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Connectivity and Set Tracking of Multi-Agent
Systems Guided by Multiple Moving Leaders
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Abstract—In this paper, we investigate distributed multi-agent
tracking of a convex set specified by multiple moving leaders with
unmeasurable velocities. Various jointly connected interaction
topologies of the follower agents with uncertainties are consid-
ered in the study of set tracking. Based on the connectivity of
the time-varying multi-agent system, necessary and sufficient
conditions are obtained for set input-to-state stability and set
integral input-to-state stability for a nonlinear neighbor-based
coordination rule with switching directed topologies. Conditions
for asymptotic set tracking are also proposed with respect to the
polytope spanned by the leaders.

Index Terms—Multi-agent systems, multiple leaders, set
input-to-state stability (SISS), set integral input-to-state stability
(SiISS), set tracking.

I. INTRODUCTION

T HE last decade has witnessed tremendous interest devoted
to the investigation of collective phenomena in multiple

autonomous agents, due to broad applications in various fields
of science ranging from biology to physics, engineering, and
ecology, just to name a few [8]–[12]. Concerning the issues of
multi-agent systems and distributed design, the revolutionary
idea is underpinning a strong interaction of individual dy-
namics, communication topologies, and distributed controls.
The problem is generally very challenging due to the complex
dynamics and hierarchical structures of the systems. However,
efforts have been started with relatively simple problems such
as consensus, formation, and rendezvous, and many significant
results have been obtained.

The leader-follower coordination is an important multi-agent
control problem, where the leader may be a real leader (such
as a target, an evader, or a predefined position), or a virtual
leader (such as a reference trajectory or a specified path). In
most theoretical work, a single leader with exact measurement
is considered on multi-agent systems for each agent to follow.
However, in practical situations, multiple leaders and target
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sets with unmeasurable variables are considered to achieve
desired collective behaviors. In [8], a simple model was given to
simulate fish foraging and demonstrate the leader effectiveness
when the leaders (or informed agents) guide a school of fish to
a particular food region. In [23], a straight-line formation of a
group of agents was discussed, where all the agents converge to
the line segment specified by two edge leaders. A containment
control scheme was proposed with fixed undirected interaction
in [24], which aimed at driving a group of agents to a given
target location and making their positions contained in the
polytope spanned by multiple stationary or moving leaders
during their motion. Region following formation control was
constructed [25], where all the robots are driven and then stay
within a moving target region as a group. Moreover, different
dynamic connectivity conditions were obtained to guarantee
that the multiple leaders (or informed agents) aggregate the
whole multi-agent group within a convex target set in [26]. Ad-
ditionally, control strategies were demonstrated and analyzed to
drive a collection of mobile agents to stationary/moving leaders
with connectivity-maintenance and collision-avoidance with
fixed and switching directed network topologies in [27]. As a
matter of fact, multiple leaders are usually assigned to increase
control effectiveness, enhance communication/sensing range,
improve reliability, and optimize energy cost in multi-agent
coordination.

Connectivity plays a key role in the coordination of multi-
agent networks, which is related to the influence of agents and
controllability of the network. Due to mobility of the agents,
inter-agent topologies usually keep changing in practice.
Therefore, the various connectivity conditions to describe fre-
quently switching topologies in order to deal with multi-agent
consensus or flocking [15], [16], [18], [21]. In fact, the “joint
connection” or similar concepts are important in the analysis
of stability and convergence to guarantee multi-agent coor-
dination with time-dependent topology. Uniformly jointly
connected conditions have been employed for different prob-
lems. [28] studied the distributed asynchronous iterations,
while [22] proved the consensus of a simplified Vicsek model.
Furthermore, [14] and [6] investigated the jointly connected
coordination for second-order agent dynamics via different
approaches, while [30] worked on nonlinear continuous-time
agent dynamics with jointly connected interaction graphs.
Also, flocking of multi-agent system with state-dependent
topology was studied with non-smooth analysis in [18], [20].
What is more, the joint connection condition, which is a
generalized case of the uniformly joint connection assumption,
was discussed by Moreau, in order to achieve the consensus for
discrete-time agents in [31]. This connectivity concept
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was then extended in the distributed control analysis for the
target set convergence in [26].

It is well known that input-to-state stability (ISS) is an impor-
tant and very useful tool in the study of the stability and stabi-
lization of control systems [29], [35]. Its variants such as inte-
gral input-to-state stability (iISS) were discussed in [34]. Then
few works on set input-to-state stability (SISS) were done with
respect to fixed sets in [33]. On the other hand, ISS or related
ideas can facilitate the control analysis and synthesis with in-
terconnection conditions like small gains (referring to [29], for
example). ISS has recently been applied to the stability study of
a group of interconnected nonlinear systems [32]. Moreover, an
extended concept called leader-to-formation stability was intro-
duced to investigate the stability of the formation of a group of
agents in light of ISS properties [19]. In fact, ISS application in
multi-agent systems is promising.

The contributions of the paper include the following.
• We propose the generalized set input-to-state stability

(SISS) and set integral-input-to-state stability (SiISS) to
handle moving sets with time-varying shapes for switching
multi-agent networks.

• We study the multi-leader coordination from the ISS view-
point. With the help of SISS and SiISS, we give explicit
expressions to estimate the convergence rate and tracking
error of a group of mobile agents that try to enter the convex
hull determined by multiple leaders.

• We show relationships between the connectivity and set
tracking of the multi-agent system, and find that various
jointly connected conditions usually provide necessary
and/or sufficient conditions for distributed coordination.

• We develop a method to study SISS and SiISS for a moving
set and switching topology with graph theory and non-
smooth analysis. In fact, we cannot take the standard ap-
proaches to conventional ISS or iISS using equivalent ISS-
Lyapunov functions [34], [35]. In addition, the classic alge-
braic methods based on Laplacian may fail due to distur-
bances in nonlinear agent dynamics, uncertain leader ve-
locities, or moving multi-leader set.

This paper is organized as follows. Section II introduces some
necessary preliminaries. Section III presents problem formula-
tion, and Section IV proposes results for the convergence esti-
mation. Section V mainly reports a necessary and sufficient con-
dition for the SISS with respect to the moving multi-leader set
with switching inter-agent topologies, and then presents a set-
tracking case based on the SISS. Correspondingly, Section VI
obtains necessary and sufficient conditions for SiISS and then
shows set-tracking results related to SiISS. Finally, Section VII
gives concluding remarks.

II. PRELIMINARIES

In this section, we introduce some preliminary knowledge for
the following discussion.

First we introduce some basic concepts in graph theory (refer-
ring to [13] for details). A directed graph (digraph)
consists of a finite set of nodes and an arc
set , in which an arc is an ordered pair of distinct nodes of .

describes an arc which leaves and enters . A walk in
digraph is an alternating sequence

of nodes and arcs for
. A walk is called a path if the nodes of this walk are distinct,

and a path from to is denoted as . Node is called reach-
able from if there is a path . If the nodes are
distinct and , is called a (directed) cycle. A digraph
without cycles is said to be acyclic.

The union of the two digraphs and
is defined as if they have the same node
set. Furthermore, a time-varying digraph is defined as

with as a piecewise constant function,
where is the finite set which consists of all the possible di-
graphs with node set . Moreover, the joint digraph of in
time interval with is denoted as

(1)

Next, we recall some notations in convex analysis (see [2]). A
set is said to be convex if whenever

, and . For any set , the
intersection of all convex sets containing is called the convex
hull of , denoted by . Particularly, the convex hull of a
finite set of points is a polytope, denoted by

. In fact, we have
.

Let be a closed convex subset in and denote
, where denotes the Euclidean norm

for a vector or the absolute value of a scalar ([34], [35]). Then
we can associate to any a unique element
satisfying , where the map is called the
projector onto and

(2)

Clearly, is continuously differentiable at point , and (see
[1])

(3)

The following lemma was obtained in [26], which is useful
in what follows.

Lemma 2.1: Suppose is a convex set and
. Then

(4)

Particularly, if , then

(5)

Then we consider the Dini derivative for the following non-
smooth analysis. Let and be two real numbers and
consider a function and a point . The
upper Dini derivative of at is defined as

It is well known that when is continuous on , is non-
increasing on if and only if for any
(more details can be found in [3]). The next result is given for
the calculation of Dini derivative [4], [30].
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Fig. 1. Multiple agents (� , � � �� �� �� �) with multiple leaders (�� , � �

�� �� �).

Lemma 2.2: Let
be and . If

is the
set of indices where the maximum is reached at , then

.

III. PROBLEM FORMULATION

In this paper, we consider the set coordination problems
for a multi-agent system consisting of follower-agents
and leader-agents (see Fig. 1). The follower set is denoted
as , and the leader set is denoted as

. In what follows, we will identify follower
or leader with its index (namely, agent or leader ) if

there is no confusion.
Then we describe the communication in the multi-agent net-

work. At time , if can “see” , there is an arc
(marking the information flow) from to , and then agent

is said to be a neighbor of agent . Moreover, if “sees”
at time , there is an arc leaving from and en-

tering , and then is said to be a leader of agent . Let and
represent the set of agent ’s neighbors and the set of agent

’s leaders (that is, the leaders which are connected to agent ),
respectively. Note that, since the leaders are not influenced by
the followers, there is no arc leaving from entering .

Define as the whole agent set (including
leaders and followers). Denote as the set of all possible in-
terconnection topologies, and as a piecewise
constant switching signal function to describe the switchings
between the topologies. Thus, the interaction topology of the
considered multi-agent network is described by a time-varying
directed graph . Correspondingly,
is denoted as the communication graph among the follower
agents. Additionally, let and represent the
set of agent ’s neighbors and the set of its connected leaders
in , respectively.

As usual in the literature [22], [26], [30], an assumption is
given for the switching signal .

Assumption 1 (Dwell Time): There is a lower bound
between two switching instants.

We give definitions for the connectivity of a multi-agent
system with multiple leaders.

Definition 3.1:
1) is said to be L-connected if, for any , there

exists a leader such that there is a path from
leader to agent in at time . Moreover, is
said to be jointly L-connected in time interval if
the union graph is L-connected.

2) is said to be jointly L-connected (JLC) if the union
graph is L-connected for any .

3) is said to be uniformly jointly L-connected (UJLC)
if there exists such that the union graph

is L-connected for any .
Remark 3.1: Note that the L-connectedness describes the ca-

pacity for the follower agents to get the information from the
moving multi-leader set in the information flow, and an L-con-
nected graph may not be connected since the graph with leaders
as its nodes may not be connected. In fact, if we consider the
group of the leaders as one virtual node in , then the L-connect-
edness becomes the quasi-strong connectedness for a digraph
[5], [30].

The state of agent , is denoted as
, and the state of leader , is denoted as

. Denote and
and let the continuous function

be the weight of arc , if any, for ,
and continuous function be the weight of arc

, if any, for ; .
Then we present the multi-agent model for the active leaders

and the (follower) agents

(6)

where describes the control inputs of the leader
, which is continuous in for fixed and piecewise contin-

uous in for fixed , and is a continuous function to de-
scribe the disturbances in communication links and individual
dynamics to follower agent . Then another assumption is given
on the weight functions and .

Assumption 2 (Bounded Weights): There are
and such that ,
for any .

Remark 3.2: In (6), the weights, and , may not be con-
stant. Instead, because of the complex communication and en-
vironment uncertainties, they are dependent on time or space or
relative measurement (see nonlinear models given in [18], [26],
[30], [31]). Some models such as those studied in [26], [30] can
be written in the form of (6), while other nonlinear multi-agent
models may be transformed to this class of multi-agent systems
in some situations. Here and are written
in a general form simply for convenience, and global informa-
tion is not required in our study. For example, and can
depend only on the state of , time and , which
is certainly a special form of or . In other
words, the control laws in specific decentralized forms are still
decentralized.

Without loss of generality, we assume the initial time ,
and the initial condition and

.
Denote the time-varying polytope formed by the active

leaders

(7)
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and let

be the maximal distance for the followers away from the moving
multi-leader set .

The following definition is to describe the convergence to the
moving convex set .

Definition 3.2: The (global) set tracking (ST) with respect to
for system (6) is achieved if

(8)

for any initial condition and .
For a stationary convex set , set tracking can be reduced

to set stability and attractivity, and methods to analyze
were proposed in some existing works [26]. In fact, [24] and [27]
discussed the convergence to the static convex set determined by
stationary leaders with well designed control protocols. More-
over, if we assume that the target set is exactly the polytope with
the positions of the stationary leaders (or informed agents) as its
vertices, then the convergence to the polytope, treated as a target
set, can be obtained straightforwardly based on the results and
limit-set-based methods given in [26].

Input-to-state stability has been widely used in the stability
analysis and set input-to-state stability (SISS) for a fixed set
has been studied in [33]. To study the multi-leader set tracking
in a broad sense, we introduce a generalized SISS with re-
spect to , a moving set with a time-varying shape, for
multi-agent systems with switching interaction topologies. De-
note , , ,

and with

([35]).
A function is said to be a -class function

if it is continuous, strictly increasing, and . Moreover,
a function is a -class function if
is of class for each fixed and decreases to 0 as

for each fixed .
Definition 3.3: System (6) is said to be globally general-

ized set input-to-state stable (SISS) with respect to with
input if there exist a -function and a -function such
that

(9)

for and any initial conditions and .
Integral-input-to-state stability (iISS) was introduced as an

integral variant of ISS, which has been proved to be strictly
weaker than ISS [34]. We also introduce a definition of (gener-
alized) set integral-input-to-state stability (SiISS) with respect
to a time-varying and moving set.

Definition 3.4: System (6) is (globally) generalized set inte-
gral-input-to-state stable (SiISS) with respect to if there
exist a -function and a -function such that

(10)

for any initial conditions and .

The conventional SISS was given for a fixed set ([33]),
while the generalized SISS or SiISS is proposed with respect to
a time-varying set . In the following, we still use SISS
or SiISS instead of generalized SISS or SiISS for simplicity.

Remark 3.3: Similar to the study of conventional ISS, local
SISS and SiISS can be defined. In this paper, we focus on the
global SISS and SiISS. In fact, it is rather easy to extend research
ideas of global set tracking to study local cases.

IV. CONVERGENCE ESTIMATION

For the set tracking with respect to a moving multi-leader
set of system (6), we have to deal with the estimation of

when is a time-varying convex set, where
is a trajectory of the moving leaders in system (6) with

initial condition . Define

and

Obviously,

(11)

The following result is given to estimate the changes of the
distance between an agent and the convex hull spanned by the
leaders.

Lemma 4.1: For any and ,

Proof: Suppose

where for with . Define

, and then

Moreover,

(12)
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Also, similar analysis leads to

(13)

Therefore, (12) and (13) lead to the conclusion.
For simplicity, define ,

and

which is locally Lipschitz but may not be continuously differ-
entiable. Clearly, , and

.
Then, we get the following lemma to estimate the set conver-

gence.
Lemma 4.2: .

Proof: It is not hard to see that

Then, according to (3), we obtain

Furthermore, according to Lemma 4.1

and then it is easy to find that

Therefore,

(14)

Moreover, let denote the set containing all the agents that
reach the maximal distance away from at time . Then,
for any , according to (2), one has

(15)

for any . Furthermore, in light of Lemma 2.1, since

for any . Therefore, the conclusion follows since

according to Lemma 2.2.

V. CONNECTIVITY AND SISS

In this section, we study the SISS with respect to the convex
set spanned by the moving leaders in an important connectivity
case, uniformly jointly L-connected (UJLC) topology. Without
loss of generality, we will assume in the sequel.

A. Main Results

Suppose in this section. Then we have
the main result on SISS.

Theorem 5.1: System (6) is SISS with respect to if
and only if is UJLC.

The main difficulties to obtain the SISS inequalities in the
UJLC case are how to estimate the convergence rate in a time
interval by “pasting” time subintervals together and how to es-
timate the impact of the input to the agent motion.

To prove Theorem 5.1, we first present two lemmas to esti-
mate the distance error in the two standard cases during
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Fig. 2. ���� and � ���.

for and a constant with as the
dwell time of switching.

Lemma 5.1: If there is an arc leaving from follower
entering in for all ,

then there exist a continuous function
and a constant such that , we have

Proof: See Appendix A.1.
Lemma 5.2: If there is an arc leaving from

entering in for all , and

(16)
for constants and , then there exist a contin-
uous function and a positive constant

such that , we have

Proof: See Appendix A.2.
Remark 5.1: The following properties of and are

quite critical in the study of the set tracking with jointly L-con-
nected topology (see Fig. 2):

1) .
2) and are strictly decreasing during

.
3) and are strictly increasing during

, and , .

Next, we introduce the following lemma to state an important
property for UJLC graphs.

Lemma 5.3: If is UJLC, then, for any and ,

there is a path from some leader to follower in

with , and each arc of exists
in a time interval with length at least during .

Proof: Denote as the first moment when the interaction
topology switches within (suppose there are switch-
ings without loss of generality). If , then, for any

, there is a path from some leader with index
to agent in , where each arc stays there for at least
the dwell time during due to the definition of

. On the other hand, if , .
Then, for any , there is also a path from some leader

to agent in in with
each arc exists for at least . This completes the proof.

Remark 5.2: If there is a convex set such that ,
, that is, is a positively invariant set for the leaders, then

. By Theorem 5.1, system (6) is SISS
with respect to with as the input if is UJLC.

Sometimes, the velocities of the moving leaders and uncer-
tainties in agent dynamics (maybe because of the online estima-
tion) may vanish. To be strict, consider the following condition:

uniformly for
(17)

Clearly, (17) yields that for any , there is such
that , where is the truncated part of defined
on . Suppose (17) holds and is UJLC. Based on
Theorem 5.1, for any , there is such that

Hence, the set tracking for system (6) with respect to set
is achieved easily. On the other hand, similar to the proof of The-
orem 5.1, the necessity of the global set tracking for system (6)
with condition (17) can also be simply proved by counterexam-
ples since may be large and the distance error may accu-
mulate to a very large value over a sufficiently long period of
time. Therefore, we have the following result.

Corollary 5.1: The global set tracking with respect to
is achieved for all satisfying (17) if and only if is
UJLC.

B. Proof of Theorem 5.1

We are now in a position to prove Theorem 5.1: “If” part:
Denote with . Then we estimate
at subintervals for .

Based on Lemma 5.3, in , there must be an arc
leaving from a leader to a

follower and this arc remains for at least . Suppose
for . According

to Lemma 5.1, for any , we have

where and were defined in Lemma 5.1. Take
. Since , we obtain

(18)

for any . Furthermore, in ,
there must be a follower , , such that there
exists an arc for some , or an arc in

.
There are two cases:

1) If for ,
one also has that for any
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2) If for .
According to (11) and Lemma 4.2, one has

Thus, (18) will lead to that for any

Then, by Lemma 5.2, if we take , we
obtain that for any ,

Because , we see that

for and .
Repeating the above procedure yields

and such that, there exists ,
satisfying

(19)

where . Moreover, the nodes ,
are distinct.

Denote , and then . Thus, (19) leads to

for any , which leads to

Therefore, , we have

Again by Lemma 4.2, one has

with

and

where denotes the largest integer no greater than ,
which implies the conclusion.

“Only if” part: If is not UJLC, there is a time sequence
such that is not L-con-

nected for with .
Taking , and

, with ,
, and , ,

we obtain . Since
is not L-connected, there is

such that agent is reachable from no leader. Define
is from .

Since contains no leader and there is no arc entering
, no agent in leaves when

. Moreover, none of the followers can enter
in finite time. Therefore, for any , we have

Thus, the SISS with respect to cannot be achieved.

VI. CONNECTIVITY AND SIISS

In this section, we aim at the connectivity requirement to en-
sure the set integral-input-to-state stability (SiISS) when
is jointly L-connected (JLC).

A. Main Results

Theorem 5.1 showed an equivalent relationship between SISS
and UJLC. However, this is not true for SiISS. Here, we propose
a couple of theorems about SiISS. The proofs of these conclu-
sions can be found in the following subsection.

First of all, we propose a sufficient condition.
Theorem 6.1: System (6) is SiISS with respect to if

is UJLC.
Remark 6.1: JLC of (i.e., is L-connected for

any ) is necessary for the SiISS, though it is not sufficient. If
is not L-connected for some , there is a subset

such that no arcs enter in . Hence, the
agents in may not be SiISS for some initial conditions since
they will not be influenced by the convex leader-set after .

UJLC, which is a special case of JLC, provides a sufficient
condition for SiISS, but UJLC is not necessary to ensure SiISS.
In fact, there are other cases of JLC to make SiISS hold. Here
we consider two important special JLC cases, i.e., bidirectional
graphs and acyclic graphs.

A digraph is called a bidirectional graph when is a
neighbor of if and only if is a neighbor of , but the weight
of arc may not be equal to that of arc . The next result
shows a necessary and sufficient condition for the bidirectional
case.
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Theorem 6.2: Suppose that is bidirectional for all .
Then system (6) is SiISS if and only if is JLC.

The next lemma shows an important property for an acyclic
digraph, that is, a digraph without cycles.

Lemma 6.1: Assume that is acyclic and
is L-connected. Then there is a partition of by

, such that in graph , all the
arcs entering node set are from ; and all the arcs entering
node set , are from .

Proof: First we prove exists by contradiction.
If does not exist, every agent has neigh-

bors within in . Denote
there is an arc leaving from entering . Clearly

. Take . Then, there is such that
. Moreover, we can associate with

( cannot be , of course) such that there is a
path in ( if ). Hence, a
path in is found. Regarding as and
repeating the above procedure yields the existence of
in with . In this way, we obtain a path

in with , . Since
the nodes in are finite, there has to be for some

, which lead to a directed cycle in .
Therefore, there is to make the conclusion hold.

Next, by replacing with in , with the
same analysis we can find to make the conclusion hold.
Repeating this procedure, since the number of all the agents is
finite, there will be a constant such that .
This completes the proof.

Then we have a SiISS result for the acyclic graph case.
Theorem 6.3: Assume that is acyclic. Then

system (6) is SiISS if and only if is JLC.
Furthermore, consider the following inequality

(20)

It is not hard to obtain the following results based on Theo-
rems 6.1, 6.2, and 6.3. The proofs are omitted for space limita-
tions.

Corollary 6.1: System (6) achieves the set tracking if (20)
holds and is UJLC.

Corollary 6.2: Suppose (20) holds with either being
bidirectional for all or being acyclic. Then
system (6) achieves the global set tracking if and only if
is JLC.

Remark 6.2: In general, the condition (17) does not imply
and is not implied by the condition (20). In fact, the considered
leaders converge to some points with (20), but the leaders can go
to infinity with (17). However, if is uniformly continuous
in (which can be guaranteed once is bounded for

), (17) will then be implied by (20) according to
Barbalat’s Lemma.

Remark 6.3: Corollaries 6.1 and 6.2 are consistent with
Proposition 6 in [34], where (20) and integral-ISS together
resulted in the state stability. Moreover, the two corollaries are

also consistent with Theorems 15 and 17 in [26], respectively,
when . However, different from the limit-set-based
approach given in [26], the proposed method by virtue of (22)
and (27) also provides the estimation of the convergence rate.

Remark 6.4: Theorems 5.1 and 6.1 with Remark 6.1 proved
that for system (6), SISS is equivalent to UJLC, which implies
SiISS, while JLC is a necessary condition, namely,

Thus, , which is consistent with Corollary 4
of [34], where ISS implies iISS. Moreover, Theorems 6.2 and
6.3 show that, in either bidirectional or acyclic case,

Remark 6.5: As for set tracking (ST), Corollary 5.1 shows
that

satifying

Moreover, Corollaries 6.1 and 6.2 show that as long as (20)
holds,

in general directed cases, and

in either bidirectional or acyclic case. Usually, SISS goes with
(17) and SiISS with (20), consistent with discussions on ISS
and iISS [34], [35]. Additionally, it is worth pointing out that
the differences between Corollaries 5.1 and 6.1 result from the
fact that UJLC is necessary for SISS, but not for SiISS.

Although our results are consistent with the results on con-
ventional ISS or iISS, the analysis methods given in [34] and
[35] are mainly based on an equivalent ISS-Lyapunov function,
which cannot be applied to our cases with a moving set and
switching topologies.

B. Proofs

To establish the SiISS in the JLC case, we will analyze the
impact of the integral of input in a time interval and esti-
mate the convergence rates during this time interval by “pasting”
different time subintervals together within the interval. The fol-
lowing lemmas are given to estimate the convergence rates in
different cases.

Lemma 6.2: If there is an arc leaving from
entering in for , then there exists a
strictly decreasing function with

such that for any
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Proof: According to Lemma 4.2,
, for any .

Since there is an arc with , in for

Based on Lemma 2.1, when

Therefore,

or equivalently

where for . Thus, for any
,

with , , which
implies the conclusion.

Lemma 6.3: Suppose there is an edge leaving from
entering in and

with constants and
when . Then there is a strictly decreasing
function with such that

Lemma 6.4: Given a constant , if there is with
for constants

and , then there is a strictly increasing function
with such that

where .
The proofs of Lemmas 6.3 and 6.4 are similar to that of

Lemma 6.2, and therefore, omitted.
Lemma 6.5: Suppose is an nonempty subset.

If there are no arcs leaving from entering
in for a given constant and

, for
constants and , then

Taking gives

for by virtue of the analysis given for Lemma
4.2. Then Lemma 6.5 can be obtained straightforwardly.

Now we are ready to prove Theorems 6.1, 6.2, and 6.3.
Proof of Theorem 6.1: Denote with

defined in Lemma 5.3. If is L-connected, there
has to be an arc for

leaving from a leader entering and this
arc is kept there for a period of at least . Invoking Lemmas
6.2 and 6.4, we see that for any

where .
Furthermore, when , there must be a

follower , such that there exists an arc
for some , or an arc when

. According to Lemmas 6.3 and 6.4, for any
, we have

where with .
Repeating the above procedure yields

for , , where

(21)

and . Moreover, the
nodes of , are distinct.
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Denote from (21). Then we obtain

It follows immediately that for any

Based on Lemma 4.2 and (11), we have

(22)

where

Hence, (10) holds with since
, which completes the proof.

Proof of Theorem 6.2: The “only if” part is quite obvious, so
we focus on the “if” part.

Since is JLC, there exists a sequence of time instants

(23)

such that

(24)

and is L-connected for . Moreover,
each arc in will be kept for at least the dwell
time during the time interval , ;

.
Then we estimate during . Since

is L-connected, there is a time interval
such that there is an edge

between a leader and a follower
for . Based on Lemma 6.2,

where .

Furthermore, we define ,
there is an edge leaving from entering

, and
there is an edge leaving from entering .

Noting that is L-connected, thus, according to
Lemma 6.5, one has

Further, by Lemma 6.4,

(25)

for , where . Moreover, according
to Lemma 6.3,

(26)

for . Because , (25) and (26) lead to

where .

Next, define ,
there is an edge leaving from entering

, and
there is an edge leaving from entering when .

Similarly, from Lemma 6.5, by ,
, one has

Repeating the process gives
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for until
for some such that

Hence,

According to Lemma 6.5, we obtain

It is obvious to see that and .
Therefore, denote , then for ,

Thus, similar to the proof of Theorem 6.1, we also have

(27)

where when , ,
and

Then it is obvious to see that (27) leads to Theorem 6.2 imme-
diately.

Proof of Theorem 6.3: We also focus on the “if” part since
the “only if” part is quite obvious.

Because is JLC, there is an infinite sequence in the form
of (23) with (24) such that is L-connected for

.
Then, for any , there is such that there

is an arc leaving from entering in . Hence, recalling
Lemma 6.2,

with a constant . According to Lemma 6.1, for any
, we have that for any ,

Again by Lemmas 6.3 and 6.1, for any and
, we see that

where . Similarly, with ,
, we have

for any and , , which
leads to

Similar to the proof of Theorem 6.2, SiISS can be obtained.

VII. CONCLUSION

This paper addressed multi-agent set tracking problems with
multiple leaders and switching communication topologies. At
first, the equivalence between UJLC and the SISS of a group of
uncertain agents with respect to a moving multi-leader set was
shown. Then it was shown that UJLC is a sufficient condition
for SiISS of the multi-agent system with disturbances in agent
dynamics and unmeasurable velocities in the dynamics of the
leaders. Moreover, when communication topologies are either
bidirectional or acyclic, JLC is a necessary and sufficient condi-
tion for SiISS. Also, set tracking was achieved in special cases
with the help of SISS and SiISS.

Multiple leaders, in some practical cases, can provide an
effective way to overcome the difficulties and constraints in
the distributed design. On the other hand, ISS-based tools were
proved to be very powerful in the control synthesis. Therefore,
the study of multiple active leaders and related ISS tools
deserves more attention.

APPENDIX A
PROOF OF LEMMA 5.1

Due to by Lemma 4.2 and (11), we
obtain

(28)
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Since there is an arc with and in
for , based on (15), one has

Thus, with (14) and the fact that
, we obtain

(29)

for .
Then, by Lemma 2.1, if ,

for , then

(30)

On the other hand, if , , from
Lemma 2.1 and (28),

(31)

. Therefore, with (29), (30) and (31), it follows
that

where , or equivalently,

for . As a result, for any , we
have

(32)

where ,

and , because
.

Then we evaluate for no matter
whether there is any connection between the followers and the
leaders. Similar analysis gives

which is equivalent to

Denote . From (32), when ,
we have

(33)

where and

, . Therefore,
based on (32) and (33)

with

which is continuous. Thus, the conclusion follows.
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APPENDIX B
PROOF OF LEMMA 5.2

If there is an arc in for , then
based on (28), Lemmas 2.1 and 4.1, it is easy to see

for . Then, if (16) holds, as done in the proof
of Lemma 5.1, we can obtain

where and
.

Here are two cases.
• when

(34)

where

, and
.

• when : Denote . By (34),
similarly, we have

(35)

where
and , ,
because

With (34) and (35), we have

with

which is continuous. Thus, the conclusion follows.
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