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1. INTRODUCTION

Distributed consensus a fundamental problem in the study
of multi-agent systems. In addition to the well studied
linear consensus problem (see e.g., Olfati-Saber and Mur-
ray (2004), Moreau (2004), Ren and Beard (2005)), the
nonlinear version has attracted much attention. Generally
speaking, for continuous time models, nonlinear consensus
studies can be divided into continuous and discontinu-
ous systems. For the continuous case, we refer to Pa-
pachristodoulou et al. (2010), Lin et al. (2007), Andreasson
et al. (2012) etc. In this paper, instead we focus on the
nonlinear consensus protocol with discontinuous dynam-
ics. There are several existing works about this topic. Here
we review some of the most related ones. In Cortés (2006),
the author studied the finite-time convergence of

9x “ signp´Lxq, (1)

where L is the Laplacian matrix of the graph and sign is
the signum function. It is proved that Filippov solutions
will converge to average-max-min consensus in finite time.
However, the result is not precise in the sense that it does
not hold for all solutions. In Wei et al. (2015), the authors
considered the more general model

9x “ fp´Lxq, (2)

where f is any sign-preserving function, i.e., each compo-
nent of f takes positive value for positive argument and
vice versa. Sufficient conditions to guarantee asymptotic
consensus of all Filippov solutions are given in Wei et al.
(2015). In Kashyap et al. (2007), the authors considered a
discretized version of (2) with f being a quantizer and L
a time-varying stochastic matrix.

Motivated by some practical scenarios, such as multi-robot
coordination with coarse measurements, the model to be
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investigated in this paper is

9x “ ´Lfpxq, (3)

where we assume f to be any monotone function not
necessarily cross the origin. The measurement of the state
of each agent can obey different nonlinear criteria: quan-
tized, biased etc. One closely related existing work is Liu
et al. (2015), where the authors employ a stronger assump-
tion, i.e., the nonlinear function f is piecewise continu-
ous, strictly monotone and sign preserving. In Liu et al.
(2015), precise consensus can be achieved. However, their
stronger assumption puts limits on the applicability of the
results, for example, quantized measurement maps fail to
be strictly monotone. A special case of the system (3) is f
equal to the uniform quantizer. For such systems, Ceragioli
et al. (2011) and Frasca (2012) showed the asymptotic
convergence of all the Krasovskii solutions to practical
consensus. Furthermore, they assume undirected graphs.
We extend these results to directed cases. For the system
(3), we address the stability using the notion of Filippov
solution. The reasons we choose Filippov solution are fol-
lowing. First, for many nonlinear consensus protocols with
discontinuous controllers, the classical and Carathéodory
solutions do not exist. For example, in Ceragioli et al.
(2011), it is proven that both classical and Carathéodory
solutions do not exist in general for system (3) with f
being a uniform quantizer. So considering generalized so-
lutions is necessary. Second, Filippov solution, comparing
to Krasovskii solution, can eliminate the irregular behavior
from the general nonlinear differential inclusion. Third, for
quantized systems, Filippov and Krasovskii solutions are
equivalent.

The contributions of this paper are twofolds. First, we
consider the general nonlinear consensus protocol (3),
and present a stability analysis for all Filippov solutions
under the weakest fixed topology, namely directed graphs
containing spanning trees. Our result incorporates many
existing works as special cases. Second, we consider the
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special case of quantized consensus protocols and present
an extension to the results in Ceragioli et al. (2011), Frasca
(2012) from undirected graphs to directed ones.

The structure of the paper is as follows. In Section 2,
we introduce some preliminaries. In Section 3, we prove
convergence for nonlinear consensus protocols where the
measurements of the state are effected by nonlinearities.
In Section 4 we apply the results in Section 3 to quantized
consensus protocols. Finally, the paper is wrapped up with
the conclusion in Section 5.

2. PRELIMINARIES

In this section we first briefly review some notions from
graph theory, e.g, Bollobas (1998); Biggs (1993), and then
give some properties of Filippov solutions (Cortes (2008)).

Let G “ pV, E , Aq be a weighted digraph with node set
V “ tv1, . . . , vnu, edge set E Ď V ˆ V and weighted
adjacency matrix A “ raijs with nonnegative adjacency
elements aij . An edge of G is denoted by eij “ pvi, vjq and
we write I “ t1, 2, . . . , nu. The adjacency elements aij are
associated with the edges of the graph in the following
way: aij ą 0 if and only if eji P E . Moreover, aii “ 0 for
all i P I. For undirected graphs, A “ AT .

The set of neighbors of node vi is denoted by Ni “ tvj P
V : pvj , viq P Eu. For each node vi, its in-degree is defined
as

deginpviq “
n
ÿ

j“1

aij .

The degree matrix of the digraph G is a diagonal matrix
∆ where ∆ii “ deginpviq. The graph Laplacian is defined
as

L “ ∆´A.

This implies L1n “ 0n, where 1n is the n-vector contain-
ing only ones and 0n is the n-vector containing only zeros.

A directed path from node vi to node vj is a chain of edges
from E such that the first edge starts from vi, the last edge
ends at vj and every edge starts where the previous edge
ends. A graph is called strongly connected if for every two
nodes vi and vj there is a directed path from vi to vj .
A directed graph is called weakly connected if replacing
all of its directed edges with undirected edges produces a
connected (undirected) graph. A subgraph G1 “ pV 1, E 1, A1q
of G is called a directed spanning tree for G if G1 is weakly
connected, V 1 “ V, E 1 Ď E , |E 1| “ n´1, and for every node
vi P V 1 there is exactly one vj such that eji P E 1, except
for one node, which is called the root of the spanning tree.
Furthermore, we call a node v P V a root of G if there is
a directed spanning tree for G with v as a root. In other
words, if v is a root of G, then there is a directed path
from v to every other node in the graph.

A digraph, with m edges, is completely specified by its
incidence matrix B, which is an nˆmmatrix, with element
pi, jq equal to ´1 if the jth edge is towards vertex i, and
equal to 1 if the jth edge is originating from vertex i, and
0 otherwise.

Lemma 2.1. (Lu et al. (2008)). The graph Laplacian ma-
trix L of a strongly connected digraph G satisfies that zero
is an algebraically simple eigenvalue of L and there is a

positive vector wJ “ rw1, ¨ ¨ ¨ , wns such that wJL “ 0 and
řm
i“1 wi “ 1. Moreover the symmetric part of LJ diagpwq

is positive semi-definite.

With R´, R` and Rě0 we denote the sets of negative,
positive and nonnegative real numbers, respectively. The
ith row and jth column of a matrix M are denoted as Mi,¨

and M¨,j , respectively. And for simplicity, let MJ
¨,j denote

pM¨,jq
J. The vectors e1, e2, . . . , en denote the canonical

basis of Rn.

In the rest of this section we give some definitions and
notations regarding Filippov solutions.

Let X be a map from Rn to Rn, and let 2R
n

denotes the
collection of all subsets of Rn. We define the Filippov set-
valued map of X, denoted FrXs : Rn Ñ 2R

n

, as

FrXspxq :“
č

δą0

č

µpSq“0

cotXpBpx, δqzSqu, (4)

where Bpx, δq is the open ball centered at x with radius
δ ą 0, S is a subset of Rn, µ denotes the Lebesgue measure
and co denotes the convex closure. If X is continuous at
x, then FrXspxq contains only the point Xpxq. There are
some useful properties about the Filippov set-valued map.

Lemma 2.2. (Paden and Sastry (1987)). Calculus for F .

(i) Assume that f : Rm Ñ Rn is locally bounded. Then
DNf Ă Rm, µpNf q “ 0 such that @N Ă Rm, µpNq “
0,

Frf spxq “ cot lim
iÑ8

fpxiq | xi Ñ x, xi R NfYNu. (5)

(ii) Assume that fj : Rm Ñ Rnj , j “ 1, . . . , N are locally
bounded, then

F
“

N
ą

j“1

fj
‰

pxq Ă
N
ą

j“1

Frfjspxq, (6)

where
Ś

represents the Cartesian product.
(iii) Let g : Rm Ñ Rpˆn be C0 and f : Rm Ñ Rn be

locally bounded; then

Frgf spxq “ gpxqFrf spxq, (7)

where gfpxq :“ gpxqfpxq P Rp.
Lemma 2.3. For an increasing function ϕ : R Ñ R, the
Filippov set-valued map satisfies that

(i) Frϕspxq “ rϕpx´q, ϕpx`qs where ϕpx´q, ϕpx`q are
the left and right limit of ϕ at x, respectively;

(ii) for any x1 ă x2, and νi P Frϕspxiq, i “ 1, 2, we have
ν1 ď ν2.

Proof. This can be seen as a straightforward deduction
from Lemma 2.2 (i) and the definition of increasing func-
tions.

By using the fact that monotone functions are continuous
almost everywhere, and the definition of right and left
limits, we have following lemma.

Lemma 2.4. For an increasing function ϕ : RÑ R,

(i) Frϕspxq “ tϕpxqu for almost all x;
(ii) the right (left) limit, i.e., ϕpx`q (ϕpx´q) is right (left)

continuous for all x.
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A Filippov solution of the differential equation 9xptq “
Xpxptqq on r0, t1s Ă R is an absolutely continuous function
x : r0, t1s Ñ Rn that satisfies the differential inclusion

9xptq P FrXspxptqq, (8)

for almost all t P r0, t1s. A Filippov solution t ÞÑ xptq is
complete if it is defined for all t P r0,8q. Since the Filippov
solutions of a discontinuous system (8) are not necessarily
unique, we need to specify two types of invariant sets.
A set R Ă Rn is called weakly invariant for (8) if, for
each x0 P R, at least one complete solution of (8) with
initial condition x0 is contained in R. Similarly, R Ă Rn
is called strongly invariant for (8) if, for each x0 P R,
every complete solution of (8) with initial condition x0

is contained in R. For more details, see Cortes (2008);
Filippov (2013).

Let f be a map from Rn to R. The right directional
derivative of f at x in the direction of v P Rn is defined as

f 1px; vq “ lim
hÑ0`

fpx` hvq ´ fpxq

h
,

when this limit exists. The generalized derivative of f at
x in the direction of v P Rn is given by

fopx; vq “ lim sup
yÑx

hÑ0`

fpy ` hvq ´ fpyq

h

“ lim
δÑ0`

εÑ0`

sup
yPBpx,δq
hPr0,εq

fpy ` hvq ´ fpyq

h
.

We call the function f regular at x if f 1px; vq and fopx; vq
are equal for all v P Rn. In particular, convex function is
regular (see Clarke (1990)).

If f : Rn Ñ R is locally Lipschitz, then its generalized
gradient Bf : Rn Ñ 2R

n

is defined by

Bfpxq :“ cot lim
iÑ8

∇fpxiq : xi Ñ x, xi R S Y Ωfu, (9)

where ∇ denotes the gradient operator, Ωf Ă Rn the set of
points where f fails to be differentiable and S Ă Rn a set
of Lebesgue measure zero that can be arbitrarily chosen
to simplify the computation. The resulting set Bfpxq is
independent of the choice of S, see Clarke (1990).

Given a set-valued map F : Rn Ñ 2R
n

, the set-valued Lie
derivative L̃Ff : Rn Ñ 2R of a locally Lipschitz function
f : Rn Ñ R with respect to F at x is defined as

L̃Ffpxq :“ta P R | there exists ν P Fpxq such that

ζT ν “ a for all ζ P Bfpxqu.
(10)

If F takes convex and compact values, then for each x,
L̃Ffpxq is a closed and bounded interval in R, possibly
empty.

The following result is a generalization of LaSalle’s in-
variance principle to differential inclusions (8) with non-
smooth Lyapunov functions.

Lemma 2.5. (LaSalle Invariance Principle, Cortes (2008)).
Let f : Rn Ñ R be a locally Lipschitz and regular function.
Let S Ă Rn be compact and strongly invariant for (8), and

assume that max L̃FrXsfpyq ď 0 for each y P S, where we
define maxH “ ´8. Then, all solutions x : r0,8q Ñ Rn
of (8) starting at S converge to the largest weakly invariant
set M contained in

S X ty P Rn | 0 P L̃FrXsfpyqu. (11)

Moreover, if the set M consists of a finite number of points,
then the limit of each solution starting in S exists and is
an element of M .

At the end of this section, we list two potential Lyapunov
functions.

Lemma 2.6. (Prop. 2.2.6, 2.2.8 in Clarke (1990)). The fol-
lowing functions are regular and Lipschitz continuous:

V pxq :“ max
iPI

xi, W pxq :“ ´min
iPI

xi. (12)

3. MULTI-AGENT SYSTEMS WITH NONLINEAR
MEASUREMENTS

In this section we consider a network of n agents with
a communication topology given by a weighted directed
graph G “ pV, E , Aq. Agent i receives information from
agent j if and only if there is an edge from node vj to
node vi in the graph G. Consider the following nonlinear
consensus protocol

9x “ ´Lfpxq, (13)

where fpxq “ rf1px1q, . . . , fnpxnqs
T and fi : R Ñ R.

Throughout this paper, the following assumption is essen-
tial.

Assumption 3.1. The function fi : R Ñ R is an in-
creasing function satisfying limxiÑ`8 fipxiq ą 0 and
limxiÑ´8 fipxiq ă 0.

Note that we do not assume continuity of fi. Examples of
functions satisfying Assumption 3.1 include sign function
and quantizers. We understand the solution of (13) in the
Filippov sense, i.e., we consider the differential inclusion

9x P Fr´Lfpxqspxq
“ ´LFrf spxq, (14)

where the equality is implied by Lemma 2.2 (iii). Further-
more, by Lemma 2.2 (ii), the previous dynamical inclusion
satisfies

9x P ´L
n
ą

i“1

Frfispxiq :“ K1pxq. (15)

The existence of a Filippov solution can be guaranteed by
the monotonicity of fi, which indicates the local existence
of solutions, see Cortes (2008). Furthermore, we assume
the complete solution of (15) exists for any initial condi-
tion.

Denote

D1 “ tx P Rn | Da P R s.t. a1n P
n
ą

i“1

Frfispxiqu. (16)

Lemma 3.2. Assumption 3.1 holds, then set D1 is closed.

Proof. Take any sequence tyku Ă Rn s.t. limkÑ8 y
k “ x

and yk P D1, k “ 1, 2, . . ., we shall show that x P D1.
Without loss of generality, we can assume the sequence yki
converge to xi from one side, i.e., yki ă xi or yki ą xi.

Note that yk P D1 implies that Xni“1Frfispyki q ‰ H. For

the case yki ą xi, we have fipy
k´
i q ě fipx

´
i q, fipy

k`
i q ě

fipx
`
i q and limkÑ8 fipy

k`
i q “ fipx

`
i q which is based on

Lemma 2.4 (ii). Hence we have

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

16012



r lim
kÑ8

fipy
k´
i q, lim

kÑ8
fipy

k`
i qs Ă rfipx

´
i q, fipx

`
i qs. (17)

Similarly, for the case yki ă xi, this is also true. Then
Xni“1Frfispxiq ‰ H, i.e., x P D1.

Theorem 3.3. Suppose G is a strongly connected digraph
or connected undirected graph and Assumption 3.1 holds.
Then all Filippov solutions of (15) converge asymptotically
to D1.

Proof.

Consider the Lyapunov function V1pxq “ wTF pxq where
w P Rn` is given by Lemma 2.1 and

F pxq “ rF1px1q, . . . , Fnpxnqs

with Fipxiq “
şxi

0
fipτqdτ . It can be verified that V1 P

C0 and V1 is convex which implies that V1 is regular.
Moreover, by the monotonicity of fi, we have BFipxiq “
rfipx

´
i q, fipx

`
i qs “ Frfispxiq. Hence V1 is locally Lipschitz

continuous. Moreover, by Assumption 3.1, the function V1

is radially unbounded. Indeed, limxiÑ8

şxi

0
fipτqdτ “ 8.

Let Ψ1 be defined as

Ψ1 “ tt ě 0 | both 9xptq and
d

dt
V1pxptqq existu. (18)

Since x is absolutely continuous and V1 is locally Lipschitz,
we can let Ψ1 “ Rě0zΨ̄1 where Ψ̄1 is a Lebesgue measure
zero set. By Lemma 1 in Bacciotti and Ceragioli (1999),
we have

d

dt
V1pxptqq P L̃K1

V1pxptqq, (19)

for all t P Ψ1 and hence that the set L̃K1
V1pxptqq is

nonempty for all t P Ψ1. For t P Ψ̄1, we have that
L̃K1V1pxptqq is empty, and hence max L̃K1V1pxptqq ă 0.
In the following, we only consider t P Ψ1. Moreover, in the
proofs of the rest theorems in this paper, we always focus
on a subset of Rě0 on which the set-valued Lie derivative
of the corresponding Lyapunov functions are nonempty.

The gradient of V1 is given as

BV1pxq “ cotdiagpwqν | ν P
n
ą

i“1

Frfispxiqu. (20)

Then @a P L̃K1
V1pxptqq, we have that Du P

Śn
i“1 Frfispxiq

such that
a “ ´uTLT diagpwqν (21)

for all ν P
Śn

i“1 Frfispxiq. A special case is that ν “
u, which implies that a ď 0 by Lemma 2.1. Hence
we have max L̃KV1pxptqq ď 0. Moreover, a “ 0 if and
only if

Śn
i“1 Frfispxiq X spant1nu ‰ H. Hence, by the

fact that D1 is closed, we have tx P Rn | 0 P L̃KV1pxqu “
D1. By Theorem 2.5, all the Filippov trajectories con-
verges into the largest weakly invariant set containing in

tx P Rn | 0 P L̃KV1pxqu. Hence the conclusion holds.

For homogenous systems, the requirement to graph G can
be weakened.

Theorem 3.4. Suppose G is a digraph containing a span-
ning tree and the nonlinear functions in (13) can be
formulated as fpxq “ rf̄px1q, f̄px2q, . . . , f̄pxnqs where f̄
satisfies Assumption 3.1. Then all Filippov solutions of

(15) converge asymptotically to

D2 “ tx P Rn | Da P R s.t. a1n P
n
ą

i“1

Frf̄ spxiqu. (22)

Proof. In this case, the differential inclusion (15) can be
written as

9x P ´L
n
ą

i“1

Frf̄ spxiq :“ K2pxq. (23)

We divide the proof into five steps.

(i) Let’s see the behaviors of the trajectories corresponding
to roots. Noting the fact that the subgraph corresponding
to the roots is strongly connected, by Theorem 3.3, all
Filippov solutions of (23) converge to

tx | Da s.t. a P Frf̄ spxiq,@i P Iru. (24)

where Ir “ ti P I | vi is a root of Gu.
(ii) Consider candidate Lyapunov functions V as given in
(12). Let xptq be a trajectory of (23) and define

αpxptqq “ tk P I | xkptq “ V pxptqqu. (25)

Denote xiptq “ xptq for i P αpxptqq. The generalized
gradient of V is given as [Clarke (1990), Example 2.2.8]

BV pxptqq “ cotek P Rn | k P αpxptqqu. (26)

Similar to the proof of Theorem 3.3, we can define Ψ2

and we only consider t P Ψ2 such that L̃K2V pxptqq is
nonempty and Rě0zΨ2 is a Lebesgue measure zero set.

For t P Ψ2, let a P L̃K2
V pxptqq. By definition, there exists

a νa P
Śn

i“1 Frf̄ spxiq such that a “ p´LνaqJ ¨ ζ for
all ζ P BV pxptqq. Consequently, by choosing ζ “ ek for
k P αpxptqq, we observe that νa satisfies

´Lk,¨ν
a “ a @k P αpxptqq. (27)

Next, we want to show that max L̃K2V pxptqq ď 0 for all
t P Ψ2 by considering two possible cases: Ir Ę αpxptqq or
Ir Ď αpxptqq.

If Ir Ă αpxptqq, there are two subcases. First, |Ir| “ 1, i.e.,
there is only one root, denoted as vi. Then Li,¨ “ 0, hence
Li,¨ν “ 0 for any ν P

Śn
i“1 Frf̄ spxiq. By the observation

(27), we have L̃K2
V pxptqq “ t0u. Second, |Ir| ě 2. By the

fact that the subgraph spanned by the roots is strongly
connected, there exists wi ą 0 for i P Ir such that
ř

iPIr
wiLi,¨ “ 0n, which implies that

ÿ

iPIr

wiLi,¨ν “ 0 (28)

for any ν P
Śn

i“1 Frf̄ spxiq. Again, by the observation (27),

we have L̃K2
V pxptqq “ t0u.

If Ir Ę αpxptqq, i.e., there exists i P Irzαpxptqq. We define
a subset α1pνq as

α1pνq “ ti P αpxptqq | νi “ max
iPαpxptqq

νiu (29)

for any ν P
Śn

i“1 Frf̄ spxiq. From Lemma 2.3 (ii), for any
j P α1pνq, we know that νj “ max νi, thus Lj,¨ν ě 0. By
the fact that the choice of ν is arbitrary in

Śn
i“1 Frf̄ spxiq

and the observation (27), we have L̃K2
V pxptqq Ă Rď0.

Moreover, denoting
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Eαpxq “ teij P E | j P αpxqu, (30)

we shall show that 0 P L̃K2
V pxq if and only if Dν P

Śn
i“1 Frf̄ spxiq such that νi “ νj for any eij P Eαpxq,

which is equivalent to Frf̄ spxiq X Frf̄ spxjq ‰ H for all
eij P Eαpxq. The sufficient part is straightforward, in fact

we can take νi “ νj “ fpx´q for any eij P Eαpxq. Then

0 P L̃K2V pxq. The necessary part can be proved as follows.

Since 0 P L̃K2V pxq, there exists ν P
Śn

i“1 Frf̄ spxiq such
that Lj,¨ν “ 0 for any j P αpxq. Then this ν satisfies
that α1pνq “ αpxq. Indeed, if α1pνq Ř αpxq, then for any
j P α1pνq with eij P E and i R α1pνq, Lj,¨ν ă 0. Hence
α1pνq “ αpxq. Furthermore, by using the same argument,
we have for any eij P E satisfying i R αpxq and j P αpxq,
fpx´q P Frf̄ spxiq.
(iii) For the Lyapunov functionsW as given in (12), denote

βpxptqq “ ti P I | xiptq “ ´W pxptqqu, (31)

and xiptq “ xptq for i P βpxptqq, and Eβpxptqq “ teij P E |
j P βpxptqqu. By using similar computations, we find that

max L̃K2
W pxptqq ď 0 and 0 P L̃K2

W pxptqq if and only if
Dν P

Śn
i“1 Frf̄ spxiq such that νi “ νj for any eij P Eβpxptqq,

which is equivalent to Frf̄ spxiq X Frf̄ spxjq ‰ H for all
eij P Eβpxptqq.

(iv) So far we have that V pxptqq and W pxptqq are not
increasing along the trajectories xptq of the system (23).
Hence, the trajectories are bounded and remain in the set
rxp0q, xp0qsn for all t ě 0. Therefore, for any N P R`, the
set SN “ tx P Rn | }x}8 ď Nu is strongly invariant for
(23). By Theorem 2.5, we have that all solutions of (23)
starting in SN converge to the largest weakly invariant set
M contained in

SN X tx P Rn : 0 P L̃K2
V pxqu

X tx P Rn : 0 P L̃K2
W pxqu.

(32)

(v) We have proved the asymptotic stability of the system.
Next we will prove that the set D2 is strongly invariant and
for any x0 R D2, all the solution satisfying xp0q “ x0 will
converge to D2.

We start with the strong invariance of D2. Notice that by
the monotonicity of f̄ we can reformulate D2 as

D2 “ tx | Frf̄ spxq X Frf̄ spxq ‰ Hu. (33)

For any x0 P D2, we have known that any trajectories
starting from x0, V pxptqq and W pxptqq are not increasing.
Hence xptq ď x0 and xptq ě x0 for all t ě 0 which, by
Lemma 2.3, implies that Frf̄ spxptqq XFrf̄ spxptqq ‰ H for
all t and xptq satisfying xp0q “ x0. Then xptq P D2 which
implies that D2 is strongly invariant.

Next we show that for any x0 R D2, all the solution
satisfying xp0q “ x0 will converge to D2. We will prove
it by contradictions. Indeed, we assume that there exists
x0 R D2 and one solution x̃ptq satisfying x̃p0q “ x0 does not
converge to D2. Since the set D2 is strongly invariant, we
have x̃ptq R D2 for all t ě 0. Then Frf̄ spx̃qXFrf̄ spx̃q “ H,
where

x̃ “ lim
tÑ8

V px̃ptqq, x̃ “ ´ lim
tÑ8

W px̃ptqq.

Hence there exists a constant C ą 0, such that

dpFrf̄ spx̃q,Frf̄ spx̃qq ą C (34)

where dpS1, S2q “ infy1PS1,y2PS2 dpy1, y2q is the distance
between two sets S1 and S2. For any i, j P I with i ‰ j,

there exists a vector wij P Rn such that wij
J

L “ pei´ejq
T .

For each pair i, j P I, we choose one wij and collect all the
wij for i, j P I in the set Ω. Notice that there are only
finite number of vectors in Ω. Then for any t, i P αpx̃ptqq
and j P βpx̃ptqq, we have x̃ptq ě x̃ and x̃ptq ď x̃. Moreover,
since x̃ptq is uniformly bounded, there exist a constant τ
which does not depend on t such that for any s P rt, t` τ s

wpsqT 9xpsq ą
C

2
. (35)

where w : R Ñ Ω is piecewise constant and wpsq “ wij

with i P αptq, j P βptq for s P rt, t ` τ s. Note that for any
T , the function wpsqT 9xpsq is Lebesgue integrable on r0, T s,
and by (35) we have

ż T

0

wpsqJ 9xpsqds ą
C

2
T (36)

which converge to infinity as T Ñ 8. This is a contradic-
tion to the fact that wpsq is globally bounded and for any

T ă 8 and i P I,
şT

0
9xipsqds is bounded. Hence we have

for any x0 R D2, all the solution satisfying xp0q “ x0 will
converge to D2. Here ends the proof.

Remark 3.5. From the proof of Theorem 3.4, we know
the maximal components of the trajectories of the system
(23) are not increasing while the minimal ones are not
decreasing. Hence (23) is a positive system (see e.g.,
Rantzer (2011)), i.e., with positive initial conditions, the
trajectories will be positive for all the time. However, the
system (15) is in general not a positive system.

Remark 3.6. The stability of system (13) under more
general assumptions than the ones in Theorem 3.4, namely
the nonlinear functions fi are different for each agent and
the underlying graph is directed which contains a spanning
tree, is still an open problem.

4. APPLICATIONS TO QUANTIZED CONSENSUS

In this section, we shall apply the results in the previous
section to the quantized multi-agent systems. There are
three types of quantizers, namely the symmetric, asym-
metric and logarithmic quantizer mainly considered in the
literature

qspzq “
Y z

∆
`

1

2

]

∆,

qapzq “
Y z

∆

]

∆, (37)

qlpzq “

#

signpzq exp
´

qs
`

lnp|z|q
˘

¯

if z ‰ 0,

0 if z “ 0,

respectively.

There are some properties about these quantizers. First,
for the symmetric quantizer qs we have: (i) |qspzq´z| ď ∆

2 ;
(ii) qspzq “ ´qsp´zq. Second, for the asymmetric quan-
tizer qa, the following relation holds: 0 ď z ´ qapzq ď ∆.
Finally, the logarithmic quantizer ql satisfies: (i) qlpzq “
´qlp´zq; (ii) |qlpzq ´ z| ă

`

expp∆
2 q ´ 1

˘

|z|.

By denoting qpxq “ pq1px1q, . . . , qnpxnq
T where qi : R Ñ

R, i “ 1, . . . , n is a quantizer, the system (13) can be
written as
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9x “ ´Lqpxq. (38)

For the case of digraphs, we consider the quantizers satisfy
that qi “ qs,@i P I and the system (38) can be written as

9x “ ´Lqspxq. (39)

In this case the set D2 defined as (22) is given as

tx P Rn | Dk P Z such that k∆1n P Frqsspxqu, (40)

which is equivalent to

Q :“tx P Rn | Dk P Z s. t. (41)

pk ´
1

2
q∆ ď xi ď pk `

1

2
q∆,@i P Iu.

It is known that without the precise measurement of the
states, exact consensus can not be achieved in princi-
ple. Instead, the notation of practical consensus will be
employed. We say that the state variables of the agents
converge to practical consensus, if xptq Ñ Q as tÑ8.

Based on Theorem 3.4, we have the following results which
is an extension of the result in Section 3 of Ceragioli et al.
(2011). More precisely, we generalize the result in Ceragioli
et al. (2011) to the digraphs containing a spanning tree.

Corollary 4.1. Suppose G is a digraph containing a span-
ning tree. Then all Filippov solutions of (39) converge
asymptotically to practical consensus, i.e., Q.

Remark 4.2. By Proposition 1 in Ceragioli (2000), the
Krasovskii and Filippov solutions of (39) are equivalent.
Hence Corollary 4.1 holds for all Krasovskii solutions as
well.

Remark 4.3. When the underlying topology is a strongly
connected digraph or connected undirected graph, Theo-
rem 3.3 implies stability of the hybrid quantized system
where agents can have different quantizers, i.e.,

9x “ ´Lq˚pxq, (42)

where q˚i can be qs, qa or ql.

5. CONCLUSIONS

In this paper, we considered a general nonlinear consensus
protocol, namely the multi-agent systems with nonlin-
ear measurement of their states. Here we assumed the
nonlinear functions to be monotonic increasing without
any continuity constraints. The solutions of the dynam-
ical systems were understood in the sense of Filippov.
We proved asymptotic stability of the systems defined
on different topologies. More precisely, we considered the
systems defined on undirected graphs or digraphs con-
taining a spanning tree. Finally, we applied the results to
quantized consensus. Future interesting problems include
the switching topology and robustness to uncertainties.
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