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Abstract—This paper analyzes distributed control protocols for
first- and second-order networked dynamical systems. We propose
a class of nonlinear consensus controllers where the input of each
agent can be written as a product of a nonlinear gain, and a sum
of nonlinear interaction functions. By using integral Lyapunov
functions, we prove the stability of the proposed control protocols,
and explicitly characterize the equilibrium set. We also propose
a distributed proportional-integral (PI) controller for networked
dynamical systems. The PI controllers successfully attenuate con-
stant disturbances in the network. We prove that agents with
single-integrator dynamics are stable for any integral gain, and
give an explicit tight upper bound on the integral gain for when
the system is stable for agents with double-integrator dynamics.
Throughout the paper we highlight some possible applications of
the proposed controllers by realistic simulations of autonomous
satellites, power systems and building temperature control.

Index Terms—Agents and autonomous systems, cooperative
control, electrical power systems, proportional integral (PI)
control.

I. INTRODUCTION

A. General Motivation

D ISTRIBUTED or decentralized control is in many large-
scale systems the only feasible control strategy, when

sensing and actuation communication is limited. In this paper
we distinguish between decentralized control strategies where
agents only have access to local measurements, from distributed
control strategies where agents have access to local measure-
ments and the measurements from neighboring agents [3],
[4]. To attenuate unknown disturbances as well as to stabilize
systems in the presence of model imperfections, proportional-
integral (PI) controllers are commonly employed in such plants.
However, it is still an open problem under which conditions
distributed PI-controllers can stabilize a plant in general [19].
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One important class of systems that require integral action to
attenuate disturbances are electric power systems [18]. Due
to sudden load and generation changes as well as model im-
perfections, a proportional frequency controller cannot reach
the desired reference frequency in general. To attenuate such
static errors, integrators are commonly employed. Due to the
inherent difficulties with distributed PI control, automatic fre-
quency control of power systems is typically carried out at
two levels, an inner and an outer level. In the inner control
loop, the frequency is controlled with a proportional controller
against a dynamic reference frequency. In the outer loop, the
reference frequency is controlled with a centralized PI con-
troller to eliminate static errors. While this control architecture
works satisfactorily in most of today’s power systems, future
power system developments might render it unsuitable. For
instance, large-scale penetration of renewable power generation
increases generation fluctuations, creating a need for fast as
well as local disturbance attenuation. Decentralized control
of power systems might also provide efficient control under
islanding and self-healing features, even when communication
between subsystems is limited or even unavailable [25]. Dis-
tributed integral action for power system frequency control,
as well as numerous other physical systems such as mobile
robotic systems, can often be well modeled by consensus-like
protocols for double-integrator dynamics. Motivated by this
fact, we develop in this paper a more general framework for
consensus protocols with integral action for agents with double-
integrator dynamics and velocity damping.

Static feedback controllers, in contrast to integrators, have
been used in a variety of distributed control problems. For
example they are commonly used in the consensus problem.
The consensus problem has applications in formation control
[12], flocking [17] and rendezvous [7], amongst others. While
static linear feedback controllers can solve the basic problems,
nonlinear feedback controllers are of great importance when,
e.g., dealing with connectivity constraints and collision avoid-
ance [10]. Furthermore, some distributed control problems have
inherent nonlinear dynamics, e.g., heat diffusion where heat
capacities are nonlinear. Much attention has been devoted to
nonlinear consensus protocols in recent years. However, to the
best of our knowledge, none of the previous work characterizes
the convergence point of nonlinear consensus protocols explic-
itly. In this paper we introduce a nonlinear consensus proto-
col for single and double-integrator dynamics. We prove the
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asymptotic stability of the dynamics induced by the protocol,
and explicitly characterize its equilibrium set.

B. Related Work

Nonlinear interaction functions for consensus problems are
well-studied [20], [22], in applications to, e.g., consensus with
preserving connectedness [10] and collision avoidance [10].
Sufficient conditions for the convergence of nonlinear protocols
for first-order integrator dynamics are given in [2]. Consen-
sus on a general nonlinear function value, referred to as χ-
consensus, was studied in [9], by the use of nonlinear gain
functions. The literature on χ-consensus has been focused on
agents with single-integrator dynamics. However, as we show
later, our results can be generalized to hold also for double-
integrator dynamics. Consensus protocols where the input of
an agent can be separated into a product of a positive function
of the agents own state were studied in [6] for single integrator
dynamics. In [21], position consensus for agents with double-
integrator dynamics under a class of nonlinear interaction func-
tions and nonlinear velocity-damping is studied. In contrast to
[21], we study undamped consensus protocols for single- and
double-integrator dynamics using integral Lyapunov functions.
In [29] double-integrator consensus problems with linear non-
homogeneous damping coefficients are considered. We gener-
alize these results to also hold for a class of nonlinear damping
coefficients.

Multi-agent systems, as all control processes, are in general
sensitive to disturbances. When only relative measurements
are available, disturbances may spread through the network.
It has for example been shown by [5] that vehicular string
formations with only relative measurements cannot maintain
coherency under disturbances, as the size of the formation
increases. In [30] the robustness of consensus-protocols under
disturbances is studied, but limited to the relative states of
the agents. However, none of the aforementioned references
consider disturbance rejection. In [28] however, the steady-
state error for first-order consensus dynamics is minimized by
convex optimization over the edge-weights. A similar approach
is taken in [16], where the application is vehicle-platooning.
In [33], an optimal sensor placement problem for consensus
problems is formulated, minimizing the H2 gain of the system.
However, these approaches eliminate output errors if the dis-
turbances are constant only in special cases, as no no integral
control is employed.

Consensus with integral action is studied in [13] for agents
with single-integrator dynamics. It was shown that the proposed
controller attenuates constant disturbances. In [31], the authors
take a similar approach to attenuate unknown disturbances. In
both references the analysis is limited to agents with single-
integrator dynamics. Our proposed PI controller is related to the
consensus controllers in [8], [14]. However, these references do
not consider the influence of disturbances.

C. Main Contributions

The main contributions of this paper are threefold. Firstly,
we propose a class of nonlinear consensus protocols where

the input of an agent can be decoupled into a product of a
positive gain function of the agents own state, and a sum of
interaction functions of its neighbors’ relative states. Nonlinear
consensus protocols with double-integrator dynamics and state-
dependent damping are also considered. The equilibria are
characterized for both the first- and second-order nonlinear
consensus protocol. Secondly, we propose a distributed PI con-
troller for multi-agent systems with single integrator dynamics
and a corresponding controller for agents with damped double-
integrator dynamics. Necessary and sufficient conditions for
stability are derived, given that the controller gains are uniform.
Lastly, we demonstrate some applications of our theoretical
results to satellite control, mobile robots, green buildings and
frequency control of power systems.

D. Outline

The remainder of this paper is organized as follows. In
Section II we introduce four motivating examples, which il-
lustrate the theoretical results developed later in the paper.
In Section III we define a mathematical model for a class
of distributed control systems, and the considered problem is
stated. In Section IV we analyze the problem of distributed
control for a class of nonlinear control problems. We explicitly
characterize the equilibria by integral equations, and provide
sufficient stability criteria by integral Lyapunov functions. In
Section V we analyze the problem of distributed control by
integral action, where we give necessary and sufficient stability
criteria. In Section VI we show the feasibility of the results by
applying them to the examples in Section II. The paper ends by
concluding remarks in Section VII.

II. MOTIVATING APPLICATIONS

A. Thermal Energy Storage in Smart Buildings

Thermal energy storage has emerged as a possible method
for energy-efficient temperature regulation in buildings, as dis-
cussed in [32]. By using substances which undergoes a phase
transition near the desired maximum temperature in the build-
ing, the temperature may be kept below the maximal desired
temperature. While the heat capacity of the air in a building
is approximately constant, the total heat capacity of the room
is highly nonlinear due to the thermal energy storage. The
endothermic and exothermic processes of the phase transitions
may be modeled by nonlinear heat capacities, which take the
form of a continuous approximation of a Dirac delta function at
the temperature of the phase transition. The model fits well with
a consensus protocol for agents with single-integrator dynamics
with nonlinear gain and interaction functions. By a nonlinear
extension of Fourier’s law [15], the room temperatures are thus
well-described by the following nonlinear differential equation:

Ṫi = −γi(Ti)
∑
j∈Ni

aij(Ti − Tj) (1)

where Ti is the temperature of room i, aij(Ti − Tj) is the
heat conductivity between room i and j. Here aij(·) is a
nonlinear function ∀(i, j) ∈ E , and 1/γi(Ti) is the temperature-
dependent heat capacity of room i, capturing the dynamics of
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the energy storage. It is of interest to determine the asymptotic
temperature in the rooms given their initial temperatures.

B. Autonomous Space Satellites

Groups of autonomous space satellites may solve tasks in
space that require coordination. E.g., for a solar power plant in
space, this could involve formation control of mirrors, reflecting
the sunlight to a solar panel. If the agents are far away from
any fixed reference frame, it may be assumed that the satellites
only have access to their distance and velocity relative to
their neighboring satellites. It is however often important to
analyze the dynamical behavior of the satellites from a common
reference frame, e.g., from the earth. Even if the control laws
are linear in the relative velocities in the satellites reference
frame, they are in general nonlinear in another reference frame.
More specifically, the dynamics of a group of N satellites are
assumed to be governed by Newton’s second law of motion,
resulting in a set of second-order dynamical systems. The
control signal is the power applied by each agent’s engine, Pi.
However, the acceleration in an inertial reference frame is ai =
Pi/|vi| due to Pi = 〈Fi, vi〉, and the force Fi being parallel to
vi, where vi is agent i’s velocity. We assume that the agents only
have access to relative measurements. The following dynamics
describe the interactions of the satellites:

ẋi = vi

v̇i = − 1

|vi|+ c

∑
j∈Ni

[aij(xi − xj) + bij(vi − vj)] (2)

where aij(·) and bij(·) are nonlinear interaction functions, i =
1, . . . n and Ni denotes the neighbor set of satellite i, and where
c is an arbitrarily small constant which ensures the boundedness
of v̇i when vi = 0. Here xi and vi denote the position and
velocity of satellite i. This motivates the analysis of consen-
sus protocols for agents with double-integrator dynamics and
nonlinear gain and interaction functions.

C. Mobile Robot Coordination Under Disturbances

As all control systems, mobile robot systems are susceptible
to disturbances. In general, even constant disturbances cause
a robot formation with only relative position and velocity
measurements to drift. We will consider the particular control
objective of reaching position-consensus. To address the issues
caused by disturbances to the robots, a distributed PI controller
is proposed. We consider robots with the second-order dynam-
ics and the following controller:

ẋi = vi

v̇i =ui − γvi + di

ui = −
∑
j∈Ni

⎛
⎝b(xi−xj)+a

t∫
0

(xi(τ)−xj(τ)) dτ

⎞
⎠ (3)

where xi is the position, vi is the velocity. The constants a, b >
0 are controller parameters, while γ > 0 is a damping coeffi-

cient, and di is a constant disturbance. We will investigate when
distributed PI controllers can attenuate static disturbances in
mobile-robot networks. Furthermore, given the system-specific
damping coefficient γ, we will characterize under which condi-
tions on a and b asymptotic consensus is reached.

D. Frequency Control of Power Systems

Power systems are among the largest and most complex
dynamical systems created by mankind [18]. The interconnec-
tivity of power systems poses many challenges when designing
controllers. We model the power system as interconnected
second-order systems, known as the swing equation. The swing
equation has been used, e.g., in studying transient angle stabil-
ity of power systems [11] and fault detection in power systems
[26], and is given by

miδ̈i + diδ̇i = −
∑
j∈Ni

kij(δi − δj) + pmi + ui (4)

where δi is the phase angle of bus i, mi and di are the
inertia and damping coefficient respectively, pmi is the electrical
power load at bus i and ui is the mechanical input power. The
coefficient kij = |Vi||Vj |bij , where |Vi| is the absolute value
of the voltage of bus i, and bij is the susceptance of the line
(i, j). The frequency of the power system is denoted ωi = δ̇i.
Maintaining a steady frequency is one of the major control
problems in power systems. If the frequency is not kept close to
the nominal operational frequency, generation and utilization
equipment may cease to function properly. The frequency is
maintained primarily by automatic generation control (AGC),
which is carried out at different levels. In the first level, which
is carried out locally at each bus, the power generation is con-
trolled by the deviation from a dynamic reference frequency. At
the second level, which is carried out by a centralized controller,
the reference frequency is controlled based on the deviation of
the frequency from a reference frequency at a specific location.
When communication is unavailable or limited, a decentralized
controller is a possible alternative. A simple decentralized
frequency control with integral action would take the form

ui = a
(
ωref − ωi(t)

)
+ b

t∫
0

(
ωref − ωi(t

′)
)
dt′ (5)

where ωref is the reference frequency. The control objective
is to ensure that the system frequency reaches the nominal
operational frequency, i.e., limt→∞ ωi = ωref ∀i ∈ V .

III. PROBLEM FORMULATION

In this section we formalize the previously mentioned prob-
lems. We introduce a unified mathematical notation which
includes all problems previously described.

A. Notation

Let G be a graph. Denote by V = {1, . . . , n} the vertex
set, and by E = {1, . . . ,m} the edge set of G. Let Ni be the
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set of neighboring nodes of node i. Denote by B the vertex-
edge adjacency matrix of G, and let L be its Laplacian matrix.
For undirected graphs it holds that L = BBT . Throughout this
paper we will assume that G is connected, as motivated by
the applications considered. We denote by R

−/R+ the open
negative/positive real axis, and by R̄

−/R̄+ its closure. Let
C

−/C+ denote the open left/right half complex plane, and
C̄

−/C̄+ its closure. We will denote the scalar position of agent
i as xi, and its velocity as vi, and collect them into column
vectors x = (x1, . . . , xn)

T , v = (v1, . . . , vn)
T . We denote by

cn×m a vector or matrix of dimension n×m whose elements
are all equal to c. In denotes the identity matrix of dimension
n. A function f(·) with domain X is said to be globally
Lipschitz (continuous) if there exists K ∈ R

+ : ∀x, y ∈ X :
‖f(x)− f(y)‖ ≤ K‖x− y‖.

B. System Model

We consider agents endowed with either single-integrator
dynamics

ẋi = di + ui (6)

or double-integrator dynamics

ẋi = vi

v̇i = di + ui (7)

where di is a constant disturbance.

C. Objective

The main objectives of this paper are twofold. Our first
objective is to characterize the stability of nonlinear feedback
protocols, and to determine under which nonlinear feedback
protocols the consensus point of the agents may be determined
a priori, in the absence of disturbances. The second objective
is the design of consensus protocols robust to disturbances.
We will focus on constant but unknown disturbances. In both
cases, the overall objective will be for all agents to converge
to a common state, i.e. limt→∞ xi(t) = x∗ ∀i ∈ V for single-
integrator dynamics, and limt→∞ vi(t) = v∗ ∀i ∈ V for double-
integrator dynamics.

IV. DISTRIBUTED CONTROL WITH STATIC

NONLINEAR FEEDBACK

Although the consensus problem has received tremendous
amounts of attention in the last decade, the vast majority of the
studied consensus protocols are linear. In this section we define
a class of nonlinear consensus algorithms where the input of
each agent can be decoupled into a product of a nonlinear gain
function and a nonlinear interaction function. We show that
several interesting properties of the system arise due to this
coupling. We first study consensus for single-integrator dynam-
ics by nonlinear protocols in Section IV-A. In Section IV-B we
consider a nonlinear consensus protocol for agents with double-
integrator dynamics. Finally, in Section IV-C a nonlinear con-

sensus protocol with nonlinear, state-dependent damping for
agents with double-integrator dynamics is considered.

A. Consensus for Single-Integrator Dynamics

Consider agents with dynamics (6), where di = 0 ∀i ∈ V ,
and where ui is given by

ui = −γi(xi)
∑
j∈Ni

aij(xi − xj). (8)

Assumption 1: The gain γi is continuous and 0 < γ ≤
γi(x) ≤ γ̄ ∀i ∈ V, ∀x ∈ R.

Assumption 2: The interaction function aij(·) is Lipschitz
continuous ∀(i, j) ∈ E , and:

1) aij(−y) = −aji(y) ∀(i, j) ∈ E , ∀y ∈ R

2) aij(−y) = −aij(y) ∀(i, j) ∈ E , ∀y ∈ R

3) aij(y) > 0 ∀(i, j) ∈ E , ∀y > 0,
Remark 1: Assumption 2 guarantees that the agents move in

the direction of their neighbors, as well as symmetry in the flow.
A consequence of Assumption 2 is that αij(0) = 0 ∀(i, j) ∈ E ,
ensuring that any consensus point where xi = xj ∀i, j ∈ V is
an equilibrium.

We are now ready to state the main result of this section.
Theorem 1: Given n agents with dynamics (6) with di =

0 ∀i ∈ V , and ui given by (8), where γi(·) and aij(·) satisfy
Assumptions 1 and 2, respectively, for all i ∈ V and for all
(i, j) ∈ E . Then the agents converge asymptotically to an agree-
ment point limt→∞ xi(t) = x∗ ∀i ∈ V , where x∗ is uniquely
determined by the integral equation for any xi(0) = x0

i , i =
1, . . . , n

∑
i∈V

x0
i∫

0

1

γi(y)
dy =

x∗∫
0

∑
i∈V

1

γi(y)
dy. (9)

Proof: The proof is Lyapunov based, and requires find-
ing an appropriate Lyapunov function, which guarantees con-
vergence to an equilibrium set. This equilibrium set is then
characterized by a time-invariant function. Such a function is
given by E(x) =

∑
i∈V
∫ xi

0 1/γi(y)dy. Differentiating E(x)
with respect to time yields

Ė (x(t)) = −
[

1

γ1(x1)
, . . . ,

1

γn(xn)

]
Γ(x)Ba(BTx)

= − 11×nBa(BTx) = 0

where Γ(x) = diag([γ1(x1), . . . , γn(xn)]), and a(·) is taken
component-wise. Hence E(x) is time-invariant and the agree-
ment point x∗, if existing, is given by (9). By Assumption 1,
E(x∗1n×1) is strictly increasing in x∗, and hence (9) ad-
mits a unique solution. Now consider the following candidate
Lyapunov function:

V (x) =
∑
i∈V

xi∫
x∗

y − x∗

γi(y)
dy (10)

where x∗ is the agreement point given by (9). It can easily
be verified that V (x∗1n×1) = 0. To show that V (x) > 0 for
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x �= x∗1n×1, it suffices to show that
∫ xi

x∗ (y − x∗)/γi(y)dy >
0 ∀i ∈ V, ∀x �= x∗1n×1. Consider first the case when xi >

x∗, where
∫ xi

x∗ (y−x∗)/γi(y)dy =
∫ xi−x∗

0 z/γi(z+x∗)dz>0,
by the change of variable z = y − x∗. The case when xi <
x∗ is treated analogously, where

∫ xi

x∗ (y − x∗)/γi(y)dy =∫ x∗−xi

0 z/γi(x
∗ − z)dz > 0, by the change of variable z =

x∗ − y. This also implies that V (x) = 0 ⇒ x = x∗1n×1. Now
consider V̇ (x)

V̇ (x) = −
∑
i∈V

xi − x∗

γi(xi)
γi(xi)

∑
j∈Ni

aij(xi − xj)

= −
∑
i∈V

xi

∑
j∈Ni

aij(xi−xj)+
∑
i∈V

x∗
∑
j∈Ni

aij(xi−xj).

(11)

Due to the symmetry property in Assumption 2, the first term
of (11) may be rewritten as

∑
i∈V xi

∑
j∈Ni

aij(xi − xj) =∑
i∈V
∑

j∈Ni
xiaij(xi − xj) = (1/2)

∑
i∈V
∑

j∈Ni
(xi − xj)

aij(xi − xj). Clearly the second term of (11) satisfies∑
i∈V x

∗∑
j∈Ni

aij(xi − xj) = 0 due to Assumption 2. Hence,

V̇ (x) may be rewritten as V̇ (x) = −(1/2)
∑

i∈V
∑

j∈Ni
(xi −

xj)aij(xi − xj) < 0, unless xi = xj ∀i, j ∈ V . Therefore the
agents converge to xi = x∗ ∀i ∈ V . �

Remark 2: The agreement protocol (8) has a physical in-
terpretation. If we consider the smart building problem in
Section II-A, and let xi be the temperature of the rooms,
1/γi(xi) is the temperature-dependent heat capacity of the
nodes. Analogously, aij(·) is the thermal conductivity of the
walls between rooms i and j, being dependent on the tem-
perature gradient between the rooms. The invariant quantity
E(x) =

∑
i∈V
∫ xi

0 1/γi(y)dy is the total stored thermal energy.
Remark 3: The convergence of the dynamics (6), and the

control (8) were proven in [27]. However, as opposed to that
reference, we characterize here explicitly the equilibrium set.
This gives a priori knowledge about the point of convergence.
Furthermore, in [27], the convergence was studied with a
Lyapunov function consisting of the difference of the maxi-
mal and minimal state, as opposed to the Lyapunov function
consisting of integral equations used in our proof. This new
Lyapunov function facilitates the proof by not relying on non-
smooth analysis.

B. Consensus for Double-Integrator Dynamics

Consider agents with double-integrator dynamics (7), where
di = 0 ∀i ∈ V , with ui given by

ui = −γi(vi)
∑
j∈Ni

[aij(xi − xj) + bij(vi − vj)] . (12)

We show that under mild conditions, the controller (12)
achieves asymptotic consensus. The following Theorem gen-
eralizes the literature on linear second-order consensus as in
[24], by extending the analysis of linear gains and interaction
functions to nonlinear ones. The nonlinear analysis covers a
much richer class of control inputs than the corresponding
linear analysis, and we are again able to explicitly characterize

the equilibrium set. By using an integral Lyapunov function,
we are thus able to prove that the agents reach consensus for
the nonlinear consensus protocol also in the case of double-
integrator dynamics.

Theorem 2: Consider agents with dynamics (7), with di =
0 ∀i ∈ V , and ui given by (12), where aij(·) and γi(·) satisfy
Assumptions 1 and 2, and bij(·) satisfies Assumption 2, replac-
ing aij with bij , for all i ∈ V and for all (i, j) ∈ E , respectively.
The agents achieve consensus with respect to x and v, i.e.,
|xi − xj | → 0, |vi − vj | → 0 ∀i, j ∈ G as t → ∞ for any ini-
tial condition (x(0), v(0)). Furthermore, the velocities converge
to limt→∞ vi(t) = v∗ ∀i ∈ V , uniquely determined by

∑
i∈V

v0
i∫

0

1

γi(y)
dy =

v∗∫
0

∑
i∈V

1

γi(y)
dy. (13)

Proof: The convergence analysis relies on Lyapunov tech-
niques. For characterizing the equilibrium set, a time-invariant
function is introduced. We write (12) in vector form as

ẋ = v

v̇ = − Γ(v)
[
Ba(x̄) + Bb(BT v)

]
where x̄ = BTx, and a(·) and b(·) are taken component-wise,
and Γ(x) = diag([γ1(x1), . . . , γn(xn)]). Consider now the fol-
lowing candidate Lyapunov function, also used in [21], however
in another context

V (x̄, v) =
∑
i∈V

⎛
⎝ vi∫

v∗

(y−v∗)

γi(y)
dy

⎞
⎠+

∑
(i,j)∈E

x̄ij∫
0

aij(y)dy.

Here v∗ is the common velocity of the agents at the equilibrium,
which we will show is given by (13). It is straightforward to
verify that V ([01×m, v∗11×n]

T ) = 0. By following the proof
of the positive semi-definiteness of V (x) in the proof of
Theorem 1, replacing xi and x∗ with vi and v∗, respectively,
the positive semi-definiteness of

∑
i∈V(

∫ vi

v∗ (y − v∗)/γi(y)dy)
follows. For showing the positive semi-definiteness of the sec-
ond term of V (x̄, v), it suffices to show that

∫ x̄ij

0 aij(y)dy >
0 ∀(i, j) ∈ E . For x̄ij > 0, this inequality clearly holds.
When x̄ij < 0 we have

∫ x̄ij

0 aij(y)dy = −
∫ 0

x̄ij
aij(y)dy =∫ 0

x̄ij
aji(−y)dy > 0. We may write V (x̄, v) in vector form

as V (x̄, v)=
∫ x̄

0 11×nBTa(y)dy +
∫ v

v∗1n×1
ỹTΓ−1(y)1n×1dy,

where ỹ = [y1−v∗, . . . , yn − v∗]T . Differentiating V (x̄, v)
with respect to time yields

V̇ = a(x̄)TBT v − (v − v∗1n×1)
TB

[
a(x̄) + b(BT v)

]
= − vTBb(BT v) + v∗11×nBb(BT v) = −vTBb(BT v)≤ 0

due to Assumption 2, with equality if and only if BT v =
0. We now invoke LaSalle’s invariance principle to show
that the agreement point satisfies v̇ = 0. The subspace where
V̇ (x̄, v) = 0 is given by S1 = {(x̄, v)|v = c1n×1}. We note
that on S1, v̇ =−Γ(v)[Ba(x̄) + Bb(BT v)] = −Γ(v)Ba(x̄) �=
k(t)1n×1. To see this, suppose that v̇(t) = −Γ(v)Ba(x̄) =
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k(t)1n×1 ⇔ Ba(x̄) =Γ−1(v)k(t)1n×1, where k(t) �= 0 ∀t.
Premultiplying the above equation with 11×n yields 0 =
11×nBa(x̄) = k(t)11×nΓ

−1(v)1n×1 �= 0, which is a contradic-
tion since k(t) �= 0 ∀t by assumption. Hence the only trajecto-
ries contained in S1 are those where v = v∗1n×1, v̇ = 0. It can
also be shown that no trajectories where x̄ �= 0 are contained in
S1. Assume for the sake of contradiction that x̄ �= 0 in S1. Let
i− = minj∈V xj s.t. ∃k ∈ Ni− : xk > xi− . It is clear that such
an i− exists, since otherwise x̄ = 0. Consequently

v̇i− = − γi−(vi−)
∑

j∈Ni−

[
ai−j(xi− − xj) + bij(vi− − vj)

]
= − γi−(vi−)

∑
j∈Ni−

[
ai−j(xi− − xj)

]
> − γi−(vi−)ai−k(xi− − xk) > 0

by the assumption that xk > xi− . Thus, any trajectory in S1

where x̄ �= 0 cannot remain in S1, implying that |xi − xj | →
0, |vi − vj | → 0 ∀i, j ∈ G as t → ∞ and furthermore v̇(t) =
0n×1. Next we show that p(v) =

∑
i∈V
∫ vi

0 1/γi(y)dy =∫ v

0 11×nΓ
−1(v)1n×1dy is invariant under (12). Consider

ṗ (v(t)) = − 11×nΓ
−1(v)Γ(v)

[
Ba(x̄) + Bb(BT v)

]
= − 11×nBa(x̄)− 11×nBb(BT v) = 0.

Thus we conclude that limt→∞ x(t) = x∗(t)1n×1 and
limt→∞ v(t)=v∗1n×1 with v∗ given by (13). The existence and
uniqueness of the solution to (13) follows from Assumption 1,
and by the proof of Theorem 1, replacing xi and x∗ with vi and
v∗, respectively. �

Remark 4: Theorem 2 has a physical interpretation. If we
regard 1/γi(vi) as the velocity-dependent mass of agent i,
e.g., due to the agents’ masses scaling with the Lorentz factor
1/
√

1− v2i /v
2
c , where vc is the speed of light, then the invariant

quantity p(v) =
∑

i∈V
∫ vi

0 1/γi(y)dy is the total (relativistic)
momentum of the mechanical system.

C. Consensus for Double-Integrator Dynamics With
State-Dependent Damping

Consider agents with double-integrator dynamics (7), where
di = 0 ∀i ∈ V , with ui given by

ui = −κi(xi)vi −
∑
j∈Ni

aij(xi − xj). (14)

The following theorem generalizes the results in [29] to also
include nonlinear state-dependent damping, as well as nonlin-
ear interaction functions. With this framework, we are able to
generalize the simple average consensus to a much broader
class of consensus functions.

Theorem 3: Consider agents with dynamics (7) and ui

given by (14), where κi(·) satisfies Assumption 1, replacing
γi with κi, and aij(·) satisfies Assumption 2 for all i ∈ V
and for all (i, j) ∈ E , respectively. Furthermore, the interaction

functions aij(·) satisfy limx→∞
∫ x

0 aij(y)dy = ∞ ∀(i, j) ∈ E .1

Then the agents converge to a common point for any initial
position xi(0). Furthermore, the consensus point is uniquely
determined by

∑
i∈V

⎛
⎜⎝

x0
i∫

0

κi(y)dy + vi(0)

⎞
⎟⎠ =

x∗∫
0

∑
i∈V

κi(y)dy. (15)

Proof: The proof of convergence also relies on Lyapunov
techniques, and LaSalle’s invariance principle. A time-invariant
function is introduced to characterize the equilibrium set. This
function is given by E(x, v) =

∑
i∈V(

∫ xi

0 κi(y)dy + vi). Dif-
ferentiating E(x, v) along trajectories of (14) yields Ė(x, v) =
−
∑

i∈V
∑

j∈Ni
aij(xi − xj) = 0, by Assumption 2. We first

note that by Assumptions 1 and 2, a unique continuous solution
of (7) with ui given by (14) exists for all t ≥ 0. Consider
the candidate Lyapunov function V (x, v) =

∑
i∈V [v

2
i /2 +∑

j∈Ni

∫ xi−xj

0 aij(y)dy] ≥ 0. Differentiating V (x, v) along
trajectories of (14) yields

V̇ (x, v) =
∑
i∈V

vi

⎛
⎝−κi(xi)vi −

∑
j∈Ni

aij(xi − xj)

⎞
⎠

+
∑
i∈V

⎛
⎝∑

j∈Ni

aij(xi − xj)

⎞
⎠ vi = −

∑
i∈V

κi(xi)v
2
i ≤ 0.

Since V (x, v) is non-increasing under the dynamics (14),
it is clear that for Ω = {[x(t), v(t)] : V (x, v) ≤ V (x0, v0)}, it
holds that [x̄(t), v(t)] ∈ Ω ∀t ≥ 0, where x̄ = BTx and x0 =
x(0), v0 = v(0). Clearly Ω is compact. The following lemma is
needed to use LaSalle’s invariance principle.

Lemma 4: Given the requirements in Theorem 3, [x(t), v(t)]
evolve in a compact set, denoted Ω′.

Proof: See Appendix. �
Now let H = {(x, y)|V̇ (x, v) = 0} = {(x, y)|v = 0}. Con-

sider any trajectory of (14) with x �= x∗(t)1n×1. By (14) and
the assumption that G is connected, v̇i �= 0 for at least one
index i. Thus the largest invariant manifold of E is {(x, v)|x =
x∗1n×1, v = 0}. Since Ω′ by Lemma 4 is compact and pos-
itively invariant, then by LaSalle’s invariance principle, the
agents converge to a common point xi = x∗ ∀i ∈ G, with vi =
0 ∀i ∈ G.

It remains to show that the common point to which the agents
converge to is the point given by (15), and that the solution
is unique. Indeed, consider again the function E(x, v). Since
Ė(x, v) = 0, and the agents converge to a point x∗ with vi =
0 ∀i ∈ V . It follows that x∗ is given by (15). Since κi(y) > 0
by assumption, (15) admits a unique solution. �

The following corollary follows directly from Theorem 3.
Corollary 5: Given n agents starting from rest, i.e., vi(0) =

0 ∀i ∈ V , with dynamics (7), where ui is given by (14), the

1We would like to thank the anonymous reviewer for pointing out the
necessity of this condition.
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agents converge to a common point x∗ for any initial position
xi(0), which is uniquely determined by

∑
i∈V

x0
i∫

0

κi(y)dy =

x∗∫
0

∑
i∈V

κi(y)dy. (16)

Remark 5: In Theorem 1, x∗ is given by
∑

i∈V
∫ x0

i

0 1/

γi(y)dy =
∫ x∗

0

∑
i∈V 1/γi(y)dy, as opposed to (16) in Corol-

lary 5. The intuition behind this is that in (8), γi(xi) acts as
a gain of agent i, where an increased γi(xi) will increase the
speed of agent i. In (14) however, κi(xi) acts as damping of
agent i, where an increased κi(xi) will decrease the speed of
agent i.

V. DISTRIBUTED CONTROL WITH INTEGRAL ACTION

Multi-agent systems are, like most control processes, sensi-
tive to disturbances. Generally, static distributed control pro-
tocols, such as e.g., P-controllers, cannot reject even constant
disturbances. In this section we propose a control protocol for
single- and double-integrator dynamics that drives the agents to
a common state under static disturbances. By using distributed
integral action, we are able to compensate for the disturbances
in a distributed setting. Moreover, with the proposed control
algorithm, the agents reach the average of their initial positions
for arbitrary initial velocities in the absence of disturbances.
We study the properties of the control protocols and derive
necessary and sufficient conditions under which the multi-agent
system is stable.

A. Consensus by Distributed Integral Action for
Single-Integrator Dynamics With Damping

Consider agents with single-integrator dynamics (6), with ui

given by

ui = −
∑
j∈Ni

⎛
⎝b(xi − xj) + a

t∫
0

(xi(τ)− xj(τ)) dτ

⎞
⎠

−δ (xi − xi(0)) (17)

where a ∈ R
+, b ∈ R

+, δ ∈ R̄
+ are fixed parameters, and di ∈

R is an unknown disturbance.
Theorem 6: Under the dynamics (17), with ui given by (17),

the agents converge to a common value x∗ for any constant
disturbance di and any initial condition. If di = 0 ∀i ∈ V , the
agents converge to x∗ = (1/n)

∑
i∈V xi(0) given vi(0) ∀i ∈ V .

If absolute position measurements are not present, i.e., δ =
0, it still holds that limt→∞ |xi(t)− xj(t)| = 0 ∀i, j ∈ V for
any di ∈ R, a, b ∈ R

+, while the absolute states diverge, i.e.,
limt→∞ |xi(t)| = ∞ ∀i ∈ V , unless 11×nd = 0.

Proof: First consider the case when δ = 0 and di =
0 ∀i ∈ V . By introducing the integral states z = [z1, . . . , zn]

T

we may rewrite the dynamics (17) in vector form as[
ż
ẋ

]
=

[
0n×n In
−aL −bL

]
︸ ︷︷ ︸

Δ
=A

[
z
x

]
(18)

together with the initial condition z(0) = 0n×1. By elementary
column operations we note that the characteristic equation of
A is given by 0 = det((a+ bs)L+ s2In). By comparing the
characteristic polynomial with the characteristic equation of L,
being 0 = det(L − κIn), with solutions κ = λi ≥ 0, we obtain
the equation 0 = s2 + λibs+ λia. This equation has a double
root s = 0 if λi = 0, and the remaining solutions s ∈ C

− if
λi > 0. Since the above equation has exactly two solutions
for every λi, it follows that the algebraic multiplicity of the
eigenvalue 0 must be equal to two. It is well-known that for
connected graphs G, λ1 is the only zero-eigenvalue of the
Laplacian L. By straightforward calculations we obtain that
e1 = [11×n, 01×n]

T is an eigenvector and e2 = [01×n, 11×n]
T is

a generalized eigenvector of A corresponding to the eigenvalue
0. It can also be verified that v1 = (1/n)[11×n, 01×n] and v2 =
(1/n)[01×n, 11×n] are a left eigenvector and a generalized left
eigenvector of A, respectively, corresponding to the eigenvalue
0. It is easily verified that v1e1 = 1, v2e2 = 1 and v2e1 =
0, v1e2 = 0. If we let P be a matrix consisting of the normalized
eigenvectors of A, we can chose the first columns of P to be e1
and e2, and the first rows of P−1 to be v1 and v2, respectively.
Since all remaining eigenvalues of A have strictly negative real
part we obtain

lim
t→∞

eAt= lim
t→∞

PeJtP−1

=P lim
t→∞

⎡
⎣ 1 t 01×(2n−2)

0 1 01×(2n−2)

0(2n−2)×1 0(2n−2)×1 eJ
′t

⎤
⎦P−1

= lim
t→∞

1

n

[
1n×n t1n×n

0n×n 1n×n

]

where J is a Jordan matrix. Thus, given an initial position
x(0) = x0, we obtain limt→∞ xi(t) = (1/n)

∑
i∈V x0,i ∀i ∈

V , i.e., the agents converge to the average of their initial
positions.

We now consider the case where δ = 0 and di �= 0 for at least
one i ∈ V . Define the output

[yx] = [0m×n BT ]

[
z

x

]

and consider the linear coordinate change

x =

[
1√
n
1n×1 S

]
u u =

[ 1√
n
11×n

ST

]
x

z =

[
1√
n
1n×1 S

]
w w =

[ 1√
n
11×n

ST

]
z (19)

where S is a matrix such that [(1/
√
n)1n×1, S] is an or-

thonormal matrix. In the new coordinates, the system dynamics
become

ẇ =u

u̇ =

[
0 01×(n−1)

0(n−1)×1 −aSTLS

]
w+

[
0 01×(n−1)

0(n−1)×1 −bSTLS

]
u

+

[ 1√
n
11×n

ST

]
d. (20)
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We note that the states u1 and w1 are both unobservable and
uncontrollable. We thus omit these states to obtain a minimal
realization by defining the new coordinates u′ = [u2, . . . , un]

T

and w′ = [w2, . . . , wn]
T , thus obtaining the system dynamics[

ẇ′

u̇′

]
=

[
0(n−1)×(n−1) I(n−1)

−aSTLS −bSTLS

] [
w′

u′

]
+

[
0(n−1)×1

ST d

]
.

Clearly xTSTLSx ≥ 0, with equality only if Sx = k1n×1.
However, since [(1/

√
n)1n×1, S] is orthonormal, 11×nSx =

01×nx = 0 = k11×n1n×1 = kn, which implies k = 0. Hence
STLS is positive definite and thus invertible, and we may
define [

w′′

u′′

]
=

[
w′

u′

]
−
[ 1
a (S

TLS)−1
ST d

0(n−1)×1

]
.

It is easily verified that the origin is the only equilibrium of the
system dynamics, which in the new coordinates are given by[

ẇ′′

u̇′′

]
=

[
0(n−1)×(n−1) I(n−1)

−aSTLS −bSTLS

]
︸ ︷︷ ︸

Δ
=A

[
w′′

u′′

]
.

By elementary column operations, the characteristic polyno-
mial in κ of A is given by det(κ2I(n−1) + (bκ+ a)STLS). By
comparing this polynomial with the characteristic polynomial
det(sI + STLS), which since STLS is positive definite has
solutions −si < 0, we know that the eigenvalues of A must
satisfy κ2 + sibκ+ sia = 0, with solutions κ ∈ C

−. Thus A
is Hurwitz. From the dynamics (20), it is clear that u̇1 =
(1/

√
n)11×nd. Hence limt→∞ u1(t) = ±∞ unless 11×nd = 0.

Since u′ is bounded, by the coordinate change (19), x is
bounded iff 11×nd = 0.

Now consider the case where δ > 0 and di = 0 ∀i ∈ V . The
dynamics can be written as:[

ż
ẋ

]
=

[
0n×n In
−aL −bL − δI

] [
z
x

]
+

[
0n×1

δx(0)

]
. (21)

Define the output of the system

[yx] = [0m×n BT ]

[
z

x

]

and consider the linear coordinate change

z =

[
1√
n
1n×1 S

]
w w =

[ 1√
n
11×n

ST

]
z (22)

where S is a matrix such that [(1/
√
n)1n×1, S] is an orthonor-

mal matrix. In the new coordinates, the system dynamics (21)
become

[
ẇ
ẋ

]
=

⎡
⎣ 0n×n

[ 1√
n
11×n

ST

]
[ 0n×1 −aLS ] −bL − δI

⎤
⎦[w

x

]
+

[
0n×1

δx(0)

]
.

We note that the state w1 is unobservable and uncontrollable.
We thus omit this state to obtain a minimal realization by defin-

ing the new coordinates w′ = [w2, . . . , wn]
T , thus obtaining the

system dynamics[
ẇ′

ẋ

]
=

[
0(n−1)×(n−1) ST

−aLS −bL − δIn

]
︸ ︷︷ ︸

Δ
=A

[
w′

x

]
+

[
0n×1

δx(0)

]
. (23)

By elementary column operations, the characteristic polyno-
mial of A may be written as 0 = det(s2In + s(bL+ δIn) +

aLSST )
Δ
= det(Q(s)). For a given s ∈ C, the previous equa-

tion has a solution only if xTQ(s)x = 0 for some x satisfying
xTx = 1. This equation becomes

0 = s2 xTx︸︷︷︸
a2

+s xT (bL+ δIn)x︸ ︷︷ ︸
a1

+ axTLSSTx︸ ︷︷ ︸
a0

.

By the Routh-Hurwitz stability criterion, the above equation has
all its solutions s ∈ C

− if and only if ai > 0 for i = 0, 1, 2.
Clearly a2 = 1 by definition, while a1 > 0 by the positive
definiteness of L+ δIn. It is easily shown that SST = In −
1/n1n×n, by the orthonormality of [(1/

√
n)1n×1, S]. This

implies that LSST = L, implying that a0 ≥ 0. If a0 > 0, all
solutions are stable, whereas if a0 = 0, s = 0 is also a solution.
Thus, any eigenvalue of A must be either zero, or have negative
real part. However, it is easily verified that A is full rank.
Thus 0 cannot be an eigenvalue of A, implying that A is
Hurwitz. The first n− 1 rows of the equilibrium of (23) imply
STx = 0(n−1)×1, which implies x = x∗1n×1. Finally, the last n
rows of (23) imply 11×n(−aLSw′ − bLx∗1n×1 − δx∗1n×1 +
δx(0)) = 0, so nx∗ =

∑
i∈V xi(0)

The case when δ > 0 and di �= 0 for at least one i ∈ V is
analogous to the case when δ = 0 and di �= 0, and the proof is
thus omitted. �

B. Consensus by Distributed Integral Action for
Double-Integrator Dynamics With Damping

Consider agents with double-integrator dynamics (7), with
input given by the velocity-damped PI-controller

ui = −
∑
j∈Ni

⎛
⎝b(xi − xj) + a

t∫
0

(xi(τ)− xj(τ)) dτ

⎞
⎠

−γvi − δ
(
xi − x0

i

)
(24)

where a ∈ R
+, b ∈ R

+, γ ∈ R
+, δ ∈ R

+ and di ∈ R is an un-
known scalar disturbance. The above protocol does not require
communication of the integral state between the agents, as it
suffices for each agent to measure its neighbors’ states and
integrate the relative differences.

Theorem 7: Under the dynamics (7) with ui given by (24),
the agents converge to a common value x∗ for any constant
disturbance di, provided that a < bγ. If di = 0 ∀i ∈ V , the
agents converge to x∗ = (1/n)

∑
i∈V xi(0) for arbitrary vi(0).

If absolute position measurements are not present, i.e., δ = 0, it
still holds that limt→∞ |xi(t)− xj(t)| = 0 ∀i, j ∈ V for any set
of disturbances di. However the absolute states are in general
unbounded, i.e., limt→∞ |xi(t)| = ∞ ∀i ∈ V , unless 11×nd =
0. Also, in this case the system is stable if and only if a < bγ.
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Proof: The proof follows the same principle ideas as the
proof of Theorem 6. However, as second-order dynamics are
considered, the problem is inherently different from first-order
dynamics. First consider the case where δ = 0. Let also di =
0 ∀i ∈ V . By introducing the state vector z = [z1, . . . , zn]

T we
may rewrite the dynamics as⎡

⎣ ż
ẋ
v̇

⎤
⎦ =

⎡
⎣ 0n×n In 0n×n

0n×n 0n×n In
−aL −bL −γIn

⎤
⎦

︸ ︷︷ ︸
Δ
=A

⎡
⎣ z
x
v

⎤
⎦

together with the additional initial condition z(0) = 0n×1. By
elementary column operations it is easily shown that the char-
acteristic polynomial of A can be written as 0 = det((a+
bs)L+ s2(s+ γ)I), where I is the identity matrix of appro-
priate dimensions. Comparing the above equation with the
characteristic polynomial of L, we get that 0 = s3 + γs2 +
λibs+ λia, where λi is an eigenvalue of L. If λi > 0, the
above equation has all its solutions s ∈ C

− if and only if
a < bγ, and a, b, γ > 0 by the Routh-Hurwitz stability cri-
terion. Since G by assumption is connected, λ1 = 0 and
λi > 0 ∀i = 2, . . . , n. For λ1 = 0, the above equation has
the solutions s = 0, s = −γ. By straightforward calculations
it can be shown that e11 = [11×n, 01×n, 01×n]

T and e21 =
[01×n, 11×n, 01×n]

T are an eigenvector and a generalized
eigenvector of A, respectively, corresponding to the eigenvalue
0. Furthermore v1 = 1/(γ2n)[γ211×n, 01×n, −11×n] and v2 =
1/(γn)[01×n, γ11×n, 11×n] are a generalized left eigenvector
and a left eigenvector of A corresponding to the eigenvalue
0. Furthermore v1e

1
1 = 1, v2e

2
1 = 1 and v2e

1
1 = 0, v1e

2
1 = 0.

Hence the first columns of P can be chosen as e11 and e21, and
the first rows of P−1 can be chosen to be v1 and v2. Since all
other eigenvalues of A have strictly negative real part we obtain

lim
t→∞

eAt

= lim
t→∞

PeJtP−1

= P lim
t→∞

⎡
⎣ 1 t 01×(3n−2)

0 1 01×(3n−2)

0(3n−2)×1 0(3n−2)×1 eJ
′t

⎤
⎦P−1

= lim
t→∞

P

⎡
⎣ 1 t 01×(3n−2)

0 1 01×(3n−2)

0(3n−2)×1 0(3n−2)×1 0(3n−2)×(3n−2)

⎤
⎦P−1

= lim
t→∞

1

n

⎡
⎣ 1n×n t1n×n

tγ−1
γ2 1n×n

0n×n 1n×n
1
γ 1n×n

0n×n 0n×n 0n×n

⎤
⎦

where J is a Jordan matrix. Given any initial position
x(0) = x0, z(0) = 0n×1, v(0) = v0, we obtain limt→∞ xi(t) =
(1/n)

∑
i∈V x0,i + (1/γn)

∑
i∈V v0,i ∀i ∈ V .

Now let us turn our attention to the case where δ > 0 and
di �= 0 for at least one i ∈ V . We define the output of the
system as

[
yx
yv

] =

[
0m×n BT 0m×n

0m×n 0m×n BT

]⎡⎣ z
x
v

⎤
⎦

and consider the same linear coordinate change of z, x and v
as applied to z and x in the proof of Theorem 6. In the new
coordinates the system dynamics are

ż′ =x′

ẋ′ = v′

v̇′ =

[
0 01×(n−1)

0(n−1)×1 −aSTLS

]
z′+

[
0 01×(n−1)

0(n−1)×1 −bSTLS

]
x′

− γv′ +

[
1
n11×(n)

ST

]
d. (25)

We note that the states z1, x′
1 and v′1 are unobservable and

uncontrollable. We thus omit these states to obtain a minimal
realization by defining the new coordinates z′′ = [z′2, . . . , z

′
n]

T ,
x′′ = [x′

2, . . . , x
′
n]

T and v′′ = [v′2, . . . , v
′
n]

T we obtain the sys-
tem dynamics⎡
⎣ ż′′

ẋ′′

v̇′′

⎤
⎦ =

⎡
⎣ 0(n−1)2 I(n−1)2 0(n−1)2

0(n−1)2 0(n−1)2 I(n−1)2

−aSTLS −bSTLS −γI(n−1)2

⎤
⎦

︸ ︷︷ ︸
Δ
=A′

⎡
⎣ z′′

x′′

v′′

⎤
⎦

+

⎡
⎣ 0(n−1)×1

0(n−1)×1

ST d

⎤
⎦ .

We now shift the state space by defining⎡
⎣ z(3)

x(3)

v(3)

⎤
⎦ =

⎡
⎣ z′′

x′′

v′′

⎤
⎦−

⎡
⎣ 1

a (S
TLS)−1

ST d
0(n−1)×1

0(n−1)×1

⎤
⎦ .

It is easily verified that the origin is the only equilibrium
of the system dynamics, and that the stability in the new
coordinates is characterized by the matrix A′. By a similar
argument used when showing that A has eigenvalues with non-
positive real part, we may show that A′ has eigenvalues with
non-positive real part. But since STLS is full-rank, A′ must
also be full-rank, and hence A′ is Hurwitz. Thus limt→∞ x(3) =
limt→∞ x′′ = 0(n−1)×1, which implies that limt→∞ |xi(t)−
xj(t)| = 0 ∀i, j ∈ V , even in the presence of disturbances di.
It is also clear that whenever a ≥ bγ, at least one eigenvalue
will have non-negative real part, and that its (generalized)
eigenvector will be distinct from e1 and e2. From the dynamics
(25), it is clear that ẋ′

1 = (1/n)11×nd. Hence limt→∞ x′
1(t) =

±∞ unless 11×nd = 0. Since x′′ is bounded, by the coordinate
change (19), x is bounded if and only if 11×nd = 0.

The stability analysis of the case when δ > 0 is analo-
gous to the corresponding part of the proof of Theorem 6,
and hence omitted. If di = 0 ∀i ∈ V , stationarity of v(t) im-
plies: limt→∞ 11×n(−aLz − bLx− δx+ δx(0)− γv) = 0, so
nx∗ =

∑
i∈V xi(0). �

VI. MOTIVATING APPLICATIONS REVISITED

A. Thermal Energy Storage in Smart Buildings

We here return to the example of thermal energy storage
in smart buildings, introduced in Section II-A. Recall that the
temperatures dynamics in the rooms can be described by (1).

The heat conductivity a is assumed to be constant and uni-
form, implying aij(x) = ax ∀(i, j) ∈ E , where a = 0.5W/◦C.
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Fig. 1. The leftmost figure illustrates the floor topology. The rightmost figure shows the communication topology of the space satellites.

Fig. 2. The top figure shows the heat capacities of Room 2 and 5. The bottom
figure shows the temperatures in the building floor.

Consider the floor topology in Fig. 1. Let the desired maximum
temperature be given by tb = 23◦C. The heat capacity is as-
sumed to be given by Fig. 2 for i ∈ {Room 2,Room 5} due to
thermal energy storage installations, and 1/γi(T ) = 50 kJ/◦C
for i ∈ {Room 1,Room 3,Room 4,Room 6,Corridor}
where no thermal energy storage is installed. The initial tem-
peratures was assumed to be 29◦C for room 6, 24◦C for room 1,
22◦C for the corridor and 20◦C for the other rooms. The
temperatures as a function of time are shown in Fig. 2 for given
initial temperatures. We note that the temperature in room 2 and
5 never exceeds the desired maximum temperature tb = 23◦C
due to the thermal energy storage, and that the temperatures
converge to a temperature below tb in all rooms, in accordance
with Theorem 1.

B. Autonomous Space Satellites

Consider a group of autonomous space satellites with uni-
tary masses. The satellites are denoted as 1, . . ., 5, and their
communication topology is given by the undirected graph in
Fig. 1. The objective is to reach consensus in one dimension
by a distributed control law using only relative position and
velocity measurements. The raw control signal is the power
applied to the agent’s engine, Pi. However, the acceleration in
an inertial reference frame is ai = Pi/|vi| due to Pi = 〈Fi, vi〉
and Pi being parallel to the agent’s velocity vi. We assume
that the agents only have access to relative measurements,
and hence are unaware of their absolute positions. Assuming

that ai = Pi/(|vi|+ c), c > 0, to ensure that the accelerations
remain bounded, this scenario can be modelled by (12). This
is clearly a special case of the dynamics (7) with ui given by
(12). The interaction functions in this example are chosen to
be aij(y) = 2bij(y) = 20(e|y| − 1)sgn(y) ∀(i, j) ∈ E , which
satisfies Assumption 2. It is clear that this situation cannot be
modelled by any previously proposed linear consensus pro-
tocols. Fig. 3 shows the state trajectories for different initial
conditions. As predicted by Theorem 2, consensus is reached,
and the final consensus velocity, as seen from an observer, can
be calculated by (15).

C. Mobile Robot Coordination Under Disturbances

In this section we revisit the example of mobile robots from
Section II-C. The dynamics of the robots are given by (3).
Let the damping coefficient be given by γ = 3, and the static
gain b = 5. We consider the system with a constant distur-
bance d = [1, 0, 0, 0, 0]T , and for the different integral gains
a = 0, a = 1, and a = 15. The initial conditions are given by
x(0) = [5,−6, 8, 4, 5]T , v(0) = [0, 0, 0, 0, 0]T . The setup we
will consider consists of a string of 5 mobile robots, whose
communication topology is a string graph.

By Theorem 7 stability is guaranteed if and only if a < bγ. In
Fig. 4, the state trajectories are shown for different choices of
a. We observe that asymptotic consensus amongst the mobile
robots is only reached for a = 1. For a = 0, consensus is not
reached due to the presence of a static disturbance. When
a = 1, the disturbance is attenuated by the integrators, and
asymptotic consensus is reached. However, as a is increased
to 15 = bγ, the system becomes marginally stable, i.e., stable
but not asymptotically stable. By increasing a further to 20, the
system becomes unstable, in accordance with Theorem 7.

D. Frequency Control of Power Systems

In this section we demonstrate that a similar protocol to the
one proposed in Section V-B, can be employed for frequency
control of power systems. Let us consider a power system,
whose topology modeled by a graph G = (V, E). Each node,
here referred to as a bus, is assumed to obey the linearized
swing (4). By defining δ = [δ1 . . . , δn]

T , we may rewrite (4) as[
δ̇
ω̇

]
=

[
0n×n In

−MLk −MD

][
δ
ω

]
+

[
0n×1

Mpm

]
+

[
0n×1

Mu

]
(26)

where M = diag(1/m1, . . . , 1/mn), D = diag(d1, . . . , dn),
Lk is the weighted Laplacian with edge weights kij , pm =

[pm1 , . . . , pmn ]T and u = [ui, . . . , un]
T .
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Fig. 3. The leftmost figure shows the positions of the satellites for the initial conditions x(0) = [−4, 0, 3,−1,−5]T , v(0) = [−3,−7, 3,−1, 0]T , while their
velocities.

Fig. 4. The upper left figure shows the state trajectories of (3) when a = 0, the upper right figure shows the state trajectories when a = 1, the lower left figure
shows the state trajectories when a = 15, and the lower right figure shows the state trajectories when a = 20.

Fig. 5. The left figure illustrates the centralized controller, while the right figure illustrates the decentralized controller.

1) Centralized PI Control: We will here present a a central-
ized frequency control protocol for power systems and analyze
its stability properties. Traditionally, frequency control of a
power systems is carried out at two levels, see e.g., [18]. In
the first level, the frequency is controlled with a proportional
controller against a dynamic reference frequency. At the second
level, the dynamic reference frequency is controlled with a
proportional controller to eliminate static errors. We model the
first level, proportional controller of an arbitrary bus i as

ui = a(ω̂ − ωi). (27)

The second level proportional controller, regulating ω̂ is as-
sumed to be given by

˙̂ω = b

(
ωref − 1

n

∑
i∈V

ωi

)
(28)

where we have assumed that the average frequency of the buses
is measured by the central controller.2 Note that the second level
controller integrates ω̂, thus acting as an integral controller. The
centralized controller architecture is illustrated in Fig. 5.

Proposition 1: The power system described by (26) where
ui is given by (27), (28) satisfies limt→∞ ωi(t) = ωref for any
set of initial conditions, given that a, b > 0.

Proof: We may write (26) with u given by (27), (28) as

⎡
⎣ ˙̂ω
δ̇
ω̇

⎤
⎦=
⎡
⎣ 0 01×n − b

n11×n

0n×1 0n×n In
aM1n×1 −MLk −MD − aM

⎤
⎦
⎡
⎣ ω̂
δ
ω

⎤
⎦+
⎡
⎣ bωref

0n×1

Mpm

⎤
⎦.

(29)

2In reality the frequency is often measured at a specific bus. This will
typically lead to longer delays, since disturbances need to propagate through
the system before control action can be taken.
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Define the output of the system as

[ yω ] = [ 0n×1 0n×n In ]

⎡
⎣ ω̂
δ
ω

⎤
⎦

and consider the linear coordinate change

δ =

[
1√
n
1n×1 S

]
δ′ δ′ =

[ 1√
n
11×n

ST

]
δ (30)

where S is a matrix such that [(1/
√
n)1n×1, S] is an orthonor-

mal matrix. In the new coordinates, the system dynamics (29)
become⎡
⎣ ˙̂ω
δ̇′

ω̇

⎤
⎦=
⎡
⎢⎢⎣

0 01×n − b
n11×n

0n×1 0n×n

[ 1√
n
11×n

ST

]
aM1n×1 [ 0n×1 −MLkS ] −MD − aM

⎤
⎥⎥⎦
⎡
⎣ ω̂
δ′

ω

⎤
⎦

+

⎡
⎣ bωref

0n×1

Mpm

⎤
⎦ .

We note that δ′1 is unobservable, and hence omit this state by
defining δ′′ = [δ′2, . . . , δ

′
n]

T . In these coordinates the system
dynamics (29) become⎡
⎣ ˙̂ω
δ̇′′

ω̇

⎤
⎦ =

⎡
⎣ 0 01×(n−1) − b

n11×n

0(n−1)×1 0(n−1)×(n−1) ST

aM1n×1 −MLkS −MD − aM

⎤
⎦

︸ ︷︷ ︸
Δ
=A

⎡
⎣ ω̂
δ′

ω

⎤
⎦

+

⎡
⎣ bωref

0n×1

Mpm

⎤
⎦ . (31)

By elementary row and column operations, we may
rewrite the characteristic equation of A as det(MLkSS

T +
(ab/n)M1n×n + s(MD + aM) + s2In)= 0. This equation is
equivalent to

det

(
LkSS

T +
ab

n
1n×n+s(D + aIn)+s2M−1

)
=0. (32)

For a given s, this equation has one solution only
if xT (LkSS

T + (ab/n)1n×n + s(D + aIn) + s2M−1)x = 0
has a solution for some ‖x‖ = 1. Hence, if the previous equa-
tion has all its solutions in C

− for all ‖x‖ = 1, then (32) has
all its solutions in C

−. By similar arguments used in the proof
of Theorem 6, we can show that LkSS

T = Lk. Thus, if the
equation

xT

(
Lk +

ab

n
1n×n

)
x︸ ︷︷ ︸

a0

+s xT (D + aIn)x︸ ︷︷ ︸
a1

+s2 xTM−1x︸ ︷︷ ︸
a2

= 0

has all its solutions in C
−, then A has only one zero eigenvalue,

and all other eigenvalues in C
−. By the Routh-Hurwitz stability

criterion, the above equation has all its solutions in C
− iff

ai > 0, i = 0, 1, 2. Clearly a0 > 0 since xTLx > 0 for x �=
c1n×1, where c ∈ R, and 1n×n1n×1 �= 0n×1. Also a1, a2 > 0
since D + aIn and M−1 are diagonal with positive elements.
We conclude thus that A is Hurwitz. Stationarity of (31) implies
ω = ωref1n×1. �

Decentralized PI Control: In this section we analyze a
decentralized frequency controller, where each bus controls
its own frequency based only on local phase and frequency
measurements. Thus, there is no need to send control signals
or reference values to the buses. This controller architecture
might be favorable due to security concerns when sending
unencrypted data over large areas. Another benefit is improved
performance when the tripping of one or several power lines
causes the network to be split up into two or more sub-networks,
so called islanding. The controller of node i is assumed to be
given by (5), here written as

żi =ωi − ωref (33)

ui = a(ωref − ωi)− bzi. (34)

The controller architecture is illustrated in Fig. 5. The de-
centralized controller (33), (34) is typically not practically
feasible with only frequency measurements available at the
generation buses. Even the slightest measurement error will be
integrated and cause instability, see, e.g., [18]. However, with
recent advances in phasor measurement unit (PMU) technol-
ogy however, phase measurements are becoming increasingly
available [23]. By integrating (33) we obtain zi = ωreft− δi.
This implies that in order to accurately estimate the integral
state zi, each generator bus needs access only to time and phase
measurements, both provided by PMU’s with high accuracy.

Proposition 2: The power system described by (26) where
ui is given by (33), (34) satisfies limt→∞ ωi(t) = ωref for any
set of initial conditions, given that a, b > 0.

Proof: If we consider [BT δ, ω] to be the output, the dy-
namics of (26) may be modified as long as the dynamics of
[BT δ, ω] are left unchanged. We thus may rewrite (26) with u
given by (33), (34) as[
ż
ω̇

]
=

[
0n×n In

−MLk − bM −MD − aM

]
︸ ︷︷ ︸

Δ
=A

[
z
ω

]

+

[
−ωref1n×1

M(pm + aωref1n×1)

]

since δ̇ − ż = ωref1n×1, implying that δ − z = δ0 −
tωref1n×1. Since Lk1n×1 = 0n×1, the output dynamics of
the above equation is equivalent to that of (26) with respect to
the output [BT δ, ω]. By elementary column operations, we may
rewrite the characteristic equation of A as

det(s2In + sMD +ML+ bIn) = 0 ⇔
det(s2M−1 + sD + L+ bM−1) = 0. (35)

For a given s, the above equation has a solution only if
xT (s2M−1 + sD + L+ bM−1)x = 0 has a solution. Hence, if
the previous equation has all its solutions in C

− for all ‖x‖ = 1,
then (35) has all its solutions in C

−. Thus, if the equation

xT (L+ bM−1)x︸ ︷︷ ︸
a0

+s xTDx︸ ︷︷ ︸
a1

+s2 xTM−1x︸ ︷︷ ︸
a2

= 0
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Fig. 6. The upper left figure shows the bus frequencies with centralized frequency control, while the lower left figure shows the control signals at all buses. The
upper right figure shows the bus frequencies with decentralized frequency control, while the lower right figure shows the control signals at all buses. The controller
parameters were a = 0.8, b = 0.04, for both the centralized and the decentralized controller.

Fig. 7. The upper left figure shows the bus frequencies with centralized frequency control, while the lower left figure shows the control signals at all buses. The
upper right figure shows the bus frequencies with decentralized frequency control, while the lower right figure shows the control signals at all buses. The controller
parameters were a = 0.8, b = 0.8, for both the centralized and the decentralized controller.

has all its solutions in C
−, then A is stable. By the Routh-

Hurwitz stability criterion, the above equation has all its so-
lutions in C

− iff ai > 0, i = 0, 1, 2. Clearly a0 > 0 since
xTLx > 0 for x �= c1n×1 for any c ∈ R, and M−11n×1 �=
0n×1. Also a1, a2 > 0 since D and M−1 are diagonal with
positive elements. We conclude thus that A is Hurwitz. Now
consider the coordinate shift[

z′

ω′

]
=

[
z

ω

]
−
[
zo
ωo

]

where

z0 = (bIn + Lk)
−1(Dωref1n×1 − pm), ω0 = ωref1n×1.

In the translated coordinates, the origin is the only equilibrium
of the system. Hence limt→∞ ωi(t) = ωref ∀i ∈ V . �

2) Simulations: The centralized and decentralized fre-
quency controllers were tested on the IEEE 30 bus test system
[1]. The line admittances were extracted from [1] and the

voltages were assumed to be 132 kV for all buses. The values
of M and D were assumed to be given by mi = 105 kgm2

and di = 1 s−1, respectively, ∀i ∈ V . The power system was
assumed to be initially in an operational equilibrium, until the
power load is increased by a step of 200 kW in the buses 2, 3
and 7. This will immediately result in decreased frequencies
at these buses. The frequency controllers at the buses will
then control the frequencies towards the reference frequency
of ωref = 50 Hz. The controller parameters were set to a =
0.8, b = 0.04, for both the centralized and the decentralized
controller. The step responses of the frequencies are plotted
in Fig. 6. We note that for the centralized PI controller, the
generation is increased uniformly among the generators. If
however the integral action is distributed amongst the gener-
ators, some generators will increase their generation more than
others. Fig. 7 shows the step response under the significantly
larger integral action, β = 0.8 for both the centralized and the
decentralized controller. We notice that the step response of the
decentralized controller shows better performance compared to
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the centralized controller. This is due to that the centralized
controller can only measure the average frequency in the power
system, as opposed to the individual frequencies which the
decentralized controller can measure.

Note that the controller parameters are assumed to be iden-
tical for both the centralized and the decentralized controller.
This might not be restrictive when the generators are homoge-
neous. However, when generators are more heterogeneous, this
might be restrictive.

VII. CONCLUSION

In this paper we have studied a class of nonlinear consensus
protocols for single and double-integrator dynamics. Necessary
and sufficient conditions for consensus were derived for static
communication topologies under single and double-integrator
dynamics. In all cases, expressions for the convergence points
were given. We have also studied consensus controllers with
integral action for agents with single integrator dynamics and
agents with damped double-integrator dynamics. We proved
that with the proposed consensus controllers, the agents reach
asymptotic consensus even in the presence of constant distur-
bances. If we allow for absolute position measurements the
agents in addition converge asymptotically to a common state.
In the absence of disturbances, the proposed consensus proto-
cols asymptotically solve the initial average consensus problem.
We have demonstrated by simulations that the proposed con-
trollers have applications in controlling autonomous satellites
in space, control of mobile robots, building temperature control
and frequency control of electrical power systems.

APPENDIX

PROOF OF LEMMA 4

Since Ω is compact, the relative states x̄ are bounded.
Then clearly x is bounded if and only if the average x′ =
(1/n)

∑
i∈V xi is also bounded, as seen by the following in-

equalities:

‖x‖∞ <n‖x̄‖∞ + |x′|

|x′| =
∣∣∣∣∣ 1n∑

i∈V
xi

∣∣∣∣∣ < 1

n
‖x‖∞.

Let E0 = E(x0, v0) =
∑

i∈V(
∫ xi

0 κi(y)dy + vi), where
[x0, v0] denotes the initial condition. Since [x̄(t), v(t)]
evolve in the compact set Ω, vi(t) is also bounded.
Hence ∀i ∈ V∃M ∈ R

+ : |vi(t)| ≤ M ∀t ≥ 0, ∀i ∈ V .
By Assumption 1 κi(x) ≥ κ > 0 ∀i ∈ V, ∀x ∈ R. Using these
inequalities we obtain∣∣∣∣∣∣

∑
i∈V

xi∫
0

κi(y)dy

∣∣∣∣∣∣ ≤ nM + |E0|. (36)

Assume for the sake of contradiction that x′(t) is unbounded.
Let us consider the case when x′(t) → +∞. Since x̄ is
bounded by say M ′ > 0 in the ∞-norm, and G is con-
nected, |xi(t)−xj(t)| is bounded by (n− 1)M ′ ∀i, j ∈ V .

Thus xi(t) > 0 ∀i ∈ V whenever x′(t) > (n− 1)M ′. Thus,
if x′(t) > (n− 1)M ′, we obtain that

∑
i∈V
∫ xi

0 κi(y)dy ≥∑
i∈V κxi. By assumption, x′(t) is unbounded, implying

that also
∑

i∈V xi(t) is unbounded. Thus ∃t1 :
∑

i∈V xi(t1) >
max{1/κ(nM + |E0|),M ′}. But this contradicts (36). Hence
x′(t) must be bounded. The cases when x′(t) → −∞ as well as
the case when no limit of x′(t) exists are treated analogously.
We conclude that x must be bounded, and thus Ω′ is compact
by the Heine-Borel Theorem. �
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