+1) <v;Vo + vV /eag1 (tl”l_s) a;Ids

ty,

try

_A'_Uivo/e“‘plz (th+175)a;2d5+...

tigy

+v; Vo

th

—2a*T j —2a*T
<v; Vo +v; Ve = /oﬂplds+viVoe @
‘1

fig gt
. .
X/a’pzds~~+viVoe 27T

tr,

i
ozpqu

ty,
a1
—2a*T i
<v; Vo +v; Ve = /afj(s)ds

ty,

S ’UZ'VO — ’Ui‘/()€72a*T£ .
Ui
Then, following a similar analysis as previously, we know that V' (z(t)) <
Be 7=tV (1 (0)), where B = (max ;e {v;}/(maxcpn {v;} —
e 20"T¢)) is a constant and -~ = (1/27)1In (max;en{v:}/
(max;en{v;} —e2%"T¢)) describes the decreasing speed of V.
This implies that exponential stability is achieved for any switching
signal o and any nonnegative initial condition (0) = 2o € R’} for
system (1). [ |

V. ASYMPTOTIC STABILITY WITH TIME-VARYING DELAY

In this section, we focus on asymptotic stability of the time-varying
system (2). Firstly, since A,+) and B, ;) are piecewise continuous
functions with respect to time, and ¢(-) and 7(-) are continuous func-
tions, it follows that there exists a unique z(¢) defined on [—7g, c0)
that coincides with ¢(-) on [—7p, 0] and satisfies (2) for all ¢ >0
(pp. 401-426, [27]).

A. Unbounded Time-Varying Delay

Assumption 2 allows the time-varying delay to be unbounded,
but that there exists a constant 7} =sup{t >0:t— 7(t) < 0}.
Therefore, we can define the constant 7o = — info<;<7, {t — 7(¢)}.
Therefore ¢(-) is defined on a bounded interval [—7, 0].
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Assumption 6 (Weak Excitation): There exists a vector v > 0
such that (A, + B,)v <0, for all p € P. In addition, there exist a
time sequence {¢, }0 and a positive constant 7" with ;. — ¢ <
T such that } (Ao + Boe,))v < 0 for all
m e Zg.

Theorem 2: Suppose that Assumptions 1, 3, and 6 hold. Then,
system (2) is asymptotically stable for all time delay satisfying
Assumption 2.

Proof: Weuse V(x(t)) = max;en x;(t)/v; as in the proof of
Theorem 1. Firstly, we prove the following fact using a contradiction
argument.

Fact I: V(x(t)) < Vi, for all t > 0, where V" := max_,,<o<0
max;en (¢i(0) /vi).

(Proof of Fact I): Let z;(t) = (x;(t)/v;) — V. It is obvious
that z;(0) <0, for all i € . We next show that z;(t) <0, for
all t >0 and i € N. Suppose this is not true. Then, based on
the continuity of z;(t), there exists a d € A" and a ¢* > 0 such that
zi(t)<O0forte0,t*] and i€ N, zq(t*) =0, and Z4(t)|;=¢= >0. Then,
we know that for all ¢ > 0, &;(t) = alf,zi(t) + 3, aij(t)xj (t)+
> i b; i(t —7(t)), where bﬁfj(t) denotes entry (7,j) of matrix
Bo1). Ift —7(t*) € ]0,¢*], then z;(t* — 7(¢*)) < 0. This implies
that z;(t* —7(t*)) < v;V. Otherwise, if t*—7(t*) € [—79,0],
we still have z;(t* — 7(t*)) <wv;Vy. This 1mphes that @;(t) <

gy (@i () = viV5) + @ )iV, where @) = ag) + 30,2,

U(t)(v] fvi) +32; bfj(t)(vj/vi). It then follows from Assumption 6
that @4(t)|i= < @
verifies Fact I.

Secondly, we prove the following fact.

Factll: V(t — 7(t)) < Vg, forallt > T;.

(Proof of Fact I1): Based on the definition of 77, we know that
t —7(t) > 0 for all ¢ > T7. Thus, it follows from Fact I that V (¢ —
T(t)) < Vg, forall t > T7.

Thirdly, we prove the following fact.

Fact lll: V(x(t)) < (1 —n)Vy, for all ¢t > Ty + 2T, where 7 is
given in the proof of Theorem 1.

(Proof of Fact III): For all t > Ty, we know that

+
z€{IE€Zy |ty, <t <t} .,

+1

ot vaVy < 0. This shows a contradiction and

Ei(t) = agwi(t) + ) ap i (t *Zbcm —7(?))
J#i
<almit) + Y adyi(t) + Z bY yv;V (t = 7(1))
) J#i =1
gy (@i(t) = viVg) + Qv V'

where Fact II has been used for the second inequality. Then, by
fixing any ¢ > 77 and following a similar analysis as for Theorem 1,
we know that V(z(t + 2T)) < (1 —n)V(z(t)) < (1 — )V . This
verifies Fact II1.

We next define Th =sup{t > Ty + 27T : ¢t —7(t) < T1 +2T}.
From Assumption 2, 75 is finite. Therefore, we can similarly show
that V(x(t)) < (1 —n)?Vy, forall t > T, + 27T'. Repeating this pro-
cedure, we can show that V (z(t)) < (1 —n)*Vy, for all t > T}, +
2T, where T} can be iteratively obtained. As k — oo, it follows
that V' (z(t)) — 0. This in turn shows that lim,_,~, z(¢) = 0 for any
nonnegative initial condition ¢(t) € C([—70,0], R7}). [ ]

Remark 5: Theorem 2 shows that the weak excitation condition
for the system without delay is sufficient also for the stability of
the system with any time-varying delay satisfying Assumption 2.
In addition, there are no restrictions on the derivative of 7(¢) (so
arbitrarily fast varying delays are allowed) and the upper bound of 7 (t)
(so unbounded varying delays are allowed). This result does not hold
for general linear delayed systems; the positiveness of the system plays
an indispensable role as shown in the proof.

B. Exponential Stability for Arbitrary Bounded Delay

In this section, we study system (2) with arbitrary bounded delay,
with the delay being a subclass of the time-varying delay satisfying
Assumption 2. We show that in this case the convergence of (2) is not
only asymptotic, but even exponential.

Assumption 7 (Bounded Delay): There exists a constant 79 >
0 such that forall t > 0,0 < 7(¢) < 79.

Theorem 3: Suppose that Assumptions 1, 3, 6 hold. Then,
system (2) is exponentially stable for all bounded delay satisfying
Assumption 7.

Proof: Let again V(xz(t)) =max;enx;(t)/v;. Since Fact I in the
proof of Theorem 2 holds for any time delay satisfying Assumption 2,
it is also true for bounded delay. Thus we have V' (z(t)) < V' for all
t>0.

If t —7(t) <0, it is clear from the definition of V" in the proof
of Theorem 2 that V (¢t — 7(t)) < V. Since V(¢ — 7(t)) < V; also
holds when ¢ — 7(t) > 0, we conclude that V(¢ — 7(¢)) < V", for all
t>0.

Similar to the proof of Fact III in the proof of Theorem 2, we
can show that for all ¢ > 27", V(x(¢)) < (1 —n)Vy". Since 7(t) <
To, when t > 2T + 19, t — 7(¢) > 2T. We have that V(¢ — 7(¢)) <
(1 —n)Vy forall t > 2T + 7. Repeating the arguments in Fact II of
the proof of Theorem 2, one has that for all ¢ > 47T + 79, V(z(t)) <
(1 — )2V Continuing this process, we derive that V (z(¢)) < (1 —
n*Vy, for t > (k—1)(2T + 79) + 2T and k > 1. Let N be the
smallest positive integer such that ¢ < N(2T + 79) + 27" It then
follows that for all ¢t > 2T, V(x(t)) < (1 — n)N Vg < em (=20

where o = —(In(1 — 1) /(2T + 79)). This completes the proof. W
VI. MOTIVATING EXAMPLES REVISITED
In this section, we revisit the motivating examples of

Section III and illustrate the results of Theorems 1 and 2. The
initial states are arbitrarily chosen positive constants. We first assume
that o (¢t) — {1,2} is switching periodically at time instants ¢, = [,

[ =1,2,.... For the vehicle formation without communication delay
(3), the subsystems are given by
-1 0 0 0 -2 0 1 0
1 -2 1 0 0 0 0 0
A=l o o o™ o 1 2 1
0 0 0 —4 0 0 1 -5

where A; represents that the communication for vehicle 3 fails and
A, represents that the communication for vehicle 2 fails. Note that
A and A are not asymptotically stable but Assumption 4 is satisfied
with v = [1,2,2,1]T and T' = 2. Fig. | shows the trajectories of x
and In(||z||). We can see that x converges to the origin while all the
states remain positive. Also, since the trajectory of In(||z||) can be
upper bounded by a decreasing straight line, the convergence speed is
exponential, which agrees with the conclusion of Theorem 1.

We next consider the vehicle formation with communication delay
(4). We still assume o (t) — {1,2} is switching periodically at time
instants t; = [, 1 = 1,2, .... The subsystems are given by

-1 0 0 0 0 0 0 0
0 -2 0 0 1 0 1 0
=1, 0 0 ol P =1lo o 0o o
0 0 0 -4 0 0 0 0
-2 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
Ay = 0 0 -2 ol P=lo 1 o 1|’
0 0 0 -5 0 0 1 o0
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Fig. 1. State convergence for system (3).
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Fig. 2. State convergence for system (4) for the case of unbounded
delay.

It is clear that A; 4+ B; and A5 + By are not asymptotically stable,
but Assumption 5 is satisfied with v = [1,2, 2, 1]T and T' = 2. We first
consider the case of unbounded delay, where 7(¢) = ¢/4. We see from
Fig. 2 that « converges to the origin. This agrees with the implication
of Theorem 2.

We finally consider the case when the time-varying delay is
bounded. The delay is chosen as 7(t) = sint. The switching signal,
the system matrices, and the initial states are the same as previously.
We see from Fig. 3 that x converges to the origin for system (4)
and the convergence speed is exponential. In addition, Fig. 4 shows
the trajectories of In(||x||) for both unbounded and bounded delays.
It is clear that the case of bounded delay has a faster convergence
speed.

VIl. CONCLUSION

We have investigated the stability of positive switched linear sys-
tems under the relaxed assumption that each switched system is mar-
ginally stable. A weak excitation condition was proposed to guarantee
the exponential stability of the system without time delay. We also
considered positive switched linear systems with time-varying delay.
It was shown that the proposed weak excitation condition for the
delay-free case is sufficient for asymptotic stability under unbounded

35

- - X
30 1 al
| %
25 al
| —%
- = X
30 40 50
t
10 T
0
-10
-20
. -30
g -40
= -50
-60
-70
-80
-0 50 100 150 200 250 300

t

Fig. 3. State convergence of system (4) for the case of bounded delay.

0 - = Unbounded delay
—— Bounded delay

In(]l[l)

50 100 150 200 250 300 350 400
t

Fig. 4. Convergence speed comparison between a system with un-
bounded delay and one with bounded delay.

time-varying delay. The convergence rate was proven to be exponential
when the delay is bounded.
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