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MULTIAGENT SYSTEMS WITH COMPASSES∗

ZIYANG MENG† , GUODONG SHI‡ , AND KARL HENRIK JOHANSSON§

Abstract. This paper investigates agreement protocols over cooperative and cooperative-
antagonistic multiagent networks with coupled continuous-time nonlinear dynamics. To guarantee
convergence for such systems, it is common in the literature to assume that the vector field of each
agent is pointing inside the convex hull formed by the states of the agent and its neighbors, given
that the relative states between each agent and its neighbors are available. This convexity condition
is relaxed in this paper, as we show that it is enough that the vector field belongs to a strict tangent
cone based on a local supporting hyperrectangle. The new condition has the natural physical in-
terpretation of requiring shared reference directions in addition to the available local relative states.
Such shared reference directions can be further interpreted as if each agent holds a magnetic compass
indicating the orientations of a global frame. It is proved that the cooperative multiagent system
achieves exponential state agreement if and only if the time-varying interaction graph is uniformly
jointly quasi-strongly connected. Cooperative-antagonistic multiagent systems are also considered.
For these systems, the relation has a negative sign for arcs corresponding to antagonistic interactions.
State agreement may not be achieved, but instead it is shown that all the agents’ states asymptoti-
cally converge, and their limits agree componentwise in absolute values if and in general only if the
time-varying interaction graph is uniformly jointly strongly connected.
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1. Introduction. In the last decade, coordinated control of multiagent systems
has attracted extensive attention due to its broad applications in engineering, physics,
biology, and social sciences, e.g., [6, 15, 22, 26, 36]. A fundamental idea is that by
carefully implementing distributed control protocols for each agent, collective tasks
can be reached for the overall system using only neighboring information exchange.
Several important results have been established, e.g., in the area of mobile systems in-
cluding spacecraft formation flying, rendezvous of multiple robots, and animal flocking
[18, 8, 34].

Agreement protocols, where the goal is to drive the states of the agents to reach a
common value using local interactions, play a basic role in coordination of multiagent
systems. The state agreement protocol and its fundamental convergence properties
were established for linear systems in the classical work [35]. The convergence of the
linear agreement protocol has been widely studied since then for both continuous-
time and discrete-time models, e.g., [5, 15, 29]. Many understandings have been
established, such as the explicit convergence rate in many cases [7, 24, 27, 28]. A
major challenge is how to quantitatively characterize the influence of a time-varying

∗Received by the editors August 15, 2014; accepted for publication (in revised form) June 17, 2015;
published electronically September 22, 2015. A brief version of this work appears in Proceedings of
the 33rd Chinese Control Conference, Nanjing, China, 2014.

http://www.siam.org/journals/sicon/53-5/98228.html
†Department of Precision Instrument, Tsinghua University, Beijing, China

(ziyang.meng@tum.de).
‡College of Engineering and Computer Science, The Australian National University, Canberra,

Australia (guodong.shi@anu.edu.au).
§ACCESS Linnaeus Centre, School of Electrical Engineering, Royal Institute of Technology, Stock-

holm, Sweden (kallej@ee.kth.se). This work has been supported in part by the Knut and Alice Wal-
lenberg Foundation, the Swedish Research Council, and the Alexander von Humboldt Foundation of
Germany.

3057

http://www.siam.org/journals/sicon/53-5/98228.html
mailto:ziyang.meng@tum.de
mailto:guodong.shi@anu.edu.au
mailto:kallej@ee.kth.se


3058 Z. MENG, G. SHI, AND K. H. JOHANSSON

communication graph on the agreement convergence. Agreement protocols with non-
linear dynamics have also drawn attention in the literature, e.g., [4, 14, 19, 25, 30, 31].
Due to the complexity of nonlinear dynamics, it is in general difficult to obtain ex-
plicit convergence rates for these systems. All the above studies on linear or nonlinear
multiagent dynamics are based on the standing assumption that agents in the net-
work are cooperative. Recently, motivated from opinion dynamics evolving over social
networks [10, 37], state agreement problems over cooperative-antagonistic networks
were introduced [1, 2]. In such networks, antagonistic neighbors exchange their states
with opposite signs compared to cooperative neighbors.

In most of the work discussed above, a convexity assumption plays an essential
role in the local interaction rule for reaching state agreement. For discrete-time mod-
els, it is usually assumed that each agent updates its state as a convex combination
of its neighbors’ states [5, 15]. A precise characterization of this convexity condition
guaranteeing asymptotic agreement was established in [25]. For continuous-time mod-
els, an interpretation of this assumption is that the vector field for each agent must
fall into the relative interior of a tangent cone formed by the convex hull of the relative
state vectors in its neighborhood [19]. The recent work [21] generalized agreement
protocols to convex metric spaces, but a convexity assumption for the local dynamics
continued to play an important role in ensuring agreement convergence.

In this paper, we show that the convexity condition for agreement seeking of mul-
tiagent systems can be relaxed at the cost of shared reference directions. Such shared
reference directions can be easily obtained by a magnetic compass, with the help of
which the direction of each axis can be observed from a prescribed global coordi-
nate system. Using the relative state information and the shared reference direction
information, each agent can derive a strict tangent cone from a local supporting hyper-
rectangle. This cone defines the feasible set of local control actions for each agent to
guarantee convergence to state agreement. In fact, the agents just need to determine,
through sensing or communication, the relative orthant of each of their neighbors’
states. The vector field of an agent can be outside of the convex hull formed by the
states of the agent and its neighbors, so this new condition provides a relaxed condi-
tion for agreement seeking. We remark that a compass is naturally present in many
systems. For instance, the classical Vicsek’s model [36] inherently uses “compass”-
like directional information and the calculation of each agent’s heading relies on the
information where the common east is. In addition, scientists observed that the Euro-
pean robin bird can detect and navigate through the Earth’s magnetic field, providing
them with biological compasses in addition to their normal vision [33]. Engineering
systems, such as multirobot networks, can be equipped with magnetic compasses at
a low cost [13, 32].

Under a general definition of nonlinear multiagent systems with shared reference
directions, we establish two main results:

• For cooperative networks, we show that the underlying graph associated with
the nonlinear interactions being uniformly jointly quasi-strongly connected
is necessary and sufficient for exponential agreement. The convergence rate
is explicitly given. This improves the existing results based on convex hull
conditions [25, 19].

• For cooperative-antagonistic networks, we propose a general model following
the sign-flipping interpretation along an antagonistic arc introduced in [2]. We
show that when the underlying graph is uniformly jointly strongly connected,
irrespective with the sign of the arcs, all the agents’ states asymptotically
converge, and their limits agree componentwise in absolute values.
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The remainder of the paper is organized as follows. In section 2, we give some
mathematical preliminaries on convex sets, graph theory, and Dini derivatives. The
nonlinear multiagent dynamics, the interaction graph, the shared reference direction,
and the agreement metrics are given in section 3. The main results and discussions are
presented in section 4. The proofs of the results are presented in sections 5 and 6, re-
spectively, for cooperative and cooperative-antagonistic networks. A brief concluding
remark is given in section 7.

2. Preliminaries. In this section, we introduce some mathematical preliminar-
ies on convex analysis [3], graph theory [12], and Dini derivatives [11].

2.1. Convex analysis. For any nonempty set S ⊆ R
d, ‖x‖S = infy∈S ‖x − y‖

is called the distance between x ∈ R
d and S, where ‖ · ‖ denotes the Euclidean norm.

A set S ⊂ R
d is called convex if (1− ζ)x+ ζy ∈ S when x ∈ S, y ∈ S, and 0 ≤ ζ ≤ 1.

A convex set S ⊂ R
d is called a convex cone if ζx ∈ S when x ∈ S and ζ > 0. The

convex hull of S ⊂ R
d is denoted co(S) and the convex hull of a finite set of points

x1, x2, . . . , xn ∈ R
d is denoted co{x1, x2, . . . , xn}.

Let S be a convex set. Then there is a unique element PS(x) ∈ S, called the
convex projection of x onto S, satisfying ‖x − PS(x)‖ = ‖x‖S associated to any
x ∈ R

d. It is also known that ‖x‖2S is continuously differentiable for all x ∈ R
d, and

its gradient can be explicitly computed [3]:

∇‖x‖2S = 2(x− PS(x)).(2.1)

Let S ⊂ R
d be convex and closed. The interior and boundary of S is denoted by

int(S) and ∂S, respectively. If S contains the origin, the smallest subspace containing
S is the carrier subspace denoted by cs(S). The relative interior of S, denoted by
ri(S), is the interior of S with respect to the subspace cs(S) and the relative topology
used. If S does not contain the origin, cs(S) denotes the smallest subspace containing
S − z, where z is any point in S. Then, ri(S) is the interior of S with respect to the
subspace z + cs(S). Similarly, we can define the relative boundary rb(S).

Let S ⊂ R
d be a closed convex set and x ∈ S. The tangent cone to S at x

is defined as the set T (x,S) = {z ∈ R
d : lim infζ→0

‖x+ζz‖S
ζ = 0}. Note that if

x ∈ int(S), then T (x,S) = R
d. Therefore, the definition of T (x,S) is essential only

when x ∈ ∂S. The following lemma can be found in [3] and will be used.
Lemma 1. Let S1,S2 ⊂ R

d be convex sets. If x ∈ S1 ⊂ S2, then T (x,S1) ⊂
T (x,S2).

2.2. Graph theory. A directed graph G consists of a pair (V , E), where V =
{1, 2, . . . , n} is a finite, nonempty set of nodes and E ⊆ V ×V is a set of ordered pairs
of nodes, denoted arcs. The set of neighbors of node i is denoted Ni := {j : (j, i) ∈ E}.
A directed path in a directed graph is a sequence of arcs of the form (i, j), (j, k), . . . .
If there exists a path from node i to j, then node j is said to be reachable from node
i. If for node i, there exists a path from i to any other node, then i is called a root
of G. G is said to be strongly connected if each node is reachable from any other node.
G is said to be quasi-strongly connected if G has a root.

2.3. Dini derivatives. Let D+V (t, x(t)) be the upper Dini derivative of

V (t, x(t)) with respect to t, i.e., D+V (t, x) = lim supτ→0+
V (t+τ,x(t+τ))−V (t,x(t))

τ . The
following lemma [9] will be used for our analysis.

Lemma 2. Suppose for each i ∈ V, Vi : R×M → R is continuously differentiable.
Let V (t, x) = maxi∈V Vi(t, x), and let V̂(t) = {i ∈ V : Vi(t, x(t)) = V (t, x(t))} be
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the set of indices where the maximum is reached at time t. Then D+V (t, x(t)) =
maxi∈̂V(t) V̇i(t, x(t)).

3. Multiagent network model. In this section, we present the model of the
considered multiagent systems, introduce the corresponding interaction graph, and
define some useful geometric concepts used in the control laws.

Consider a multiagent system with agent set V = {1, . . . , n}. Let xi ∈ R
d denote

the state of agent i. Let x = (xT1 , x
T
2 , . . . , x

T
n )

T and denote D = {1, 2, . . . , d}.
3.1. Nonlinear multiagent dynamics. Let P be a given (finite or infinite)

set of indices. An element in P is denoted by p. For any p ∈ P, we define a function
fp(x1, x2, . . . , xn) : R

dn → R
dn associated with p, where

fp(x1, x2, . . . , xn) =

⎛⎜⎝ f1
p (x1, x2, . . . , xn)

...
fnp (x1, x2, . . . , xn)

⎞⎟⎠
with f ip : R

dn → R
d, i = 1, 2, . . . , n.

Let σ(t) : [t0,∞) → P be a piecewise constant function, so there exists a sequence
of increasing time instances {tl}∞0 such that σ(t) remains constant for t ∈ [tl, tl+1)
and switches at t = tl.

The dynamics of the multiagent systems is described by the switched nonlinear
system

(3.1) ẋ(t) = fσ(t)(x(t)).

We place some mild assumptions on this system.
Assumption 1. There exists a lower bound τd > 0, such that inf l(tl+1−tl) ≥ τd.
Assumption 2. fp(x) is uniformly locally Lipschitz on R

dn, i.e., for every x ∈
R
dn, we can find a neighborhood Uα(x) = {y ∈ R

dn : ‖y − x‖ ≤ α} for some α > 0
such that there exists a real number L(x) > 0 with ‖fp(a)− fp(b)‖ ≤ L(x)‖a− b‖ for
any a, b ∈ Uα(x) and p ∈ P.

Under Assumptions 1 and 2, the Carathéodory solutions of (3.1) exist for arbitrary
initial conditions, and they are absolutely continuous functions for almost all t on
the maximum interval of existence [11]. All our further discussions will be on the
Caratheodory solutions of (3.1) without specific mention.

3.2. Interaction graph. Having the dynamics defined for the considered multi-
agent system, similar to [19], we introduce next its interaction graph.

Definition 1. The graph Gp = (V , Ep) associated with fp is the directed graph
on node set V = {1, 2, . . . , n} and arc set Ep such that (j, i) ∈ Ep if and only if
f ip depends on xj , i.e., there exist xj , xj ∈ R

d such that f ip(x1, . . . , xj , . . . , xn) �=
f ip(x1, . . . , xj , . . . , xn).

The set of neighbors of node i in Gp is denoted by Ni(p). The dynamic interaction
graph associated with system (3.1) is denoted by Gσ(t) = (V , Eσ(t)). The joint graph
of Gσ(t) during time interval [t1, t2) is defined by Gσ(t)([t1, t2)) =

⋃
t∈[t1,t2)

G(t) =

(V ,
⋃
t∈[t1,t2)

Eσ(t)). We impose the following definition on the connectivity of Gσ(t);
cf. [31].

Definition 2. Gσ(t) is uniformly jointly quasi-strongly (respectively, strongly)
connected if there exists a constant T > 0 such that G([t, t + T )) is quasi-strongly
(respectively, strongly) connected for any t ≥ t0.
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Fig. 1. An example of the γ-strict tangent cone.

For each p ∈ P, the node relation along an interaction arc (j, i) ∈ Ep may be
cooperative, or antagonistic. We assume that there is a sign, +1 or −1, associated with
each (j, i) ∈ Ep, denoted by sgnijp . To be precise, if j is cooperative to i, sgnijp = +1,

and if j is antagonistic to i, sgnijp = −1.

Definition 3. If sgnijp = +1 for all (j, i) ∈ Ep and for all p ∈ P, the con-
sidered multiagent network is called a cooperative network. Otherwise, it is called a
cooperative-antagonistic network.

3.3. Shared reference direction, hyperrectangle, and tangent cone. We
assume that each agent has access to shared reference directions with respect to a
common Cartesian coordinate system. We use (−→r1 ,−→r2 , . . . ,−→rd) to represent the basis
of that Rd Cartesian coordinate system. Here −→rk = (0, . . . , 0, 1, 0, . . . , 0) denotes the
unit vector in the direction of axis k ∈ D.

A hyperrectangle is the generalization of a rectangle to higher dimensions. An
axis-aligned hyperrectangle is a hyperrectangle subject to the constraint that the
edges of the hyperrectangle are parallel to the Cartesian coordinate axes.

Definition 4. Let C ⊂ R
d be a bounded set. The supporting hyperrectangle H(C)

is the axis-aligned hyperrectangle H(C) = [min(C)1,max(C)1] × [min(C)2,max(C)2] ×
· · · × [min(C)d,max(C)d], where by definition min(C)k := miny∈C yk, max(C)k :=
maxy∈C yk, and yk denotes the kth entry of y.

In other words, a supporting hyperrectangle of a bounded set C is an axis-aligned
minimum bounding hyperrectangle.

Definition 5. Let A ⊂ R
d be an axis-aligned hyperrectangle and γ > 0 a

constant. The γ−strict tangent cone to A at x ∈ R
d is the set

(3.2) Tγ(x,A) =

{
cs(A) if x ∈ ri(A),

T (x,A)
⋂
k∈I{z ∈ R

d : |〈z,−→rk〉| ≥ γDk(A)} otherwise,

where I = {k ∈ D : x ∈ rbk(A)}, rbk(A) denotes the two facets of A perpendicular to
the axis −→rk , and Dk(A) = max(A)k −min(A)k denotes the side length parallel to the
axis −→rk .

Figure 1 gives an example of the γ-strict tangent cone to A at x.
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Fig. 2. Convex hull, supporting hyperrectangle, strict tangent cone, and feasible vectors f ip
satisfying Assumption 3.

3.4. Agreement metrics. We next define uniformly asymptotic agreement and
exponential agreement in this section.

Definition 6. The multiagent system (3.1) is said to achieve uniformly asymp-
totic agreement on S0 ⊆ R

d if
(i) pointwise uniform agreement can be achieved, i.e., for all η ∈ J , and ε > 0,

there exists δ(ε) > 0 such that for all t0 ≥ 0, ‖x(t0)− η‖ < δ ⇒ ‖x(t)−
η‖ < ε ∀t ≥ t0, where x(t0) ∈ Sn0 , and the agreement manifold is defined as
J = {x ∈ Sn0 : x1 = x2 = · · · = xn} and Sn0 denotes S0 × S0 × . . .S0; and

(ii) uniform agreement attraction can be achieved, i.e., for all ε > 0, there exist
η(x(t0)) ∈ J and T (ε) > 0 such that for all t0 ≥ 0, ‖x(t)−η‖ < ε ∀t ≥ t0+T.

Definition 7. The multiagent system (3.1) is said to achieve exponential state
agreement on S0 ⊆ R

d if
(i) pointwise uniform agreement can be achieved; and
(ii) exponential agreement attraction can be achieved, i.e., there exist η(x(t0)) ∈

J and k(S0) > 0, λ(S0) > 0, such that for all t0 ≥ 0, ‖x(t)−η‖ ≤ ke−λ(t−t0)‖
x(t0)− η‖.

4. Main results. In this section, we state the main results of the paper.

4.1. Cooperative networks. We first study the convergence property of the
nonlinear switched system (3.1) over a cooperative network defined by an interaction
graph. Introduce the local convex hull Cip(x) = co{xi, xj : j ∈ Ni(p)}. In order to
achieve exponential agreement, we propose the following strict tangent cone condition
for the feasible vector field.

Assumption 3. For all i ∈ V, p ∈ P, and x ∈ R
dn, it holds that f ip(x) ∈

Tγ(xi,H(Cip(x))).
In Assumption 3, the vector f ip can be chosen freely from the set Tγ(xi,H(Cip(x))).

Hence, the assumption specifies constraints on the feasible controls for the multi-
agent system. Here Cip(x) denotes the convex hull formed by agent i and its neigh-

bors, H(Cip(x)) denotes the local supporting hyperrectangle of the set Cip(x), and

Tγ(xi,H(Cip(x))) denotes the γ-strict tangent cone to H(Cip(x)) at xi. Figure 2 gives
an example of the convex hull and the supporting hyperrectangle formed by agent 1
and its neighbors. Two feasible vectors f1

p are also presented.
In order to implement a controller compatible with Assumption 3, the agents

need to determine, through local sensing or communication, the relative orthant of



MULTIAGENT SYSTEMS WITH COMPASSES 3063

each of their neighbors’ states. This can be realized, for instance, if each agent is
capable of measuring the relative states with respect to its neighbors and is aware of
the direction of each axis of a prescribed global coordinate system. More specifically,
when the agent is in the interior of the hyperrectangle, the vector field for the agent
can be chosen arbitrarily. When the agent is on the boundary of its supporting
hyperrectangle, the feasible control is any direction pointing inside the tangent cone
of its supporting hyperrectangle. Note that the absolute state of the agents is not
needed, but each agent needs to identify d − 1 absolute directions such that it can
identify the direction of its neighbors with respect to itself. For example, for the
planar case d = 2, in addition to the relative state measurements with respect to
its neighbors, each agent just needs to be equipped with a compass. The compass
together with relative state measurements provides the quadrant location information
of the neighbors.

We state an exponential agreement result for the cooperative multiagent systems.
Theorem 1. Suppose S0 is compact and that Assumptions 1, 2, and 3 hold.

Then, the cooperative multiagent system (3.1) achieves exponential agreement on S0

if and only if its interaction graph Gσ(t) is uniformly jointly quasi-strongly connected.
In order to compare the proposed “supporting hyperrectangle condition” with

respect to the usual convex hull condition [25, 19], we introduce the following as-
sumption, which is a weaker condition than Assumption 3.

Assumption 4. For all i ∈ V, p ∈ P, and x ∈ R
dn, it holds that f ip(x) ∈

ri
(
T (xi,H(Cip(x)))

)
.

We next present a uniformly asymptotic agreement result based on the relative
interior condition of a tangent cone formed by the supporting hyperrectangle.

Proposition 1. Suppose S0 is compact and that Assumptions 1, 2, and 4 hold.
Then, the cooperative multiagent system (3.1) achieves uniformly asymptotic agree-
ment on S0 if and only if its interaction graph Gσ(t) is uniformly jointly quasi-strongly
connected.

The proofs of Theorem 1 and Proposition 1 are deferred to section 5.
Figure 3 illustrates the relative interior of a tangent cone of the convex hull

(Assumption A2 of [19]), relative interior of a tangent cone of the supporting hyper-
rectangle (Assumption 4), and strict tangent cone of the supporting hyperrectangle
(Assumption 3). It is obvious that the vector fields can be chosen more freely un-
der Assumption 4 than under Assumption A2 of [19]. On the other hand, the strict
tangent cone condition is a more strict condition than the relative interior condition
of a tangent cone. However, exponential agreement can be achieved under a strict
tangent cone condition while only uniformly asymptotic agreement is achieved under
the relative interior condition of a tangent cone.

Remark 1. Theorem 1 and Proposition 1 are consistent with the main results
in [19, 21, 25]. Our analysis relies on some critical techniques developed in [17, 19].
Proposition 1 allows that the vector field belongs to a larger set compared with the
convex hull condition proposed in [19, 21, 25]. In addition, we allow the agent dynam-
ics to switch over a possibly infinite set and we show exponential agreement and derive
in the proof of Theorem 1 the explicit exponential convergence rate. It follows that by
sharing reference directions in addition to the available local information, agreement
of multiagent systems has an enlarged set of interactions and faster convergence speed
compared with the case of using only local information.

To further illustrate Assumptions 3 and 4, we discuss two examples.
Example 1. Let us first consider Vicsek’s model [36]. In particular, consider agent

i ∈ V , moving in the plane with position (xi(t), yi(t)), the same absolute velocity v,
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Fig. 3. The relative interiors of a tangent cone of the convex hull and the supporting hyper-
rectangle, and γ-strict tangent cone of the supporting hyperrectangle.

and the heading θi(t) at discrete time t = 0, 1, . . . . The position and angle updates
are described by

xi(t+ 1) = xi(t) + v cos θi(t),(4.1)

yi(t+ 1) = yi(t) + v sin θi(t),(4.2)

θi(t+ 1) = arctan

∑
j∈Ni(t) sin θj(t)∑
j∈Ni(t) cos θj(t)

(4.3)

∀ i ∈ V , where by convention it is assumed that i ∈ Ni(t). From (4.3), we see that
Vicsek’s model inherently uses a “compass”-like directional information. Then, similar
to the analysis of Theorem 1, we can easily show that the first quadrant is an invariant
set for (4.1) and (4.2). This can be verified by the fact that θi(t + 1) ∈ [0, π2 ] when
θj(t) ∈ [0, π2 ] ∀ j ∈ Ni(t). Figure 4 illustrates this point for three agents. At time
t, the vector fields of all the agents are pointing inside the first quadrant, so agents
construct an “unbounded” hyperrectangle (both the upper and right bounds are at
infinity). This “unbounded” hyperrectangle is the invariant set for the positions of all
the agents. The existence of left and lower bounds of the hyperrectangle guarantees
that agents 1 and 2 satisfy Assumption 3. However, it is easy to verify that agent 3
does not satisfy Assumption 3 since the upper and right bounds of the hyperrectangle
do not exist. Therefore, position agreement cannot be achieved in general for Vicsek’s
model.

Example 2. Consider the following dynamics for each agent i ∈ V :

(4.4) ẋi = f iσ(t)(x) = Riσ(t)(x)
∑

j∈Ni(σ(t))
aij(x)

(
xj − xi

)
,

where aij(x) > 0 is a continuous function representing the weight of arc (j, i), and
Riσ(t)(x) ∈ R

d×d is a state-dependent rotation matrix which is continuous in x for

any fixed σ ∈ P. Certainly the dynamics described in (4.4) is beyond the convex hull
agreement protocols [19, 21, 25]. With the results in Theorem 1 and Proposition 1, it
becomes evident that the existence of Riσ(t)(x) may still guarantee agreement as long

as Riσ(t)(x) rotates the convex hull vector field,
∑

j∈Ni(σ(t)) aij(x)
(
xj − xi

)
, within

the proposed tangent cones given by the local supporting hyperrectangle. Certainly
this does not mean that Riσ(t)(x) should be sufficiently small since from Figure 3 this
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Fig. 4. An invariant set of Vicsek’s model.

rotation angle can be large for proper x under certain interaction rules. This can also
be viewed as a structural robustness of the proposed “compass”-based framework.

4.2. Cooperative-antagonistic networks. Next, we study the convergence

property of the cooperative-antagonistic networks. Define Cip(x) := co{xi, xjsgnijp :
j ∈ Ni(p)}. We impose the following assumption.

Assumption 5. For all i ∈ V, p ∈ P, and x ∈ R
dn, it holds that f ip(x) ∈

Tγ(xi,H(Cip(x))).
Assumption 5 follows the model for antagonistic interactions introduced in [2],

where simple examples can be found on that state agreement cannot always be
achieved for cooperative-antagonistic networks. Instead, it is possible that agents
converge to values with opposite signs, which is known as bipartite consensus [2]. We
present the following result for cooperative-antagonistic networks.

Theorem 2. Let Assumptions 1, 2, and 5 hold. Then, if (and in general only if)
the interaction graph Gσ(t) is uniformly jointly strongly connected, all the agents’ tra-
jectories asymptotically converge for cooperative-antagonistic multiagent system (3.1),
and their limits agree componentwise in absolute values for every initial time and ini-
tial state.

Here by “in general only if,” we mean that we can always construct simple exam-
ples with the fixed interaction rule, for which strong connectivity is necessary for the
result in Theorem 2 to stand. The proof of Theorem 2 will be presented in section
6. Compared with the results given in [2], Theorem 2 requires no conditions on the
structural balance of the network. Theorem 2 shows that every positive or negative
arc contributes to the convergence of the absolute values of the nodes’ states, even
for general nonlinear multiagent dynamics.

The exponential agreement and uniformly asymptotical agreement results given in
Theorem 1 and Proposition 1 rely on uniformly jointly quasi-strong connectivity, while
the result in Theorem 2 needs uniformly jointly strong connectivity. For cooperative
networks, we establish the exponential convergence rate in the proof of Theorem 1. In
contrast, for cooperative-antagonistic networks in Theorem 2, the convergence speed
is unclear. We conjecture that exponential convergence might not hold in general
under the conditions of Theorem 2. The reason is that Lemmas 5 and 7 given in
section 5 cannot be recovered for cooperative-antagonistic networks.
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We believe that differences between Theorems 1 and 2 discussed in the previous re-
marks reveal some important distinctions of cooperative and cooperative-antagonistic
networks.

5. Cooperative multiagent systems. In this section, we focus on the case
of cooperative multiagent systems. We will prove Theorem 1 and Proposition 1 by
analyzing a contraction property of (3.1), with the help of a series of preliminary
lemmas.

5.1. Invariant set. We introduce the following definition.

Definition 8. A set M ⊂ R
dn is an invariant set for the system (3.1) if for all

t0 ≥ 0, x(t0) ∈ M =⇒ x(t) ∈ M ∀t ≥ t0.

For all k ∈ D, define Mk(x(t)) = maxi∈V{xik(t)}, mk(x(t)) = mini∈V{xik(t)},
where xik denotes kth entry of xi. In addition, define the supporting hyperrectangle by
the initial states of all agents as H0 := H(C(x(t0))), where C(x) = co{x1, x2, . . . , xn}.

In the following lemma, we show that the supporting hyperrectangle formed by
the initial states of all agents is an invariant set for system (3.1).

Lemma 3. Let Assumptions 1, 2, and 3 or Assumptions 1, 2, and 4 hold. Then,
Hn

0 is an invariant set, i.e., xi(t) ∈ H0 ∀i ∈ V, ∀t ≥ t0.

Proof. We first show that D+Mk(t) ≤ 0 ∀k ∈ D. Let V̂(t) = {i ∈ V : xik(t) =
Mk(t)} be the set of indices where the maximum is reached at t. It then follows from
Lemma 2 that for all k ∈ D, D+Mk(t) = maxi∈̂V(t) ẋik = maxi∈̂V(t) f

ik
σ(t)(x(t)), where

f ikσ(t) denotes kth entry of the vector f iσ(t). Consider any initial state x(t0) ∈ Hn
0

and any initial time t0. It follows from Definition 5 and Lemma 1 that f ip(x) ∈
Tγ(xi,H(Cip(x))) ⊆ T (xi,H(Cip(x))) ∀i ∈ V , ∀p ∈ P for Assumption 3 and f ip(x) ∈
ri
(
T (xi,H(Cip(x)))

)
⊆ T (xi,H(Cip(x))) ∀i ∈ V , ∀p ∈ P for Assumption 4. It follows

from the definition of the tangent cone that f ikp (x) ≤ 0 ∀ i ∈ V satisfying xik = Mk.
It follows that for all k ∈ D and for any x ∈ Hn

0 , D
+Mk(t) ≤ 0. We can similarly

show that for all k ∈ D, D+mk(t) ≥ 0.

Therefore, it follows that mk(x(t0)) ≤ xik(t) ≤ Mk(x(t0)) ∀k ∈ D, ∀i ∈ V ,
∀t ≥ t0. Then, based on the definition of H0, we have shown that H0 is an invariant
set.

5.2. Interior agents. In this subsection, we study the state evolution of the
agents whose states are interior points of H(C(x)). In the following lemma, we show
that the projection of the state on any coordinate axis is strictly less than an explicit
upper bound as long as it is initially strictly less than this upper bound. Figure 5
illustrates the following Lemma 4.

The proof follows from a similar argument used in the proof of Lemma 4.9 in [17]
and the following lemma holds separately for any k ∈ D.

Lemma 4. Let Assumptions 1, 2, and 3 or Assumptions 1, 2, and 4 hold. Also
assume that Gσ(t) is uniformly jointly quasi-strongly connected. Fix any k ∈ D. For
any (t1, x(t1)) ∈ R × Hn

0 , any ε > 0, and any T ∗ > 0, if xik(t2) ≤ Mk(x(t1)) − ε at
some t2 ≥ t1, then xik(t) ≤Mk(x(t1))− δ, where δ = e−L

∗
1T

∗
ε for all t ∈ [t2, t2+T ∗],

and L∗
1 is a positive constant related to H0.

Proof. Fix (t1, x(t1)) ∈ R×Hn
0 and any k ∈ D. Denote ψ = x(t1) and

Mik = H(ψ)× . . .H(ψ)× Ho
k(ψ)︸ ︷︷ ︸

the ith entry

×H(ψ)× · · · × H(ψ),
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Fig. 5. Illustration of Lemma 4.

where H(ψ) = [m1(ψ),M1(ψ)]×· · ·× [md(ψ),Md(ψ)], and Ho
k(ψ) = [m1(ψ),M1(ψ)]×

· · · × [mk−1(ψ),Mk−1(ψ)] × [mk+1(ψ),Mk+1(ψ)] × · · · × [md(ψ),Md(ψ)]. The rest of
the proof will be divided into three steps.

Step I. Define the following nonlinear function:

gψ,k(χ) : [mk(ψ),Mk(ψ)] → R, χ �→ sup
p∈P

{max
i∈V

{ max
y∈Mik

{f ikp (xik , y) : xik = χ}}},
(5.1)

where f ikp (xik, y) denotes the kth entry of the vector f ip(x), xik denotes the kth entry
of the vector xi, and y denotes all the other components of x except xik. The nonlinear
function gψ,k(χ) is used as an upper bound of f ikσ(t)(x) and the argument χ is used

to describe the state xik. In this step, we establish some useful properties of gψ,k(·)
based on Lemmas 11 and 12 in the appendices. We make the following claim.

Claim A. (i) gψ,k(χ) = 0 if χ = Mk(ψ); (ii) gψ,k(χ) > 0 if χ ∈ [mk(ψ),Mk(ψ));
(iii) gψ,k(χ) is Lipschitz continuous with respect to χ on [mk(ψ),Mk(ψ)].

It follows from Definition 5, Lemma 1, and the similar analysis of Lemma 3 (by
replacing t0 with t1) that ∀t ≥ t1, f

i
p(x) ∈ Tγ(xi,H(Cip(x)))(or ri

(
T (xi,H(Cip(x)))

)
) ⊆

T (xi,H(Cip(x))) ⊆ T (xi,H(C(x))) ⊆ T (xi,H(C(ψ))) ∀i ∈ V , ∀p ∈ P. Then, it

follows from Definition 5 that f ikp (x) ≤ 0 when xik = Mk(ψ). This implies that
gψ,k(χ) ≤ 0 when χ = Mk(ψ) based on the definition of gψ,k(χ). We next show that
actually gψ,k(χ) = 0 when χ =Mk(ψ). Since Gσ(t) is uniformly jointly quasi-strongly
connected, there must exist a p̄ ∈ P such that Gp̄ has a nonempty arc set Ep̄. We
can then choose ī ∈ V and p̄ such that agent ī has at least one neighbor agent, i.e.,
Nī(p̄) is not empty since Ep̄ is nonempty. We next choose xj = xī ∈ H(C(ψ)) for all
j ∈ Nī(p̄), where xīk = Mk(ψ). In such a case, H(C īp̄(x)) is the singleton {xī} and it

follows from Assumption 3 (or 4) that f īp̄(x) = 0. Therefore, based on the definition
of gψ,k(χ), we know that gψ,k(χ) = 0 if χ =Mk(ψ). This proves (i).

Next, for any χ ∈ [mk(ψ),Mk(ψ)), we still use the same p̄ and ī as those in the
proof of Claim A(i). We choose xīko = Mko(ψ) ∀ko ∈ {1, . . . , k − 1, k + 1, . . . , d}
and xjk = Mk(ψ) ∀k ∈ D, ∀ j ∈ Nī(p̄). Note that xīk = χ < Mk(ψ). In such

a case, H(C īp̄(x)) is a line from point (M1(ψ), . . . ,Mk−1(ψ), χ,Mk+1(ψ), . . . ,Md(ψ))

to (M1(ψ),M2(ψ), . . . ,Md(ψ)). It then follows from Assumption 3 that f īp̄(x) ≥
γ(Mk(ψ)−χ) > 0 or from Assumption 4 that f īp̄(x) > 0. This verifies that gψ,k(χ) > 0,
∀χ ∈ [mk(ψ),Mk(ψ)). This proves (ii).
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Finally, it follows from Lemma 12 that gikp (xik) : [mk(ψ),Mk(ψ)] → R, xik �→
maxy∈Mik

f ikp (xik, y) is locally Lipschitz with respect to xik ∀k ∈ D, ∀i ∈ V , and
∀p ∈ P. Then, it follows from Theorem 1.14 of [20] that gikp (xik) is (globally) Lipschitz
continuous with respect to xik on [mk(ψ),Mk(ψ)]. From the first property of gψ,k(χ),
it follows that gψ,k(Mk(ψ)) = 0. Therefore, based on Lemma 11, it follows that
gψ,k(χ) is Lipschitz continuous with respect to χ on [mk(ψ),Mk(ψ)]. This proves (iii)
and the claim holds.

Step II. In this step, we construct and investigate the nonlinear function hH0,k(·),
which is derived by gψ,k(·) with the argument ϕ = χ−Mk(ψ) measuring the difference
between xik and the upper boundary Mk(ψ). Define

hH0,k(ϕ) : [âk − ăk, 0] → R, ϕ �→
{
gψ,k(ϕ+Mk(ψ)) if ϕ ∈ [mk(ψ)−Mk(ψ), 0],

gψ,k(mk(ψ)) if ϕ ∈ [âk − ăk,mk(ψ)−Mk(ψ)),

(5.2)

where âk = mk(x(t0)) and ăk = Mk(x(t0)) are constants determined by H0. Obvi-
ously, hH0,k(ϕ) is continuous. We make the following claim.

Claim B. (i) hH0,k(ϕ) is Lipschitz continuous with respect to ϕ on [âk − ăk, 0],
where the Lipschitz constant is denoted by L∗

1 and L∗
1 is related to the initial bounded

set H0; (ii) hH0,k(ϕ) > 0 if ϕ ∈ [âk − ăk, 0); (iii) hH0,k(ϕ) = 0 if ϕ = 0.
Note that hH0,k(ϕ) = gψ,k(ϕ+Mk(ψ)) is compact on the compact set [mk(ψ)−

Mk(ψ), 0]. It follows that hH0,k(ϕ) is Lipschitz continuous with respect to ϕ on the
compact set [âk − ăk, 0]. This shows that (i) holds and properties (ii) and (iii) follow
directly from the definition of hH0,k(ϕ).

Step III. In this step, we take advantage of gψ,k(χ) and hH0,k(ϕ) to show that
xik will be always strictly less than the upper bound Mk(ψ) as long as it is initially
strictly less than Mk(ψ).

Suppose xik(t2) ≤ Mk(ψ) − ε at some t2 ≥ t1 and let T ∗ > 0. Based on the
definition of gψ,k(χ), it follows that ẋik(t) = f ikσ(t)(x(t)) ≤ gψ,k(xik(t)) ∀t ≥ t2. Let

χ(t) be the solution of χ̇ = gψ,k(χ) with initial condition χ(t2) = xik(t2). Based on
the comparison lemma (Lemma 3.4 of [16]), it follows that xik(t) ≤ χ(t) ∀t ≥ t2.

Note that ϕ = χ−Mk(ψ) and ϕ̇ = gψ,k(χ) = hH0,k(ϕ). It follows from the first
property of hH0,k(ϕ) that |hH0,k(ϕ)−hH0,k(0)| ≤ L∗

1|ϕ| ∀ϕ ∈ [âk− ăk, 0]. This shows
that hH0,k(ϕ) ≤ −L∗

1ϕ based on the second and third properties of hH0,k(ϕ). Thus,
the solution of ϕ̇ = hH0,k(ϕ) satisfies ϕ(t) ≤ e−L

∗
1(t−t2)ϕ(t2) ∀t ≥ t2 based on the

comparison lemma.
Therefore, xik(t) ≤ χ(t) = ϕ(t)+Mk(ψ) ≤ e−L

∗
1(t−t2)(χ(t2)−Mk(ψ))+Mk(ψ) ≤

e−L
∗
1T

∗
(xik(t2)−Mk(ψ)) +Mk(ψ) ≤Mk(ψ)− e−L

∗
1T

∗
ε ∀ t ∈ [t2, t2 + T ∗].

The following lemma is symmetric to Lemma 4. The proof can be obtained using
the proof of Lemma 4 under the transformation zi = −xi, i = 1, . . . , n, and it is
therefore omitted.

Lemma 5. Let Assumptions 1, 2, and 3 or Assumptions 1, 2, and 4 hold. Also
assume that Gσ(t) is uniformly jointly quasi-strongly connected. Fix any k ∈ D. For
any (t1, x(t1)) ∈ R × Hn

0 , any ε > 0, and any T ∗ > 0, if xik(t2) ≥ mk(x(t1)) + ε at
some t2 ≥ t1, then xik(t2) ≥ mk(x(t1))+δ, where δ = e−L

∗
2T

∗
ε for all t ∈ [t2, t2+T

∗],
where L∗

2 is a positive constant related to H0.

5.3. “Boundary” agents. In the following lemma, we show that any agent
that is attracted by an “interior” agent will become an “interior” agent after a finite
time period. Figure 6 illustrates Lemma 6.

Lemma 6. Let Assumptions 1 and 2 hold and assume that Gσ(t) is uniformly
jointly quasi-strongly connected. Fix any k ∈ D. For any (t1, x(t1)) ∈ R × Hn

0 , any
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Fig. 6. Illustration of Lemma 6.

δ1 > 0, and any T ∗ > 0, assume that there is an arc (j, i) and a time t2 ≥ t1 such
that j ∈ Ni(σ(t)), and xjk(t) ≤ Mk(x(t1)) − δ1 for all t ∈ [t2, t2 + τd]. Then, there
exists a t3 ∈ [t1, t2 + τd] such that xik(t) ≤ Mk(x(t1)) − δ2 for all t ∈ [t3, t3 + T ∗].
Here, if Assumption 3 is satisfied, δ2 = e−L

∗
1T

∗
min{ γτdδ1

L+
1 τd+1

, δ1} for some positive

constants L∗
1 and L+

1 related to H0. If Assumption 4 is satisfied, δ2 = e−L
∗
1T

∗
υ(δ1)

for some positive constant L∗
1 and a continuous positive-definite function υ(·) both

related to H0.

Proof. We first show that there exists t3 ∈ [t1, t2 + τd] such that xik(t3) ≤
Mk(x(t1))−ε, where ε = min{ γτdδ1

L+
1 τd+1

, δ1} given Assumption 3 satisfied or ε = υH0(δ1)

given Assumption 4 satisfied. This is equivalent to showing that ‖xi(t3)‖B = 0, where
B := Hk

ε (C(x(t1))) and an axis-aligned hyperrectangle Hk
ε defined as Hk

ε (C(x)) =
{y ∈ H(C(x)) : yk ≤ Mk(x) − ε}. Obviously, B is compact convex set. Suppose
‖xi(t3)‖B �= 0. It then follows that 0 < ‖xi(t)‖B ≤ ε for all t ∈ [t1, t2 + τd].

Considering the time interval t ∈ [t2, t2 + τd], we define x(t) = [x11, . . . , x1d,
x21, . . . , x2d, . . . , xn1, . . . , xnd], xik(t) = Mk(x(t1)) for given i and k and xioko(t) =
xioko(t) for i

o ∈ V \ {i} and ko ∈ D \ {k}. The rest of the proof will be divided into
three steps.

Step I. It has been shown that f ikp (x(t)) is uniformly locally Lipschitz with respect
to x and compact on Hn

0 ∀i ∈ V , ∀p ∈ P based on Assumption 2 and Lemma 3.
Therefore, there exists a positive constant L+

1 related to H0 such that |f ikp (x)| −
|f ikp (x)| ≤ |f ikp (x)− f ikp (x)| ≤ L+

1 ‖x(t)− x(t)‖ ≤ L+
1 ε ∀p ∈ P, and ∀x, x ∈ Hn

0 .
Step II—Assumption 3. In this step, we show that the derivative of ‖xi(t)‖B along

the solution of (3.1) has a lower bound. For any p∗ ∈ P such that there is an arc
(j, i) where j ∈ Ni(p

∗), and xjk ≤ Mk(x(t1)) − δ1 during t ∈ [t2, t2 + τd], it follows
from Assumption 3 of f ip∗(x) ∈ Tγ(xi,H(Cip∗(x))) and xik(t) =Mk(x(t1)) that

|f ikp∗(x)| ≥ γDk(H(co{xi, xj : j ∈ Ni(p
∗)})) ≥ γDk(H(co{xi, xj})) ≥ γδ1,(5.3)

where the first inequality is based on Assumption 3 by noting that xi ∈ rbkH(co{xi,
xj : j ∈ Ni(p

∗)}), and rbkH(co{xi, xj : j ∈ Ni(p
∗)}) is the facet of H(co{xi, xj : j ∈

Ni(p
∗)}) perpendicular to −→rk . This together with the preceding deduction |f ikp (x)| −

|f ikp (x)| ≤ L+
1 ε ∀p ∈ P, and ∀x, x ∈ Hn

0 , implies that |f ikp∗(x)| ≥ |f ikp∗(x)|−L+
1 ε ≥ γδ1−
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L+
1 ε for any p∗ ∈ P such that there is an arc (j, i) where j ∈ Ni(p

∗), and xjk ≤
Mk(x(t1)) − δ1 during t ∈ [t2, t2 + τd]. Note that ε = min{ γτdδ1

L+
1 τd+1

, δ1} is chosen

sufficiently small at the beginning of the proof such that γδ1 − L+
1 ε is positive.

Therefore, based on the assumptions of Lemma 6, it follows that ∀ t ∈ [t2, t2+τd],

|D+‖xi(t)‖B| = |〈sgn(xi(t)− PB(xi(t))), f iσ(t)(x(t))〉| = |f ikσ(t)(x(t))| ≥ γδ1 − L+
1 ε,

(5.4)

where the componentwise sign function sgn(·) is defined as sgn(z) = [sgn(z1),
sgn(z2), . . . , sgn(zd)] for a vector z = [z1, z2, . . . , zd] and sgn(z1) is the sign func-
tion: sgn(z1) = 1 if z1 > 0, sgn(z1) = 0 if z1 = 0, and sgn(z1) = −1 if z1 < 0. Note
that sgn(xi − PB(xi)) = −→rk whenever ‖xi‖B > 0.

Step II—Assumption 4. Fix (t1, x(t1)) ∈ R×Hn
0 . Denote ψ = x(t1) and Mik =

H(ψ) × . . .H(ψ) × Ho
k(ψ) × H(ψ) × · · · × H(ψ), where H(ψ) = [m1(ψ),M1(ψ)] ×

· · · × [md(ψ),Md(ψ)], and Ho
k(ψ) = [m1(ψ),M1(ψ)] × · · · × [mk−1(ψ),Mk−1(ψ)] ×

[mk+1(ψ),Mk+1(ψ)]× · · · × [md(ψ),Md(ψ)]. Define

dψ,k(δ1) = inf
p∈P

{min
i∈V

{min
y∈Uψ

{|f ikp (Mk(ψ), y)|}}},(5.5)

where Uψ(i, k, p, δ1) = {y ∈ Mik : ∃j ∈ Ni(p) such that xjk ≤Mk(ψ)−δ1}. Based on
the relative interior condition of Assumption 4, we know that dψ,k(δ1) > 0 for δ1 > 0.

For any p∗ ∈ P such that there is an arc (j, i), where j ∈ Ni(p
∗), and xjk ≤

Mk(x(t1)) − δ1, we know from the definition of dψ,k(·) that for all t ∈ [t2, t2 + τd],
|f ikp∗(x(t))| ≥ dψ,k(δ1). This together with the preceding deduction |f ikp (x)|−|f ikp (x)| ≤
L+
1 ε ∀p ∈ P, and ∀x, x ∈ Hn

0 implies that ∀ t ∈ [t2, t2 + τd],

|D+‖xi(t)‖B| = |f ikσ(t)(x(t))| ≥ dψ,k(δ1)− L+
1 ε.(5.6)

Before moving on, we define υH0,k(δ1) : [0, ăk − âk] → [0,∞),

δ1 �→

⎧⎪⎪⎨
⎪⎪⎩
min

{
δ1,

τddψ,k(δ1)

τdL
+
1 +1

}
if δ1 ∈ [0,Mk(ψ)−mk(ψ)],

min

{
Mk(ψ)−mk(ψ),

τddψ,k(Mk(ψ)−mk(ψ))

τdL
+
1 +1

}
if δ1 ∈ (Mk(ψ)−mk(ψ), ăk − âk],

(5.7)

where âk = mk(x(t0)) and ăk = Mk(x(t0)) are constants determined by H0. Ob-
viously, υH0,k(δ1) is a continuous positive-definite function since υH0,k(δ1) = 0 for
δ1 = 0 and υH0,k(δ1) > 0 for δ1 > 0. Also note that υH0,k(δ1) ≤ δ1 ∀ δ1 ∈ [0, ăk − âk]
based on the definition of υH0,k and this fact will be used in the proof of Proposition 1.

Step III. In this step, we show that there exists a t3 ∈ [t1, t2 + τd] such that
xik(t3) ≤Mk(x(t1))− ε and conclude the proof by using Lemma 4.

Define ε = min{ γτdδ1
L+

1 τd+1
, δ1} for Assumption 3 and ε = υH0,k(δ1) ≤

τddψ,k(δ1)

τdL
+
1 +1

for

Assumption 4. It follows that (γδ1 − L+
1 ε)τd ≥ ε for Assumption 3 and (dψ,k(δ1) −

L+
1 ε)τd ≥ ε for Assumption 4. Since ε > 0, we know that f ikσ(t)(x(t)) does not change

sign and |f ikσ(t)(x(t))| ≥ ε
τd

for t ∈ [t2, t2 + τd]. Moreover,

|‖xi(t2 + τd)‖B − ‖xi(t2)‖B| =
∫ t2+τd

t2

|D+‖xi(τ)‖B|dτ ≥ τd
ε

τd
= ε.(5.8)



MULTIAGENT SYSTEMS WITH COMPASSES 3071

This contradicts the assumption that 0 < ‖xi(t)‖B ≤ ε ∀ t ∈ [t1, t2 + τd]. Thus, there
exists a t3 ∈ [t1, t2 + τd] such that xik(t3) ≤Mk(x(t1))− ε.

Finally, based on Lemma 4, we obtain xik(t) ≤Mk(x(t1))− δ2 for all t ∈ [t3, T
∗],

where δ2 = e−L
∗
1T

∗
ε. This completes the proof of the lemma.

The following lemma is symmetric to Lemma 6.
Lemma 7. Let Assumptions 1 and 2 hold and assume that Gσ(t) is uniformly

jointly quasi-strongly connected. Fix any k ∈ D. For any (t1, x(t1)) ∈ R × Hn
0 , any

δ1 > 0, and any T ∗ > 0, assume that there is an arc (j, i) and a time t2 ≥ t1 such
that j ∈ Ni(σ(t)), and xjk(t) ≥ mk(x(t1)) + δ1. Then, there exists a t3 ∈ [t1, t2 + τd]
such that xik(t) ≥ mk(x(t1)) + δ2 for all t ∈ [t3, t3 + T ∗]. Here, if Assumption 3 is
satisfied, δ2 = e−L

∗
2T

∗
min{ γτdδ1

L+
2 τd+1

, δ1} for some positive constants L∗
2 and L+

2 related

to H0. If Assumption 4 is satisfied, δ2 = e−L
∗
2T

∗
υ(δ1) for some positive constant L∗

2

and a continuous positive-definite function υ(·) both related to H0.

5.4. Proof of Theorem 1. The necessity proof follows a similar argument as
the proof of Theorem 3.8 of [19]. It is therefore omitted. We focus on the sufficiency
and first give an outline of how the lemmas on invariant set, “interior” agents, and
“boundary” agents are used to prove Theorem 1.

The sufficiency proof is outlined as follows. We first use Lemma 3 to show that
pointwise uniform agreement is achieved on S0. We then focus on agreement attrac-
tion. A common Lyapunov function is constructed and Lemma 3 is used to show that
this Lyapunov function is nonincreasing. When the Lyapunov function is not equal to
zero initially, we know that there exists at least one agent not on the upper boundary
or not on the lower boundary at the initial time. Then, we apply Lemma 4 or 5 to
show that this “interior” agent will not become a “boundary” agent afterward. Based
on the fact that the interaction graph is uniformly jointly quasi-strongly connected,
we show that another agent will be attracted by this “interior” agent at a certain
time instant. Using Lemma 6 or 7, we know that this agent will become an “interior”
agent and will not go back to the boundary. Repeating this process, no agents will
stay on the boundary after a certain time. This shows that the Lyapunov function is
strictly shrinking, which verifies the desired theorem.

Choose any η ∈ J and any ε > 0, where J = {x ∈ Sn0 : x1 = x2 = · · · = xn}. We
define Aa(η) = {x ∈ Sn0 : ‖x− η‖∞ ≤ a}. It is obvious from Lemma 3 that Aa(η) is
an invariant set since a hypercube is a special case of a hyperrectangle. Therefore, by
setting δ = ε√

n
, we know that ‖x(t0) − η‖ ≤ δ ⇒ ‖x(t) − η‖ ≤ ε ∀t ≥ t0. This

shows that pointwise uniform agreement is achieved on S0.
Now define V (x) = ρ(H(C(x))), where ρ(H(C(x))) denotes the maximum side

length of the hyperrectangle H(C(x)). Clearly, it follows from Lemma 3 that V (x)
is nonincreasing along (3.1) and xi(t) ∈ H0 ∀i ∈ V ∀t ≥ t0. We next prove the
sufficiency of Theorem 1 by showing that V (x) is strictly shrinking over suitable time
intervals.

Since Gσ(t) is uniformly jointly quasi-strongly connected, there is a T > 0 such that
the union graph G([t0, t0+T ]) is quasi-strongly connected. Define T1 = T+2τd, where
τd is the dwell time. Denote κ1 = t0+τd, κ2 = t0+T1+τd, . . . , κn2 = t0+(n2−1)T1+τd.
Thus, there exists a node i0 ∈ V such that i0 has a path to every other node jointly
on time interval [κli , κli + T ], where i = 1, 2, . . . , n and 1 ≤ l1 ≤ l2 ≤ · · · ≤ ln ≤ n2.
Denote T = n2T1. We divide the rest of the proof into three steps.

Step I. Consider the time interval [t0, t0 + T ] and k = 1. In this step, we show
that an agent that does not belong to the interior set will become an “interior” agent
due to the attraction of “interior” agent i0.
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More specifically, define ε1 = M1(x(t0))−m1(x(t0))
2 . It is trivial to show that

M1(x(t)) = m1(x(t)) ∀t ≥ t0 when M1(x(t0)) = m1(x(t0)) based on Definition
5. Therefore, we assume that M1(x(t0)) �= m1(x(t0)) without loss of generality.
Split the node set into two disjoint subsets V1 = {j| xj1(t0) ≤ M1(x(t0)) − ε1} and
V1 = {j|j /∈ V1}.

Assume that i0 ∈ V1. This implies that xi01(t0) ≤ M1(x(t0)) − ε1. It follows

from Lemma 4 that xi01(t) ≤ M1(x(t0)) − δ1 ∀t ∈ [t0, t0 + T ], where δ1 = e−L
∗
1T ε1.

Considering the time interval [κl1 , κl1 +T ], we can show that there is an arc (i1, j1) ∈
V1 × V1 such that i1 is a neighbor of j1 (i1 might be equal or not to i0) because
otherwise there is no arc (i1, j1) for any i1 ∈ V1 and j1 ∈ V1 (which contradicts the
fact that i0 ∈ V1 has a path to every other node jointly on time interval [κl1 , κl1 +T ]).
Therefore, there exists a time τ ∈ [κl1 , κl1 + T ] = [t0 + (l1 − 1)T + τd, t0 + l1T − τd]
such that j1 ∈ Ni(σ(τ)). Based on Assumption 1, it follows that there is time interval
[τ1, τ1 + τd] ⊂ [t0 + (l1 − 1)T, t0 + l1T ] such that j1 ∈ Ni(σ(τ)) ∀ t ∈ [τ1, τ1 + τd].

Also note that i1 ∈ V1 implies that xi11(t0) ≤ M1(x(t0)) − ε1. This shows that
xi11(t) ≤ M1(x(t0)) − δ1 ∀t ∈ [t0, t0 + T ] based on Lemma 4. Therefore, it follows
from Lemma 6 that there exists a t2 ∈ [t0, τ1+τd] such that xj11(t2) ≤M1(x(t0))−ε2
and xj11(t) ≤ M1(x(t0)) − δ2 ∀t ∈ [t2, t2 + T ], where ε2 = min{ γτdδ1

L+
1 τd+1

, δ1} and

δ2 = e−L
∗
1T min{ γτdδ1

L+
1 τd+1

, δ1}. To this end, we have shown that at least two agents are

not on the upper boundary at t0 + l1T .

Step II. In this step, we show that the side length of the hyperrectangle H(C(x))
parallel to the kth axis −→rk at t0 + T is strictly less than that at t0.

We can now redefine two disjoint subsets V2 = {j| xj1(t0) ≤M1(x(t0))− ε2} and
V2 = {j|j /∈ V2}. It then follows that V2 has at least two nodes by noting that ε2 ≤ ε1.
By repeating the above analysis, we can show that xi1(t) ≤ M1(x(t0)) − δn ∀i ∈ V ,
∀t ∈ [tn, tn + T ] by noting that δn ≤ δn−1 ≤ · · · ≤ δ1, where tn ∈ [t0, τn + τd] ⊆
[t0 + (ln − 1)T1, t0 + lnT1], δn = e−nL

∗
1T min{ (γτd)

n−1

(L+
1 τd+1)n−1

, 1}ε1.
Instead, if i0 ∈ V1, or what is equivalent, xi01(t0) ≥ m1(x(t0)) + ε1, we can simi-

larly show that xi1(t) ≥ m1(x(t0))+δn ∀i ∈ V , ∀t ∈ [tn, tn+T ] using Lemmas 5 and 7,

where tn ∈ [t0, τn+τd] ⊆ [t0+(ln−1)T1, t0+lnT1], δn = e−nL
∗
2T min{ (γτd)

n−1

(L+
2 τd+1)n−1

, 1}ε1.
Therefore, it follows that D1(H(x(t0 + T ))) ≤ D1(H(x(t0))) − βD1(H(x(t0))),

and β is specified as β = e−nL
∗T min{ (γτd)

n−1

2(L+τd+1)n−1 ,
1
2}, L∗ = max{L∗

1, L
∗
2}, and L+ =

max{L+
1 , L

+
2 }.

Step III. In this step, we show that ρ(H(C(x))) at t0 + dT is strictly less than at
t0 and thus prove the theorem by showing that V is strictly shrinking.

We consider the time interval [t0 + T , t0 + 2T ] and k = 2. Following an analysis
similar to Step I and Step II, we can show that D2(H(x(t0 +2T ))) ≤ D2(H(x(t0)))−
βD2(H(x(t0))).

By repeating the above analysis, it follows that V (x(t0 + dT )) − V (x(t0)) ≤
−β(V (x(t0))).

Then, letting N be the smallest positive integer such that t ≤ t0+NdT , we know
that

V (x(t)) ≤ (1− β)N−1V (x(t0)) ≤
1

1− β
(1− β)

t−t0
dT V (x(t0))(5.9)

=
1

1− β
e−β

∗(t−t0)V (x(t0)),
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where β∗ = 1
dT

ln 1
1−β . Denote H(S0) as the supporting hyperrectangle of S0. Since

x(t0) ∈ Hn
0 ⊆ Hn(S0), it follows that the above inequality holds for any x(t0) ∈

Hn(S0) or any x(t0) ∈ Sn0 . By choosing k = 1
1−β and λ = β∗, we have that exponential

agreement attraction is achieved on S0. This proves the desired theorem.

5.5. Proof of Proposition 1. The necessity proof follows a similar argument
as the proof of Theorem 3.8 of [19] and the proof of pointwise uniform agreement is
similar to the one of Theorem 1. We focus on the proof of agreement attraction and
use a similar analysis as in the proof of Theorem 1.

Using the same Lyapunov function V (x) = ρ(H(C(x))) as in the proof of Theo-
rem 1, we first show that xi01(t0) ≤ M1(x(t0)) − ε1 and xi01(t) ≤ M1(x(t0)) − δ1
∀t ∈ [t0, t0 + T ], where ε1 = M1(x(t0))−m1(x(t0))

2 and δ1 = e−L
∗
1T ε1. Then, we

have another agent i1 ∈ V1 satisfying xi11(t0) ≤ M1(x(t0)) − ε1. This shows that
xi11(t) ≤ M1(x(t0)) − δ1 ∀t ∈ [t0, t0 + T ] based on Lemma 4. Therefore, it follows
from Lemma 6 that there exists t2 ∈ [t0, τ1 + τd] such that xj11(t2) ≤M1(x(t0))− ε2
and xj11(t) ≤ M1(x(t0)) − δ2 ∀t ∈ [t2, t2 + T ], where ε2 = υH0,k(δ1) and δ2 =

e−L
∗
1TυH0,k(δ1).

Then, we define two disjoint subsets V2 = {j| xj1(t0) ≤ M1(x(t0)) − ε2} and
V2 = {j|j /∈ V2}. It follows that V2 has at least two nodes. Note that υH0,k(δ1) ≤ δ1
for all its definition domain. By repeating the above analysis, we can show that
xi1(t) ≤M1(x(t0))− δn ∀i ∈ V , ∀t ∈ [tn, tn+ T ] by noting that δn ≤ δn−1 ≤ · · · ≤ δ1,
where tn ∈ [t0, τn + τd] ⊆ [t0 + (ln − 1)T1, t0 + lnT1], δn(D1(H(x(t0)))) = ς ◦ υH0,k ◦
. . . υH0,k◦ς( ·

2 ), a continuous positive-definite function ς(·) is defined as ς(x) = e−L
∗
1Tx,

and D1(H(x(t0))) =M1(x(t0))−m1(x(t0)). It is obvious that δn(D1(H(x(t0)))) is a
continuous positive-definite function.

Instead, if i0 ∈ V1, or what is equivalent, xi01(t0) ≥ m1(x(t0)) + ε1, we can
similarly show that xi1(t) ≥ m1(x(t0)) + δn ∀i ∈ V ∀t ∈ [tn, tn + T ] using Lemmas
5 and 7, where tn ∈ [t0, τn + τd] ⊆ [t0 + (ln − 1)T1, t0 + lnT1], a continuous positive-
definite function δn(D1(H(x(t0)))) = ς ◦ υH0 ◦ . . . υH0 ◦ ς( ·

2 ), and ς(·) is defined

as ς(x) = e−L
∗
2Tx. Therefore, it follows that D1(H(x(t0 + T ))) ≤ D1(H(x(t0))) −

δ∗(D1(H(x(t0)))), where δ
∗(x) = min{δn(x), δn(x)} is a continuous positive-definite

function.

Then, following Lemma 4.3 of [16], there exists a classK function Υ(D1(H(x(t0))))
defined on [0, ăk− âk] satisfying Υ(D1(H(x(t0)))) ≤ δ∗(D1(H(x(t0)))) ∀D1(H(x(t0)))
∈ [0, ăk − âk], where a continuous function Υ : [0, b) → [0,∞) is said to belong
to class K if it is strictly increasing and Υ(0) = 0. Therefore, it follows that
D1(H(x(t0 + T ))) ≤ D1(H(x(t0)))−Υ(D1(H(x(t0)))) ∀i ∈ V ∀t ∈ [tn, tn + T ].

We next consider the time interval [t0 + T , t0 + 2T ]. Following the previous
analysis, we can show that D2(H(x(t0 + 2T ))) ≤ D2(H(x(t0)))−Υ(D2(H(x(t0)))).

By repeating the above analysis, it follows that V (x(t0 + dT )) − V (x(t0)) ≤
−Υ(V (x(t0))).

Then, let N be the smallest positive integer such that t ≤ t0 + NdT . It then
follows that

V (x(t)) − V (x(t0)) ≤ −Υ(V (x(t0)))− · · · −Υ(V (x(t0 + (N − 1)dT )))(5.10)

≤ −NΥ(V (x(t0))).

Therefore, for any ε > 0, there exists a sufficiently large N such that V (x(t)) ≤
2ε√
n

∀t ≥ t0 +NdT . This shows that there exists η ∈ J such that ‖x(t)− η‖∞ ≤ ε√
n
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∀t ≥ t0+NdT . This implies ‖x(t)−η‖ ≤ ε ∀t ≥ t0+NdT , which shows that uniformly
agreement attraction is achieved on S0 and proves the proposition.

Remark 2 (extension to global convergence). The convergence is semiglobal since
the selections of K class function Υ and parameters λ and k depend on that the
initial common space is given in advance and compact, i.e., the assumption that S0

is compact is necessary to guarantee uniformly asymptotic or exponential agreement.
On the other hand, if Assumption 2 is changed to “uniformly globally Lipschitz,” we
obtain a global convergence result.

6. Cooperative-antagonistic multiagent systems. In this section, we focus
on cooperative-antagonistic multiagent systems and prove Theorem 2 using a contra-
diction argument, with the help of a series of preliminary lemmas. Note that since
every agent admits a continuous trajectory, we only need to prove that all the agents’
componentwise absolute values reach an agreement.

6.1. Invariant set. In this section, we construct an invariant set for the dy-
namics under the cooperative-antagonistic network. For all k ∈ D, define M †

k(x(t)) =
maxi∈V |xik(t)|. In addition, define an origin-symmetric supporting hyperrectangle

H(Ĉ(x)) ⊂ R
d as H(Ĉ(x)) := [−M †

1(x),M
†
1 (x)] × · · · × [−M †

d(x),M
†
d(x)]. The origin-

symmetric supporting hyperrectangle formed by the initial states of all agents is given
by Ĥn

0 , where

Ĥ0 =
[
−max

i∈V
|xi1(t0)|,max

i∈V
|xi1(t0)|

]
× · · · ×

[
−max

i∈V
|xid(t0)|,max

i∈V
|xid(t0)|

]
.(6.1)

Introduce the state transformation yik = x2ik ∀ i ∈ V and ∀ k ∈ D. The analysis
will be carried out on yik instead of xik to avoid nonsmoothness. The following lemma
establishes an invariant set for system (3.1).

Lemma 8. Let Assumptions 1, 2, and 5 hold. Then, for system (3.1), Ĥn
0 is an

invariant set, i.e., xi(t) ∈ Ĥ0 ∀i ∈ V, ∀t ≥ t0.
Proof. Let yk = maxi∈V yik for all k ∈ D. We first show that D+yk ≤ 0 ∀k ∈ D.

It follows from (2.1) that ẏik = 2xikf
ik
σ(t)(x) ∀i ∈ V , ∀k ∈ D. Let V̂(t) = {i ∈ V :

yik(xi(t)) = yk(x(t))} be the set of indices where the maximum is reached at t. It then
follows from Lemma 2 that for all k ∈ D, D+yk = 2maxi∈̂V(t) xikf

ik
σ(t)(x). Consider

any x(t0) ∈ Hn
0 and any initial time t0. It follows from Definition 5 and Lemma 1 that

f ip(x) ∈ Tγ(xi,H(Cip(x))) ⊆ T (xi,H(Ĉ(x))) ∀i ∈ V , ∀p ∈ P. Based on Definition 5,

it follows that f ikp (x) ≤ 0 for xik =
√
yk ≥ 0 and f ikp (x) ≥ 0 for xik = −√

yk ≤ 0. This

shows that xikf
ik
p (x) ≤ 0 for i ∈ V̂ = {i ∈ V : yik = yk}. It follows that for all k ∈ D,

and x ∈ Ĥn
0 , D

+yk ≤ 0. Therefore, x2ik(t) ≤ maxi∈V x2ik(t0) ∀i ∈ V , ∀k ∈ D, which
shows that −maxi∈V |xik(t0)| ≤ xik(t) ≤ maxi∈V |xik(t0)| ∀i ∈ V , ∀k ∈ D, ∀t ≥ t0.

This implies that Ĥn
0 is an invariant set.

6.2. “Interior” agents. In the following lemma, we show that the projection of
the state on any axis is strictly less than a certain upper bound as long as it is initially
strictly less than this upper bound. The lemma relies on the technical Lemmas 11
and 13, which can be found in the appendices.

Lemma 9. Let Assumptions 1, 2, and 5 hold and assume that Gσ(t) is uniformly

jointly strongly connected. Fix any k ∈ D. For any (t1, x(t1)) ∈ R× Ĥn
0 , any ε > 0,

and any T ∗ > 0, if yik(t2) ≤ y∗ − ε at some t2 ≥ t1, where y∗ ≥ yk(x(t1)) is a
constant, then yik(t) ≤ y∗ − δ for all t ∈ [t2, t2 + T ∗], where δ = e−L

∗T∗
ε, and L∗ is

a positive constant related to Ĥ0.
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Proof. Similar to the proof of Lemma 4, we consider any (t1, x(t1)) ∈ R×Ĥn
0 and

let ψ = x(t1) and Mik = Ĥ(ψ) × · · · × Ĥ(ψ) × Ĥo
k(ψ) × Ĥ(ψ) × · · · × Ĥ(ψ), where

Ĥ(ψ) = [−M †
1 (ψ),M

†
1 (ψ)]×· · ·×[−M †

d(ψ),M
†
d(ψ)], and Ĥo

k(ψ) = [−M †
1 (ψ),M

†
1 (ψ)]×

· · ·× [−M †
k−1(ψ),M

†
k−1(ψ)]× [−M †

k+1(ψ),M
†
k+1(ψ)]×· · ·× [−M †

d(ψ),M
†
d(ψ)]. Again,

for clarity we divide the rest of the proof into three steps.
Step I. Define the following function:

gψ,k(χ) : [−M †
k(ψ),M

†
k(ψ)] → R, χ→ sup

p∈P
{max
i∈V

{ max
y∈Mik

{xikf ikp (xik, y) : xik = χ}}}.
(6.2)

Obviously, gψ,k is continuous. In this step, we establish some useful properties of gψ,k
based on Lemmas 11 and 13. We make the following claim.

Claim A. (i) gψ,k(χ) = 0 if χ = ±M †
k(ψ); (ii) gψ,k(χ) > 0 if χ ∈ (−M †

k(ψ),M
†
k(ψ));

(iii) gψ,k(χ) is Lipschitz continuous with respect to χ on [−M †
k(ψ),M

†
k(ψ)].

The first and second properties of Claim A can be obtained following an analysis
similar to the proof of Lemma 4. For the third property of Claim A, it follows
from Lemma 13 that gikp : [−M †

k(ψ),M
†
k(ψ)] → R, xik �→ maxy∈Mik

xikf
ik
p (xik, y)

is Lipschitz continuous with respect to xik ∀k ∈ D ∀i ∈ V , and ∀p ∈ P. Also note
that gψ,k(M

†
k(ψ)) = 0. Then, it follows from Lemma 11 that gψ,k(χ) is Lipschitz

continuous with respect to χ on [−M †
k(ψ),M

†
k(ψ)].

Step II. In this step, we construct another nonlinear function h
̂H0,k

(·) based on

the definition of gψ,k(·). From the definitions of gψ,k(χ), it follows that ẏik(t) =
2xikf

ik
σ(t)(x(t)) ≤ 2gψ,k(xik(t)) ∀t ≥ t2. It also follows from the properties of gψ,k(χ)

that there exists a Lipschitz constant L1 such that gψ,k(χ) = |gψ,k(χ)−gψ,k(M †
k(ψ))| ≤

L1|χ −M †
k(ψ)| = L1(M

†
k(ψ) − χ) ∀χ ∈ [−M †

k(ψ),M
†
k(ψ)] and gψ,k(χ) = |gψ,k(χ) −

gψ,k(−M †
k(ψ))| ≤ L1|χ+M †

k(ψ)| = L1(M
†
k(ψ)+χ) ∀χ ∈ [−M †

k(ψ),M
†
k(ψ)], where L1

is related to ψ.
Therefore, for the case of xik ≥ 0, we have that ẏik(t) ≤ 2L1(M

†
k(ψ) − xik) =

2L1(M
†
k(ψ)−

√
yik(t)). For the case of xik < 0, we have that ẏik(t) ≤ 2L1(M

†
k(ψ) +

xik) = 2L1(M
†
k(ψ) −

√
yik(t)). Overall, it follows that ẏik(t) ≤ 2L1(M

†
k(ψ) −√

yik(t)) ∀t ≥ t2. Let φ(t) be the solution of φ̇ = hψ,k(φ) with initial condition

φ(t2) = yik(t2), where hψ,k : [0, yk(ψ)] → R, φ �→ 2L1(M
†
k(ψ) −

√
φ). It follows from

the comparison lemma that yik(t) ≤ φ(t) ∀t ≥ t2.

Next, by letting ϕ = yk(ψ) − φ and ăk = M †
k(x(t0)), we define the following

function:

h
̂H0,k

(ϕ) : [0, (ăk)
2] → R, ϕ �→

{
hψ,k(yk(ψ)− ϕ) if ϕ ∈ [0, yk(ψ)],

hψ,k(0) if ϕ ∈ (yk(ψ), (ăk)
2].

(6.3)

We have the following claim by easily checking the definition of h
̂H0,k

(ϕ).

Claim B. (i) h
̂H0,k

(ϕ) is Lipschitz continuous with respect to ϕ on [0, (ăk)
2]; (ii)

h
̂H0,k

(ϕ) = 0 if ϕ = 0; (iii) h
̂H0,k

(ϕ) > 0 if ϕ ∈ (0, (ăk)
2].

Step III. In this step, we take advantage of the function h
̂H0,k

(·) to show that yik
will always be strictly less than the upper bound y∗ as long as it is initially strictly
less than y∗.

Consider any T ∗ > 0 and t ∈ [t2, t2 + T ∗]. It follows from the first property

of h
̂H0,k

(ϕ) that there exists a constant L∗ related to Ĥ0 such that |h
̂H0,k

(ϕ) −
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h
̂H0,k

(0)| ≤ L∗ϕ ∀ϕ ∈ [0, (ăk)
2]. From the second and third properties of h

̂H0,k
(ϕ),

it follows that h
̂H0,k

(ϕ) ≤ L∗ϕ ∀ϕ ∈ [0, (ăk)
2] and ϕ̇ = −φ̇ = −hψ,k(φ) = −h

̂H0,k
(ϕ)

∀ϕ ∈ [0, yk(ψ)]. It follows from the comparison lemma that the solution of ϕ̇ =
−h

̂H0,k
(ϕ) satisfies ϕ(t) ≥ e−L

∗(t−t2)ϕ(t2) ∀t ≥ t2 since −h
̂H0,k

(ϕ) ≥ −L∗ϕ.
Therefore, yik(t) ≤ φ(t) = yk(ψ) − ϕ(t) ≤ yk(ψ) − e−L

∗(t−t2)(yk(ψ) − φ(t2)) ≤
yk(ψ)−e−L

∗T∗
(yk(ψ)−yik(t2)) = y∗+yk(ψ)−y∗−e−L

∗T∗
(y∗+yk(ψ)−y∗−yik(t2)) =

y∗−e−L∗T∗
(y∗−yik(t2))+(yk(ψ)−y∗)(1−e−L

∗T∗
) ≤ y∗−e−L∗T∗

ε ∀ t ∈ [t2, t2+T
∗]

since y∗ ≥ yk(ψ). This proves the lemma by letting δ = e−L
∗T∗

ε.

6.3. “Boundary” agents. In the following lemma, we show that any agent
that is attracted by an agent strictly inside the upper bound is drawn strictly inside
that bound. This lemma relies on Lemma 14, which can be found in the appendices.

Lemma 10. Let Assumptions 1, 2, and 5 hold and assume that Gσ(t) is uniformly

jointly strongly connected. Fix any k ∈ D. For any (t1, x(t1)) ∈ R × Ĥn
0 and any

δ > 0, assume that there is an arc (j, i) and a time t2 ≥ t1 such that j ∈ Ni(σ(t)),
and yjk(t) ≤ y∗ − δ for all t ∈ [t2, t2 + τd], where y

∗ ≥ yk(x(t1)) is a constant. Then,

there exists a t3 ∈ [t1, t2+ τd] such that yik(t3) ≤ y∗− ε, where ε = γτdδ
2(L+τd+γτd+1) and

L+ is a constant related to Ĥ0.
Proof. We prove this lemma by contradiction. Suppose that there does not exist

a t3 ∈ [t1, t2 + τd] such that |xik(t3)| ≤
√
y∗ − ε1, where ε1 = γτdδ

2(L+τd+γτd+1)
√
y∗ is

a positive constant. Then it follows that
√
y∗ − ε1 < |xik(t)| ≤ M †

k(x(t1)) for all
t ∈ [t1, t2 + τd].

We focus on the time interval t ∈ [t2, t2 + τd]. Define x(t) by replacing xik(t) in

x(t) with xik(t) = maxi∈V{xik(t)} = M †
k(x(t)). We know that f ikp (x(t)) is uniformly

locally Lipschitz with respect to x and compact on Ĥn
0 ∀ i ∈ V and ∀ p ∈ P. By

noting that M †
k(x(t1)) − ε1 ≤ √

y∗ − ε1 < |xik(t)|, it follows that there exists a

positive constant L+ related to Ĥ0 such that |f ikp (x)| − |f ikp (x)| ≤ |f ikp (x)− f ikp (x)| ≤
L+‖x(t)− x(t)‖ ≤ L+ε1 ∀p ∈ P, and ∀x, x ∈ Ĥn

0 .
It follows from yjk(t) ≤ y∗ − δ that

√
y∗ − |xjk(t)| ≥ δ

2
√
y∗ . Therefore, for any

p∗ ∈ P such that there is an arc (j, i) with j ∈ Ni(p
∗) and

√
y∗ − |xjk(t)| ≥ δ

2
√
y∗ , it

follows from Assumption 5 that∣∣f ikp∗(x)∣∣ ≥ γDk(H(co{xi, xjsgnijp∗ : j ∈ Ni(p
∗)}))(6.4)

≥ γDk(H(co{xi, xjsgnijp∗})) > γ

(
δ

2
√
y∗

− ε1

)
.

Note that δ
2
√
y∗ > ε1 based on the definition of ε1. Therefore, we know that |f ikp∗(x(t))|

≥ |f ikp∗(x(t))| − L+ε1 > γ( δ
2
√
y∗ − ε1)− L+ε1. It then follows that for all t ∈ [t2, t2 +

τd], |D+|xik(t)|| = |f ikσ(t)(x(t))| > γ( δ
2
√
y∗ − ε1) − L+ε1. Choose ε1 sufficiently small,

especially, ε1 = γτdδ
2(L+τd+γτd+1)

√
y∗ . Such ε1 exists for every y∗ > 0. It follows that

γ( δ
2
√
y∗ − ε1)− L+ε1 >

ε1
τd
. Therefore, we know that

|xik(t2 + τd)− xik(t2)| =
∫ t2+τd

t2

∣∣D+|xik(τ)|
∣∣ dτ > τd

ε1
τd

= ε1.(6.5)

This contradicts the assumption that
√
y∗−ε1 < |xik(t)| ≤M †

k(x(t1)) ∀ t ∈ [t2, t2+τd].

It then follows that yik(t3) ≤ y∗ − ε, where ε =
√
y∗ε1 = γτdδ

2(L+τd+γτd+1) .
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6.4. Proof of Theorem 2. Unlike the contraction analysis of a common Lya-
punov function given in the proof of Theorem 1, we use a contradiction argument for
the proof of Theorem 2.

According to the proof of Lemma 8, we know that D+yk ≤ 0 and yk ≥ 0 ∀ k ∈ D.
Therefore, yk(t), k ∈ D is monotonically decreasing and bounded from below by zero.
This implies that for any initial time t0 and initial state x(t0), there exists a constant
y∗k, k ∈ D, such that limt→∞ yk(t) = y∗k ∀k ∈ D. Define �ik = lim supt→∞ yik(t) and
�ik = lim inf t→∞ yik(t) for all i ∈ V , and k ∈ D. Clearly, 0 ≤ �ik ≤ �ik ≤ y∗k. We
know that the componentwise absolute values of all the agents converge to the same
if and only if �ik = �ik = y∗k ∀i ∈ V , ∀k ∈ D. The desired conclusion holds trivially
if y∗k = 0, k ∈ D. Therefore, we assume that y∗k > 0 for some k ∈ D without loss of
generality.

Suppose that there exists a node i1 ∈ V such that 0 ≤ �i1k < �i1k ≤ y∗k. Based on
the fact that limt→∞ yk(t) = y∗k, it follows that for any ε > 0, there exists a t̂(ε) > t0

such that y∗k − ε ≤ yk(t) ≤ y∗k + ε, t ≥ t̂(ε). Take α1k =
√

1
2 (�i1k + �i1k). Therefore,

there exists a time t1 ≥ t̂(ε) such that |xi1k(t1)| = α1k based on the definitions of �i1k
and �i1k and continuousness of xi1k(t). This shows that

x2i1k(t1) = �i1k − (�i1k − α2
1k) ≤ y∗k + ε− (�i1k − α2

1k) = y∗k + ε− ε1,(6.6)

where ε1 = �i1k − α2
1k > 0 and the first inequality is based on the definition of �i1k.

Since Gσ(t) is uniformly jointly strongly connected, there is a T > 0 such that the
union graph G([t1, t1+T ]) is jointly strongly connected. Define T1 = T+2τd, where τd
is the dwell time. Denote κ1 = t1+τd, κ2 = t1+T1+τd, . . . , κn = t1+(n−1)T1+τd. For
each node i ∈ V , i has a path to every other node jointly on time interval [κl, κl+T ],
where l = 1, 2, . . . , n. Denote T = nT1.

Consider time interval [t1, t1 + T ]. Based on the fact that yk(x(t1)) ≤ y∗k + ε and
considering y∗k + ε as the role of y∗ in Lemma 9, it follows that yik(t) ≤ y∗k + ε − δ1

∀t ∈ [t1, t1 + T ], where δ1 = e−L
∗T ε1.

Since for each node i ∈ V , i has a path to every other nodes jointly on time
interval [κl, κl+T ], where l = 1, 2, . . . , n, there exists i2 ∈ V such that i1 is a neighbor
of i2 during the time interval [κ1, κ1 + T ]. Based on Lemma 10, it follows that there
exists t2 ∈ [t1, τ1 + τd] ⊂ [t1 +T, t1 +2T ] such that x2i2k(t2) ≤ y∗k + ε− ε2, where ε2 =

γτd
2(L+τd+γτd+1)δ1. This further implies that x2i2k(t) ≤ y∗k+ε−δ2 ∀t ∈ [t2, t1+T ], where

δ2 = e−L
∗T ε2. By repeating the above analysis, we can show that yik(t) ≤ y∗k+ ε− δn

∀t ∈ [tn, t1 + T ], ∀i ∈ V , where tn ∈ [t1, τn + τd] ⊂ [t1 + (n − 1)T, t1 + nT ], and δn

can be iteratively obtained as δn = e−nL
∗T γn−1τn−1

d

2n−1(L+τd+γτd+1)n−1 . This is indeed true

because δi ≤ δi−1 ∀i = 2, 3, . . . , n.
This shows that yk(t1 + T ) = maxi∈V yik ≤ y∗k + ε − δn, which indicates a con-

tradiction for sufficiently small ε satisfying ε < δn/2. Therefore, �ik = �ik = y∗k
∀i ∈ V ∀k ∈ D. This proves that limt→∞(|xik(t)| −

√
y∗k) = 0 ∀i ∈ V and ∀k ∈ D,

which shows the componentwise absolute values of all the agents converges to the
same values and the theorem holds.

7. Conclusions. Agreement protocols for nonlinear multiagent dynamics over
cooperative or cooperative-antagonistic networks were investigated. A class of non-
linear control laws were introduced based on relaxed convexity conditions. The price
to pay was that each agent must have access to the orientations of a shared coordi-
nate system, similar to a magnetic compass. Each agent specified a local supporting
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hyperrectangle with the help of the shared reference directions and the relative state
measurements, and then a strict tangent cone was determined. Under mild conditions
on the nonlinear dynamics and the interaction graph, we proved that for cooperative
networks, exponential state agreement is achieved if and only if the interaction graph
is uniformly jointly quasi-strongly connected. For cooperative-antagonistic networks,
the componentwise absolute values of all the agents converge to the same values if the
time-varying interaction graph is uniformly jointly strongly connected. The results
generalize existing studies on agreement seeking of multiagent systems. Future works
include higher-order agent dynamics, convergence conditions for bipartite agreement,
and the study on the case of mismatched shared reference directions.

Appendices. Note that a function h(·) is called Lipschitz continuous on a set U
if there exists a constant LU such that ‖h(a)− h(b)‖ ≤ LU‖a− b‖ for all a, b ∈ U .

Lemma 11. Suppose Assumption 2 holds, i.e., fp, p ∈ P, is uniformly locally
Lipschitz. Assume that there exists a point z0 ∈ R

dn such that supp∈P fp(z0) (or
infp∈P fp(z0)) is finite. Then g(x) := supp∈P fp(x) (or infp∈P fp(x)) is well defined
and is Lipschitz continuous on every compact set U .

Proof. Let U be a given compact set. Define Uz0 = co({z0} ∪ U). Based on
Theorem 1.14 of [20], a locally Lipschitz function is Lipschitz continuous on every
compact subset. Plugging in the fact that fp, p ∈ P is uniformly locally Lipschitz,
there is LUz0 > 0 such that ‖fp(a) − fp(b)‖ ≤ LUz0‖a − b‖ for all a, b ∈ Uz0 and
p ∈ P. It becomes straightforward that g(x) is finite at every point in Uz0 and LUz0
is a Lipschitz constant of g on Uz0 . Therefore, the lemma holds.

The following lemma is originally from [17] and is restated here.
Lemma 12. Suppose that f(x1, y) : R ×M → R is locally Lipschitz with respect

to [x1, y]
T, where M ⊂ R

q is compact. Then g(x1) = maxy∈M f(x1, y) is locally
Lipschitz.

Lemma 13. Suppose that f(x1, y) : M1 × M → R is locally Lipschitz with
respect to [x1, y]

T, where M1 ⊂ R and M ⊂ R
q are compact. Then g : M1 → R,

x1 �→ maxy∈M x1f(x1, y) is Lipschitz continuous with respect to x1 on M1.
Proof. Because f(x1, y) is locally Lipschitz with respect to [x1, y]

T and M1

and M are compact, it follows that f(x1, y) is Lipschitz continuous with respect
to [x1, y]

T. Therefore, there exists a constant L such that ‖f(x1, y) − f(x1, y)‖ ≤
L‖x1 − x1‖ ∀x1, x1 ∈ M1 ∀y ∈ M. Also, since f(x1, y) is continuous and the
continuous function on the compact set is compact, there exist constants Lx and Lf
such that Lx = maxx1∈M1 ‖x1‖ and Lf = maxx1∈M1,y∈M ‖f(x1, y)‖.

Let yx and yx be the points satisfying g(x1) = maxy∈M{x1f(x1, y)} = x1f(x1, yx)
and g(x1) = maxy∈M{x1f(x1, y)} = x1f(x1, yx). It is trivial to show that x1f(x1, yx)
≥ x1f(x1, yx) and x1f(x1, yx) ≥ x1f(x1, yx). Therefore, there exists x̃ = (1 −
λ)x1 + λx1, where 0 ≤ λ ≤ 1 such that x̃f(x̃, yx) = x̃f(x̃, yx). Thus, ‖g(x1) −
g(x1)‖ = ‖x1f(x1, yx) − x̃f(x̃, yx) + x̃f(x̃, yx) − x1f(x1, yx)‖ ≤ ‖x1f(x1, yx) −
x1f(x̃, yx)‖ + ‖x1f(x̃, yx) − x̃f(x̃, yx)‖ + ‖x̃f(x̃, yx) − x̃f(x1, yx)‖ + ‖x̃f(x1, yx) −
x1f(x1, yx)‖. It then follows that

‖g(x1)− g(x1)‖ ≤ L‖x1‖‖x1 − x̃‖+ ‖f(x̃, yx)‖‖x1 − x̃‖+ L‖x̃‖‖x1
− x̃‖+ ‖f(x1, yx)‖‖x1 − x̃‖

≤ (LLx + Lf )‖x1 − x̃‖+ (LLx + Lf )‖x1 − x̃‖
= (LLx + Lf )‖x1 − x1‖.(7.1)

Therefore, g(x1) is Lipschitz continuous with respect to x1 on M1.
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Lemma 14. Suppose that f(x) : M → R is locally Lipschitz with respect to x,
where M ⊂ R

q is compact. Then g(x) : M → R, x �→ x1f(x) is Lipschitz continuous
with respect to x on M, where x1 denotes an element of x.

Proof. Because f(x) is locally Lipschitz with respect to x and M is compact, it
follows that f(x) is Lipschitz continuous with respect to x. Therefore, there exists
a constant L such that ‖f(x) − f(x)‖ ≤ L‖x − x‖ ∀x, x ∈ M. Also, since f(x) is
continuous and the continuous function on the compact set is still compact, there
exist constants Lx and Lf such that Lx = maxx∈M ‖x‖ and Lf = maxx∈M ‖f(x)‖.

It then follows that ∀x, x ∈ M, ‖g(x)− g(x)‖ = ‖x1f(x)− x1f(x)‖ ≤ LLx‖x−
x‖ + Lf‖x− x‖ = (LLx + Lf)‖x − x‖. Therefore, g(x) is Lipschitz continuous with
respect to x on M.
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