
Randomized Gossiping with Unreliable Communication:
Dependent or Independent Node Updates

Guodong Shi, Mikael Johansson and Karl Henrik Johansson

Abstract— This paper studies an asynchronous randomized
gossip algorithm under unreliable communication. At each
instance, two nodes are selected to meet with a given probability.
When nodes meet, two unreliable communication links are es-
tablished with communication in each direction succeeding with
a time-varying probability. It is shown that two particularly
interesting cases arise when these communication processes
are either perfectly dependent or independent. Necessary and
sufficient conditions on the success probability sequence are
proposed to ensure almost sure consensus or ϵ-consensus. Weak
connectivity is required when the communication is perfectly
dependent, while double connectivity is required when the com-
munication is independent. Moreover, it is proven that with odd
number of nodes, average preserving turns from almost forever
(with probability one for all initial conditions) for perfectly
dependent communication, to almost never (with probability
zero for almost all initial conditions) for the independent case.
This average preserving property does not hold true for general
number of nodes. These results indicate the fundamental role
the node interactions have in randomized gossip algorithms.

Keywords: Gossip algorithms, Unreliable communication,
Consensus, Convergence analysis

I. INTRODUCTION

The investigation of consensus problems has been widely
spread among research communities such as computer sci-
ence [18], [19], engineering [27], [36], [20], [28] and so-
cial science [17], [41], [42]. Deterministic consensus algo-
rithms have been extensively studied for both time-invariant
and time-varying communication graphs in the literature,
in which efforts were typically devoted to finding proper
connectivity conditions which can ensure a desired collective
convergence for the considered network [21], [22], [40], [29],
[20], [28], [25], [26]. On the other hand, various randomized
consensus algorithms have also been studied, motivated by
the stochastic nature of information flow over networks [30],
[31], [33], [34], [32], [38], [43]. Many sufficient and/or
necessary conditions have been established to guarantee a
global consensus with probability one [30], [31], [33], [34],
[37], [32] under different settings for the randomization
of the communication graphs, and convergence rates of
randomized consensus algorithms have also been investigated
[35], [33], [34].

Gossip algorithms, in which each node communicates with
no more than one neighbor in each time slot, were initially
motivated by applications in wireless sensor networks and
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peer-to-peer networks. In [12], averaging problems under
gossip communication was studied, averaging times were
established and procedures for optimizing algorithm param-
eters to obtain fast gossiping were given. In [41], a gossip
algorithm was used to describe the spread of misinformation
on social networks, where the state of each node was viewed
as its belief and the randomized gossip algorithm charac-
terized the dynamics of the belief evolution. Researchers
have been devoted to studying conditions under which gossip
algorithms converge to consensus [9], [10], establishing
convergence rates [12], and optimizing the algorithm to reach
a faster convergence [11]. However, few works have been
looking at the role that unreliable communication between
two nodes engaging in gossip play on the overall convergence
of the algorithm.

In this paper, we study randomized gossip algorithms
under unreliable communication [12], [41]. When two nodes
are selected randomly, they establish two unreliable com-
munication links with opposite directions. We suppose the
communication on each link succeeds with a time-dependent
probability. We propose necessary and sufficient conditions
on the success probability sequence to ensure a.s. consensus
or ϵ-consensus under perfectly dependent and independent
communication, respectively. The fundamental difference
with or without symmetry in the node communication is
also established, which shows that symmetry missing in
the communication may change the overall convergence
behavior of the algorithm.

The rest of the paper is organized as follows. In Section
II, some preliminary concepts are introduced. We present
the network model, the randomized gossip algorithm, and
the standing assumptions in Section III. Then main results
for perfectly dependent and independent communication are
given in Sections IV and V, respectively. Finally, concluding
remarks are given in Section VI.

II. PRELIMINARIES

In this section, we recall some basic definitions from graph
theory [3], stochastic matrices [2] and Bernoulli trials [1].

A directed graph (digraph) G = (V, E) consists of a
finite set V of nodes and an arc set E . An element e =
(i, j) ∈ E is called an arc from node i ∈ V and to
j ∈ V . If the arcs are pairwise distinct in an alternating
sequence v0e1v1e2v2 . . . ekvk of nodes vi ∈ V and arcs
ei = (vi−1, vi) ∈ E for i = 1, 2, . . . , k, the sequence is called
a (directed) path with length k. A path with no repeated
nodes is called a simple path. A path from i to j is denoted
as i → j, and the length of i → j is denoted as |i → j|.



If there exists a path from node i to node j, then node j is
said to be reachable from node i. Each node is thought to be
reachable by itself. A node v from which any other node is
reachable is called a center (or a root) of G. A digraph G is
said to be strongly connected if it contains path i → j and
j → i for every pair of nodes i and j, and quasi-strongly
connected if G has a center [8].

The converse graph, GT of digraph G = (V, E), is defined
as the graph obtained by reversing the orientation of all arcs
in E . The distance from i to j in a digraph G, d(i, j), is the
length of a shortest simple path i → j if j is reachable from
i, and the diameter of G is Diam(G)= max{d(i, j)|i, j ∈
V, j is reachable from i}.

The union of the two digraphs with the same node set
G1 = (V, E1) and G2 = (V, E2) is defined as G1 ∪ G2 =
(V, E1 ∪ E2); we denote G1 ⊆ G2 if E1 ⊆ E2.

A digraph G is said to be bidirectional if for every two
nodes i and j, (i, j) ∈ E if and only if (j, i) ∈ E . A
bidirectional graph G is said to be connected if there is a path
between any two nodes. A digraph G is said to be weakly
connected if it is connected as a bidirectional graph when
all the arc directions are ignored. Strongly or quasi-strongly
connected digraphs are hence always weakly connected.

A finite square matrix M = [mij ] ∈ Rn×n is called
stochastic if mij ≥ 0 for all i, j and

∑
j mij = 1 for all

i. For a stochastic matrix M , introduce

δ(M) = max
j

max
α,β

|mαj −mβj | (1)

and

λ(M) = 1−min
α,β

∑
j

min{mαj ,mβj}. (2)

If λ(M) < 1 we call M a scrambling matrix. The following
lemma can be found in [16].

Lemma 2.1: For any k ≥ 1 stochastic matrices
M1, . . . ,Mk,

δ(M1M2 . . .Mk) ≤
k∏

i=1

λ(Mi). (3)

A stochastic matrix M = [mij ] ∈ Rn×n is called doubly
stochastic if also MT is stochastic.

For any matrix P = [pij ] ∈ Rn×n with nonnegative
entries, we can associate a unique digraph GP = {V, EP }
with node set V = {1, . . . , n} such that (j, i) ∈ EP if and
only if pij > 0. We call GP the induced graph of P .

A sequence of independently distributed Bernoulli trials is
a finite or infinite sequence of independent random variables
B0,B1,B2, . . . , such that
(i) For each k ≥ 0, Bk equals either 0 or 1;

(ii) For each k, the probability that Bk = 1 is pk.
We call pk the success probability for time k. The sequence
of integers

0 ≤ ζ1 < ζ2 < · · · : Bζm = 1 (4)

is the Bernoulli (success) sequence associated with the
sequence of Bernoulli trials with ζm marking the time of
the m’th success.

III. PROBLEM DEFINITION

In this section, we present the considered network model
and define the problem of interest.

A. Node Pair Selection Process

Consider a network with node set V = {1, . . . , n} (n ≥
3). Let the digraph G0 = (V, E0) denote the underlying
graph of the considered network. The underlying graph
indicates potential interactions between nodes. We use the
asynchronous time model introduced in [12] to describe node
interactions. Each node meets other nodes at independent
time instances defined by a rate-one Poisson process. This is
to say, the inter-meeting times at each node follows a rate-
one exponential distribution. Without loss of generality, we
can assume that at most one node is active at one given
instance. Let xi(k) ∈ R denote the state (value) of node i at
the k’th meeting slot among all the nodes.

Node interactions are characterized by an n × n matrix
A = [aij ], where aij ≥ 0 for all i, j = 1, . . . , n and aij > 0
if and only if (j, i) ∈ E0. We assume A is a stochastic matrix.
The node pair selection process for the gossip algorithm is
defined as follows.

Definition 3.1: (Node Pair Selection Process) At each
time k ≥ 0,
(i) A node i ∈ V is drawn with probability 1/n;

(ii) Node i picks the pair (i, j) with probability aij .
Note that, by the definition of the node pair selection

process, the underlying graph G0 is actually the same as GA,
the induced graph of the meeting probability matrix A. For
G0, we use the following assumption.
A1. (Weak Connectivity) The underlying graph G0 is weakly
connected.

Remark 3.1: In order to guarantee convergence for the
gossip algorithm discussed below, A1 cannot be further
weakened since the network is essentially divided into two
isolated parts, and a convergence for the whole network is
thus impossible.

B. Node Communication Process

When pair (i, j) is selected, both nodes try to set their
states equal to the average of their current states. To this
end, two communication links with opposite directions are
established between the two nodes.

The communication process is defined as follows.
Definition 3.2: (Node Communication Process) Indepen-

dent with time and the node pair selection process,
(i) P

(
E+
ij(k)

)
= P+

k with 0 ≤ P+
k ≤ 1, where event

E+
ij(k) = {node i receives xj(k) when (i, j) is selected

at time k};
(ii) P

(
E−
ij(k)

)
= P−

k with 0 ≤ P−
k ≤ 1, where event

E−
ij(k) = {node j receives xi(k) when (i, j) is selected

at time k}.
If a node fails to receive the value of the other node,

it will keep its current state. Note that we do not impose
the independence between i receiving xj(k) and j receiving
xi(k) when pair (i, j) is selected. In fact, we will study how



such potential dependence in the communication process
influence the convergence of the gossip algorithm.

Remark 3.2: A randomized gossip algorithm can also be
viewed as belief propagation in a social network, where xi(k)
represents the belief of node i. Then the communication
process naturally captures the loss of ’trust’ when two nodes
meet and exchange opinions [41], [42]. Therefore, from a
social network viewpoint, the discussion in this paper on the
convergence property of the gossip algorithm establishes the
influence of missing ’trust’ in belief agreement.

C. Problem

Let the initial condition be x0 = x(k0) =
(x1(k0) . . . xn(k0))

T ∈ Rn, where k0 ≥ 0 is an arbitrary
integer. According to the node pair selection process and the
communication process, the iteration of the gossip algorithm
can be expressed as:

xi(k + 1) =

{
1
2xi(k) +

1
2xj(k), if M⟨i,j⟩ happens

xi(k), otherwise
(5)

where M⟨i,j⟩
k

.
=

{
pair (i, j) is selected or pair (j, i) is

selected, and i receives xj(k) at time k
}

denotes the event
that node i successfully updates at time k. According to the
definitions above, we have

P
(
M⟨i,j⟩

k

)
=

aij
n

P+
k +

aji
n

P−
k

and
P
(
M⟨j,i⟩

k

)
=

aji
n

P+
k +

aij
n

P−
k .

Therefore, the two events, M⟨i,j⟩
k and M⟨j,i⟩

k , are not nec-
essarily symmetric in their probabilities, due to the potential
asymmetry of the meeting matrix A. Moreover, the events are
not as follows from the structure of the node pair selection
process (even if A is symmetric).

In this paper, we study the convergence of the ran-
domized gossip consensus algorithm and the time it takes
for the network to reach a consensus. Let x(k; k0, x

0) =(
x1

(
k; k0, x1(k0)

)
. . . xn

(
k; k0, xn(k0)

))T

∈ Rn be the
random process driven by the randomized algorithm (5).
When it is clear from the context, we will identify
x(k; k0, x

0) with x(k).
Denote

H(k)
.
= max

i=1,...,n
xi(k), h(k)

.
= min

i=1,...,n
xi(k)

as the maximum and minimum states among all nodes, re-
spectively, and define H(k)

.
= H(k)−h(k) as the consensus

metric. We introduce the following definition.
Definition 3.3: (i) A global a.s. consensus is achieved if

P( lim
k→∞

H(k) = 0) = 1 (6)

for any initial condition x0 ∈ Rn.
(ii) Let the ϵ-computation time be

Tcom(ϵ)
.
= sup

x0∈Rn, k0≥0

inf
{
k−k0 : P

( H(k)

H(k0)
≥ ϵ

)
≤ ϵ

}
.

Then a global a.s. ϵ-consensus is achieved if

Tcom(ϵ) = O(log ϵ−1) (7)

where by definition f(ϵ) = O
(
g(ϵ)

)
means that

lim supϵ→0 f(ϵ)/g(ϵ) < ∞ is a nonzero constant.

IV. PERFECTLY DEPENDENT COMMUNICATION

In this section, we study the case when the communication
between nodes i and j is perfectly dependent, as described
in the following assumption.

A2. (Perfectly Dependent Communication) The communica-
tion events E+

ij(k) = E−
ij(k) except for a set with probability

zero for all k.

Note that, A2 is equivalent to assuming that
P(E+

ij(k)|E
−
ij(k)) = P(E−

ij(k)|E
+
ij(k)) = 1. Hence,

we have P+
k = P−

k and at each time instant, with
probability Pk

.
= P+

k = P−
k both E+

ij(k) and E−
ij(k) occur,

and with probability 1 − Pk they both fail. With A2, the
gossip algorithm can be expressed as

x(k + 1) = W (k)x(k), (8)

where W (k) is the random matrix satisfying

W (k) = W⟨ij⟩
.
= I − (ei − ej)(ei − ej)

T

2
(9)

with probability aij+aji

n Pk for i ̸= j, with em =
(0 . . . 0 1 0 . . . 0)T denoting the n × 1 unit vector whose
m’th component is 1. Moreover, P

(
W (k) = W⟨ii⟩ = I

)
=

1−
∑

i>j
aij+aji

n Pk.
Denote D = diag(d1 . . . dn) with di =

∑n
j=1(aij + aji).

The main result on a.s. consensus and ϵ-consensus for
the considered gossip algorithm under perfectly dependent
communication is stated as follows.

Theorem 4.1: Suppose A1 (Weak Connectivity) and A2
(Perfectly Dependent Communication) hold. A global a.s.
consensus is achieved if and only if

∑∞
k=0 Pk = ∞.

Theorem 4.2: Suppose A1 (Weak Connectivity) and A2
(Perfectly Dependent Communication) hold. A global a.s. ϵ-
consensus is achieved if and only if there exist a constant
p∗ > 0 and an integer T∗ ≥ 1 such that

∑m+T∗−1
k=m Pk ≥ p∗

for all m ≥ 0. In fact, we have

Tcom(ϵ) ≤ 3
[
log

(
1− λ∗

2p∗
2nT∗

)−1
]−1

log ϵ−1 +O(1), (10)

where λ∗
2 is the second smallest eigenvalue of D−(A+AT ).

Let the random variable ξ(k0, x
0) denote the consensus

limit (supposed to exist), i.e.,

lim
k→∞

xi(k) = ξ, a.s. i = 1, . . . , n. (11)

Denote xave =
∑n

i=1 xi(k0)/n be the average of the initial
values among the network. Then the following conclusion
holds showing that average is preserved almost surely with
perfectly dependent communication.



Theorem 4.3: Suppose A1 (Weak Connectivity) and A2
(Perfectly Dependent Communication) hold. Then for all
initial conditions x0 = x(k0) ∈ Rn, we have

P
( n∑

i=1

xi(k) = nxave, k ≥ k0

)
= 1. (12)

Consequently, we have P
(
ξ = xave

)
= 1 if the consensus

limit exists.
In the following two subsections, we will present the proof

of Theorems 4.1 and 4.2, respectively. Theorem 4.3 follows
trivially from the proof Theorem 4.1.

The upcoming analysis relies on the following well-known
lemmas.

Lemma 4.1: Suppose 0 ≤ bk < 1 for all k. Then∑∞
k=0 bk = ∞ if and only if

∏∞
k=0(1− bk) = 0.

Lemma 4.2: log(1− t) ≥ −2t for all 0 ≤ t ≤ 1/2.

A. Proof of Theorem 4.1

(Sufficiency.) This part of analysis is based on a similar
argument as is used in [12]. Define L(k) =

∑n
i=1 |xi(k) −

xave|2, where | · | represents the Euclidean norm of a vector
or the absolute value of a scalar.

It is easy to verify that for every possible sample and fixed
instance k, W⟨ij⟩ of the random matrix W (k) defined in (8)
and (9), we have
(i). W⟨ij⟩ is a doubly stochastic matrix, i.e., W⟨ij⟩1 = 1

and 1TW⟨ij⟩ = 1T ;
(ii). W⟨ij⟩ is a projection matrix, i.e., W⟨ij⟩ = WT

⟨ij⟩W⟨ij⟩.
Based on a similar analysis used in [12], it is not hard to

obtain

E
(
L(k + 1)

)
≤

k∏
i=k0

(
1− λ∗

2

2n
Pi

)
L(k0), (13)

where λ∗
2 is the second smallest eigenvalue of D−(A+AT ).

Therefore, based on Lemma 4.1 and Fatou’s lemma, we have

E
(

lim
k→∞

L(k)
)
≤ lim

k→∞
E
(
L(k)

)
= 0, (14)

where limk→∞ L(k) exits simply from the fact that it is non-
increasing. This immediately implies

P
(
lim
k→∞

xi(k) = xave

)
= 1. (15)

The sufficiency claim of the theorem thus holds.
(Necessity.) From the definition of the gossip algorithm, we
have

P
(
xi(k + 1) = xi(k)

)
≥ 1− Pk

n∑
j=1, j ̸=i

1

n

(
aij + aji

)
.
= 1− hiPk,

where hi =
∑

j=1, j ̸=i
1
n

(
aij + aji

)
, i = 1, . . . , n. Noting

the fact that
n∑

i=1

hi =
n∑

i=1

n∑
j=1, j ̸=i

1

n

(
aij +aji

)
= 2−

n∑
i=1

aii ≤ 2, (16)

there exists at least one node α1 ∈ V such that hα1 < 1
since n ≥ 3. Moreover, assumption A1 further guarantees
that all hi > 0, i = 1, . . . , n, which implies that there exists
another node α2 ∈ V such that hα2 < 1.

Therefore, based on Lemma 4.1,

P
(
xαi(k) = xαi(k0), k ≥ k0

)
≥

∞∏
k=k0

(
1− hαiPk

)
> 0

for i = 1, 2. Consequently, choosing xα1(k0) ̸= xα2(k0),
consensus will fail with probability σ1σ2 > 0. This com-
pletes the proof.

B. Proof of Theorem 4.2

The sufficiency proof is based on (13) and Markov’s
inequality. The necessity statement holds by a contradiction
argument investigating α1, α2 as in the proof of Theorem
4.1. We refer to [44] for details.

V. INDEPENDENT COMMUNICATION

In this section, we focus on the case when the communi-
cation between nodes i and j is independent, as described
in the following assumption.
A3. (Independent Communication) The communication
events E+

ij(k) and E−
ij(k) are independent for all k.

In order to establish the convergence results under inde-
pendent communication, beyond assumption A1, we need the
following condition for the underlying connectivity.
A4. (Double Connectivity) Both the underlying graph G0 and
its converse graph GT

0 are quasi-strongly connected.
Remark 5.1: Note that the condition of G0 being strongly

connected implies A4, but not vice versa. Moreover, it is not
hard to see that G0 = GA, and GT

0 = GAT , where GA and
GAT are the induced graph of A and AT , respectively.

We now present the main results on the convergence of
the gossip algorithm under independent communication as
follows.

Theorem 5.1: Suppose A3 (Independent Communication)
and A4 (Double Connectivity) hold. A global a.s. consensus
is achieved if and only if

∑∞
k=0(P

+
k + P−

k ) = ∞.
Denote d∗ = max

{
diam(GA), diam(GAT)

}
, where

diam(GA) and diam(GAT) represent the diameter of the
induced graph of A and AT , respectively. Take E∗ =
|E0| −

∑n
i=1 sgn(aii), where |E0| represents the number of

elements in E0, and sgn(z) is the sign function. Introduce
a∗ = min{aij : aij > 0, i, j = 1, . . . , n, i ̸= j} as the
lower bound of the nonzero and non-diagonal entries in the
meeting probability matrix A.

Theorem 5.2: Suppose A3 (Independent Communication)
and A4 (Double Connectivity) hold. A global a.s. ϵ-
consensus is achieved if and only if there exist a constant
p∗ > 0 and an integer T∗ ≥ 1 such that

∑s+T∗−1
k=m (P+

k +
P−
k ) ≥ p∗ for all m ≥ 0. In this case, we have

Tcom(ϵ) ≤
4T∗θ0/p∗

log
(
1−

(
a∗
4n

)θ0)−1
log ϵ−1 +O(1), (17)

where θ0
.
= (2d∗ − 1)(2E∗ − 1).



Theorem 5.3: Suppose A3 (Independent Communication)
holds and the consensus limit exists. Then E(ξ) = xave if
P+
k = P−

k for all k.
Theorem 5.3 holds trivially since E

(
W (k)

)
is a doubly

stochastic matrix for all k. Furthermore, we have another
conclusion showing that whenever the consensus limit ξ
exists, the average can almost never be preserved.

Theorem 5.4: Suppose A3 (Independent Communication)
holds and the number of nodes, n, is odd. Assume that
P+
k , P−

k ∈ [0, 1 − ε] for all k ≥ 0 with ε an arbitrary
positive number. Then for any k0 ≥ 0 and for almost all
initial conditions x0 = x(k0) ∈ Rn, we have

P
( n∑

i=1

xi(k) = nxave, k ≥ k0

)
= 0 (18)

if the consensus limit ξ exists.
For the non-conservativeness of A4 (Double Connectivity)

to ensure a consensus under independent communication, we
have the following conclusion, which follows from a similar
argument as Remark 3.1.

Proposition 5.1: Suppose A3 (Independent Communica-
tion) holds. Then the condition

∑∞
k=0(P

+
k + P−

k ) = ∞
always implies an a.s. consensus only if A4 (Double Con-
nectivity) holds.

A. Bernoulli Communication Links

Define two (independent) sequences of independent
Bernoulli trials

B+
0 ,B

+
1 ,B

+
2 , . . . ,

B−
0 ,B

−
1 ,B

−
2 , . . . ,

such that P
(
B+

k = 1
)
= P+

k and P
(
B−

k = 1
)
= P−

k . Then
let

B0,B1,B2, . . . ,

denote the independent Bernoulli trials given by Bk = 1 if
and only if B−

k +B+
k ≥ 1.

The following lemma holds on the success times of
{Bk}∞0 .

Lemma 5.1: P
(
for all k0 ≥ 0, Bk =

1 for infinitely many k ≥ k0
)

= 1 if and only if∑∞
k=0(P

+
k + P−

k ) = ∞.

B. Products of Transition Matrices

The considered gossip algorithm is determined by the
possible samples of the transition matrix W (k). Denote
M = M1

∪
M2 with

M1 =
{
I − ei(ei − ej)

T

2
: aij + aji > 0, i ̸= j

}
and

M2 =
{
I − (ei − ej)(ei − ej)

T

2
: aij + aji > 0, i ̸= j

}
.

Lemma 5.2: Let Mk ∈ M, k = 1, . . . , N be N ≥ 1
matrices in M. Then we have

(∪N
i=1 GMi

)
⊆ GMN ...M1

.

Perfectly Dependent  

Communication 

Independent 

Communication 

Critical Underlying 

Connectivity 
Weak Connectivity Double Connectivity 

Consensus Limit = 

Initial Average 
Almost Surely  In Expectation  

Average Preserved  
Almost Forever 

(for all n) 
Almost Never 

(for odd n) 

Fig. 1. Summary of the properties of the random gossip algorithms con-
sidered in the paper. Perfectly dependent and independent communication
gives drastically different behavior.

Moreover, all nonzero entries of MN . . .M1 have lower
bound 2−N .

Denoting d∗ = max
{
Diag(GA),Diag(GAT)

}
, where

Diag(GA) and Diag(GAT) represent the diameter of the
induced graph of A and AT , respectively. We have the
following lemma.

Lemma 5.3: Suppose the double connectivity assumption,
A4 holds. Let M1, . . . ,M2d∗−1 be 2d∗−1 products of some
finite matrices in M. If either GA ⊆ GMk

or GAT ⊆ GMk

holds for any k = 1, . . . , 2d∗ − 1, then M2d∗−1 . . .M1 is a
scrambling matrix.

We further denote M∗ = M∗
1

∪
M∗

2 with M∗
1 =

{
I −

ei(ei−ej)
T

2 : i, j = 1, . . . , n, i ̸= j
}

and M∗
2 =

{
I −

(ei−ej)(ei−ej)
T

2 : i, j = 1, . . . , n, i ̸= j
}

.
Lemma 5.4: Suppose n is an odd number. Take matrices

Mτ ∈ M∗
2, τ = 1, . . . , k, k ≥ 1 arbitrarily. Then we have

δ(Mk · · ·M1) > 0, where δ(·) is defined in (1).
The proofs of Theorems 5.1, 5.2, 5.3 and 5.4 are based

on Lemmas 5.1, 5.2, 5.3 and 5.4. Again we refer to [44] for
technical details.

VI. CONCLUSIONS

This paper presented new results on the role of unreliable
node communication in the convergence of randomized gos-
sip algorithms. The model for the random node pair selection
process is defined by a stochastic matrix which characterizes
the interactions among the nodes in the network. A pair
of nodes meets at a random instance, and two Bernoulli
communication links are then established between the nodes.
Communication on each link succeeds with a time-dependent
probability. We presented a series of necessary and sufficient
conditions on the success probability sequence to ensure
a.s. consensus or ϵ-consensus under perfectly dependent
and independent communication processes, respectively. The
results showed that the communication symmetry is critical
for the convergence.

The results are summarized in the following table. We
notice the following characteristics:

• In terms of consensus convergence of the randomized
gossip algorithm, A1 (Weak Connectivity) is critical for
perfectly dependent communication, as is A4 (Double
Connectivity) for independent communication.



• For perfectly dependent communication, the consensus
limit equals the initial average with probability one.
While for independent communication, only the ex-
pected value of the consensus limit equals the initial
average for the special case P+

k = P−
k .

• Average is preserved almost forever (with probability
one for all initial conditions) with perfectly dependent
communication, and it is preserved almost never (with
probability zero for almost all initial conditions) with
independent communication if the number of nodes is
odd.

The results illustrate that convergence behavior of dis-
tributed algorithms may heavily depend on the probabilistic
dependence properties in the information flow.
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