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Abstract— In this paper, we propose an approximately pro-
jected consensus algorithm for a multi-agent system to co-
operatively compute the intersection of several convex sets,
each of which is known only to a particular node. Instead
of assuming the exact convex projection, we allow each node
to just compute an approximate projection. The communica-
tion graph is directed and time-varying, and nodes can only
exchange information via averaging among local view. We
present sufficient and/or necessary conditions for the considered
algorithm on how much projection accuracy is required to
ensure a global consensus within the intersection set, under the
assumption that the communication graph is uniformly jointly
strongly connected. A numerical example indicates that the
approximately projected consensus algorithm achieves better
performance than the exact projected consensus algorithm. The
results add the understanding of the fundamentals of distributed
convex intersection computation.

Index Terms— Multi-agent systems, approximate projection,
intersection computation, optimal consensus

I. INTRODUCTION

In recent years, dynamics on large-scale networks has
drawn various research attention in different areas including
engineering, computer science, and social science. Coopera-
tive control of a group of autonomous agents fully employs
local information exchange and distributed protocol design
to accomplish collective tasks such as agreement, formation,
and aggregation [7], [8], [18], [15], [16], [33], [19], [17], [11],
[12]. Moreover, in parallel computation, load-balance prob-
lems require realtime balance of the load from different com-
puting resources [9], [10]. Additionally, a central problem of
opinion dynamics in social networks is how the agreement is
achieved via individual belief exchange processes [13], [14].
A fundamental question in these problems is, how consensus
can be guaranteed based on local information exchange, time-
varying node interconnections and limited knowledge of the
global objective.

∗This work is partially supported by NSF Grant 61174071, the Knut and
Alice Wallenberg Foundation and the Swedish Research Council.

Various distributed optimization problems arise for con-
sensus with particular optimization purpose in practice. Min-
imizing a sum of convex functions, where each component is
known only to a particular node, has attracted much attention
recently, due to its simple formulation and wide applications
[22], [20], [21], [26], [27], [23], [31], [30], [28], [29], [32],
[25], [24]. The key idea is that properly designed distributed
control protocols or computation algorithms can lead to a
collective optimization, based on simple exchanged informa-
tion and individual optimum observation. Subgradient-based
incremental methods were established via deterministic or
randomized iteration, where each node is assumed to be
able to compute a local subgradient value of its objective
function [20], [21], [26], [22], [25], [24]. Non-subgradient-
based methods also showed up in the literature. For instance,
a non-gradient-based algorithm was proposed, where each
node starts at its own optimal solution and updates using
a pairwise equalizing protocol [28], [29], and later an aug-
mented Lagrangian method was introduced in[32].

In particular, if the optimal solution set of its own ob-
jective can be obtained for each node, the considered op-
timization problem is then converted to a set intersection
computation problem when we additionally assume there is
a nonempty intersection among all solution sets [31], [30],
[27]. In fact, convex intersection computation problem is
a classical problem in the optimization study [34], [35],
[36]. The so-called “alternating projection algorithm” was
a standard centralized solution, where projection is carried
out alternatively onto each set [34], [35], [36]. Then the
“projected consensus algorithm” was presented as a decen-
tralized version of alternating projection algorithm, where
each node alternatively projects onto its own set and averages
with its neighbors, and comprehensive convergence analysis
was given for this projected algorithm under time-varying
directed interconnections in [27]. Following this work, a flip-
coin algorithm was introduced when each node randomly
chooses projection or averaging by Bernoulli processes, and



almost sure convergence was shown for the system to reach
an optimal consensus in [31]. A dynamical system solution
was given in [30], where the network reaches a global
optimal consensus by a simple continuous-time control. In all
these algorithms, each node needs to know the exact convex
projection of its current state onto its objective set [31], [30],
[27].

However, in practice, the exact convex projection is usually
hard to compute due to the common environmental noise and
computation inaccuracy. In this paper, we therefore propose
an approximately projected consensus algorithm (APCA) to
solve the convex intersection computation problem. Instead
of assuming the exact convex projection, we allow each
node to just compute an approximate projection point which
locates in the intersection of the convex cone generated by
the current state and all directions with the exact projection
direction less than some angle and the half-space contain-
ing the current state with its boundary being a supporting
hyperplane to its own set at its exact projection point onto
its set. The communication graph is supposed to be directed
and time-varying. With uniformly jointly strongly connected
conditions, we show that the whole network can achieve a
global consensus within the intersection of all convex sets
when sufficient projection accuracy can be guaranteed. For
a special approximate projection case when the nodes can
get the exact direction of the projection, a necessary and
sufficient condition is given on how much projection accuracy
is critical to ensure a global intersection computation. A
numerical example is also given, and surprisingly, the APCA
sometimes achieves better performance for convergence than
the exact projected consensus algorithm.

The paper is organized as follows. Section II gives some
basic concepts on graph theory and convex analysis. Sec-
tion III introduces the network model and formulates the
problem of interest. Section IV presents the main results
and convergence analysis for the APCA. Section V gives
a numerical example and finally, Section VI shows some
concluding remarks.

II. PRELIMINARIES

In this section, we introduce preliminary knowledge on
graph theory [5] and convex analysis [1].

A. Graph Theory

A directed graph (digraph) G = (V, E , A) consists of node
set V = {1, 2, ..., n}, arc set E ⊆ V × V and an adjacency
matrix A = [aij ]n×n with nonnegative adjacency elements
aij . The element aij of matrix A associated with arc (i, j)
is positive if and only if (i, j) ∈ E . Ni denotes the set of
neighbors of node i, that is, Ni = {j ∈ V|(i, j) ∈ E}. In this
paper, we assume (i, i) ∈ E for all i. A path from i to j in
digraph G is a sequence (i0, i1), (i1, i2), ..., (ip−1, ip) of arcs
with i0 = i and ip = j. G is said to be strongly connected if
there exists a path from i to j for each pair of nodes i, j ∈ V .

B. Convex Analysis

A function f(·) : Rm → R is said to be convex if f(λx+
(1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for all x, y ∈ Rm and
0 < λ < 1. A function f is said to be concave if −f is
convex.

A set K ⊂ Rm is said to be convex if λx+(1−λ)y ∈ K
for any x, y ∈ K and 0 < λ < 1 and is said to be a convex
cone if λ1x+λ2y ∈ K for any x, y ∈ K and λ1, λ2 ≥ 0. For
a set K, co(K) denotes the convex set consisting of all finite
convex combinations of elements in K. For a closed convex
set K in Rm, we can associate to any x ∈ Rm a unique
element PK(x) ∈ K satisfying |x−PK(x)| = infy∈K |x−y|,
which is denoted as |x|K , where | · | denotes the Euclidean
norm and PK is the projection operator onto K.

For a closed convex set K, if x ̸∈ K, then by the support-
ing hyperplane theorem, there is a supporting hyperplane to
K at PK(x). The angle between vectors a and b is denoted as
Ang(a, b) ∈ [0, π] for which cosAng(a, b) = ⟨a, b⟩/(|a||b|),
where ⟨a, b⟩ denotes the Euclidean inner product of vectors
a and b.

We cite a lemma for the following analysis (see example
3.16 in [3] (pp. 88)).

Lemma 2.1: f(z) = |z|K is a convex function, where K
is a closed convex set in Rm.

The following properties hold for the projection operator
PK . Here (i) is the standard non-expansiveness property for
convex projection; (ii) comes from exercise 1.2 (c) in [2] (pp.
23) and (iii) is a special case of proposition 1.3 in [2] (pp.
24).

Lemma 2.2: K be a closed convex set in Rm. Then

(i) |PK(x)− PK(y)| ≤ |x− y| ∀ x, y;

(ii)
∣∣|x|K − |y|K

∣∣ ≤ |x− y| ∀ x, y;

(iii) PK(λx+ (1− λ)PK(x)) = PK(x) ∀ x, ∀ 0 < λ < 1.

The next lemma can be found in [31].
Lemma 2.3: Let K and K0 ⊆ K be two closed convex

sets. We have

|PK(x)|2K0
+ |x|2K ≤ |x|2K0

∀ x.

III. PROBLEM FORMULATION

In this section, we introduce the intersection computation
problem and the approximately projected algorithm (APCA).

Consider a multi-agent system consisting of n agents with
node set V = {1, 2, ..., n}. Each node i is associated with
a set Xi ⊆ Rm and set Xi is known only by node i. The
intersection of all these sets is nonempty, i.e.,

∩n
i=1 Xi ̸= ∅.

Let us denote X0 =
∩n

i=1 Xi. The target of the system is to
find a point in X0 in a distributed way. For Xi, i = 1, ..., n,
we use the following assumption:
A1 (Convexity) Xi, i = 1, ..., n, are closed convex sets.



A. Communication Graphs

The communication over the multi-agent system is
modeled as a sequence of directed graphs, Gk =
(V, E(k), A(k)), k ≥ 0. We say node j is a neighbor of node
i at time k if there is an arc (i, j) ∈ E(k), where aij(k)
represents its weight. Let Ni(k) denote the set of neighbors
of agent i at time k. We introduce an assumption on the
weights [26], [31].
A2 (Weights Rule) (i)

∑
j∈Ni(k)

aij(k) = 1 for all i and k.
(ii) There exists a constant 0 < η < 1 such that aij(k) ≥ η

for all i, k and j ∈ Ni(k).
For the connectivity of the communication graphs, we

introduce the following definition [30], [27].
Definition 3.1: The communication graph is said to be

uniformly jointly strongly connected (UJSC) if there exists
a positive integer T such that G([k, k + T )) is strongly
connected for all k ≥ 0, where G([k, k + T )) denotes the
union graph with node set V and arc set

∪
k≤s<k+T E(s).

B. Approximate Projection

Projection methods have been widely used to solve various
problems, including projected consensus [27], the convex in-
tersection computation [35], [36] and distributed computation
[4]. In the most literature, the projection point PK(z) of
z onto closed convex set K is required to achieve desired
convergence, but in practice it is hard to be obtained and
often is computed approximately. Here is the definition of
approximate projection.

Definition 3.2: Suppose K ⊆ Rm is a closed convex set
and 0 < θ < π/2. If v ∈ K, Pa

K(v, θ) = {v}; if v ̸∈ K, we
define the approximate projection Pa

K(v, θ) of point z onto
K with approximate angle θ as the following set:

Pa
K(v, θ) = CK(v, θ)

∩
H+

K(v), (1)

where

CK(v, θ) = v +
{
z| ⟨z, PK(v)− v⟩ ≥ |z||v|K cos θ

}
;

H+
K(v) =

{
z| ⟨v − PK(v), z⟩ ≥ ⟨v − PK(v), PK(v)⟩

}
.

In fact, CK(v, θ) is the convex cone generated by point v ̸∈
K and all vectors having angle with PK(v)− v less than θ
and H+

K(v) is the half-space containing point v with

HK(v) :=
{
z| ⟨v − PK(v), z⟩ = ⟨v − PK(v), PK(v)⟩

}
being a supporting hyperplane to K at PK(v).

C. Distributed Iterative Algorithm

To solve the intersection computation problem, we propose
the following approximately projected consensus algorithm
(APCA):

xi(k + 1) =
∑

j∈Ni(k)

aij(k)P
a
j (k) (2)

where P a
i (k) ∈ Pa

Xi
(xi(k), θk) for all i and k.

Fig. 1. The set marked by the shaded area is the approximate projection
of point v onto closed convex K.

Denote P̂ a
i (k) as the intersection point of the half-line

{z| z = xi(k)+r(P a
i (k)−xi(k)), r ≥ 0} and the hyperplane

HXi(xi(k)) if xi(k) ̸∈ Xi. Therefore, it is easy to see that
there exists 0 ≤ αi,k ≤ 1 such that

P a
i (k) = (1− αi,k)xi(k) + αi,kP̂

a
i (k). (3)

Combining with (2) and (3), we have

xi(k + 1) =
∑

j∈Ni(k)

aij(k)
(
(1− αj,k)xj(k) + αj,kP̂

a
j (k)

)
,

(4)

where if xi(k) ̸∈ Xi, P̂ a
i (k) ∈ HXi(xi(k)) and

Ang(P̂ a
i (k)− xi(k), PXi

(xi(k))− xi(k)) ≤ θk.

Fig. 2. Approximately projected consensus algorithm

We illustrate the iteration process of APCA in Figure 2. For
the approximate angle θk, we use the following assumption.
A3 0 ≤ θk ≤ θ∗ < π/2 for all k.

Our problem is introduced in the following definition.
Definition 3.3: A global optimal consensus is achieved for

the APCA if, for any initial condition x(0) ∈ Rnm, there
exists x∗ ∈ X0 such that

lim
k→∞

xi(k) = x∗, i = 1, ..., n.



IV. MAIN RESULTS AND CONVERGENCE ANALYSIS

In this section, we obtain the results on APCA as follows.
Denote α−

k = min1≤i≤n αi,k and α+
k = max1≤i≤n αi,k.

Theorem 4.1: Suppose A1-A3 hold. Global optimal con-
sensus is achieved for the APCA if

(i) the communication graph is UJSC;
(ii)

∑∞
k=0 α

−
k = ∞;

(iii)
∑∞

k=0 α
+
k θk < ∞.

To investigate the necessity of divergent projection accu-
racy sum, we impose another assumption on the boundedness
of the n sets Xi, i = 1, ..., n.
A4 (Compact Sets) Xi, i = 1, ..., n, are bounded.

Theorem 4.2: Suppose A1-A4 hold and the communica-
tion graph is UJSC. Let θk ≡ 0. Global optimal consensus
is achieved for the APCA if

∑∞
k=0 α

−
k = ∞ and only if∑∞

k=0 α
+
k = ∞. Particularly, if there exist 0 < αk < 0

such that αi,k = αj,k = αk for all i, j and k, then global
optimal consensus is achieved for the APCA if and only if∑∞

k=0 αk = ∞.

A. Lemmas

We establish several useful lemmas in this subsection,
some proofs are omitted due to space limitations.

Lemma 4.3: For all i and k ≥ s, we have

|xi(k + 1)|X0 ≤
∑

j∈Ni(k)

aij(k)
(
(1− αj,k)|xj(k)|X0 + αj,k√

|xj(k)|2X0
− |xj(k)|2Xj

+ tan θkαj,k|xj(k)|X0

)
. (5)

Proof. By Lemma 2.2 (ii), we have

|P̂ a
j (k)|X0 ≤

∣∣P̂ a
j (k)− PXj (xj(k))

∣∣+ |PXj (xj(k))|X0 .
(6)

The definition of P̂ a
j (k) ensures that∣∣P̂ a

j (k)− PXj (xj(k))
∣∣ ≤ tan θk|xj(k)|Xj . (7)

Moreover, it follows from Lemma 2.3 that for any j ∈ V ,

|PXj (xj(k))|X0 ≤
√

|xj(k)|2X0
− |xj(k)|2Xj

. (8)

By applying Lemma 2.1 for (4) and noting inequalities (6),
(7) and (8), the conclusion follows.

Lemma 4.4: For any z ∈ X0, we have for all k,

max
1≤i≤n

|xi(k + 1)− z| ≤ e
∑∞

l=0 α+
l tan θl max

1≤i≤n
|xi(0)− z|.

The next lemma is a special case of various random
versions, for example, see Lemma 11 in [6] (pp. 50).

Lemma 4.5: Let {ak}∞k=0 and {bk}∞k=0 be non-negative
sequences with

∑∞
k=0 bk < ∞. Suppose

ak+1 ≤ ak + bk for all k

Then limk→∞ ak is a finite number.
It is easy to see that tan θ ≤ (tan θ∗/θ∗)θ for 0 ≤ θ ≤ θ∗.

Thus, if
∑∞

k=0 α
+
k θk < ∞,

∑∞
k=0 α

+
k tan θk < ∞ and then

{xi(k), i ∈ V}∞k=0 is bounded by Lemma 4.4. By Lemmas
4.3, 4.4 and 4.5, we have the following lemma.

Lemma 4.6: If
∑∞

k=0 α
+
k θk < ∞, the following limit

exists
ϑ := lim

k→∞
max
1≤i≤n

|xi(k)|X0 .

Denote

η+i = lim sup
k→∞

|xi(k)|X0 , η−i = lim inf
k→∞

|xi(k)|X0 , i ∈ V.

Obviously, 0 ≤ η−i ≤ η+i ≤ ϑ for all i.
Lemma 4.7: Suppose the communication graph is UJSC,

A2 holds,
∑∞

k=0 α
+
k θk < ∞ and there exists some agent

i0 ∈ V such that η−i0 < ϑ. Then ϑ = 0.
The next lemma can be obtained by combining Lemma 2

in [26].
Lemma 4.8: If the communication graph is UJSC and A2

holds, then every entry of Φ(k, s) is not less than ηT̂ for all
s and k ≥ s+ T̂ −1, where T̂ = (n−1)T , T is the constant
in Definition 3.1 and η is the lower bound of weights in A2.

Lemma 4.9:

1

n

n∑
i=1

√
v̄2 − v2i ≤

√
v̄2 −

(∑n
i=1 vi
n

)2

,

where v̄ ≥ vi ≥ 0 for all i.
Consider the following consensus model with noise wi,

zi(k + 1) =
∑

j∈Ni(k)

bij(k)zj(k) + wi(k), i = 1, ..., n, (9)

where {bij(k), i, j ∈ V, k ≥ 0} satisfy A2. The next lemma
can be obtained from Theorem 1 in [33].

Lemma 4.10: If the communication graph of system (9) is
UJSC with limk→∞ wi(k) = 0 for all i, then consensus is
achieved for system (9).

B. Proofs

In this subsection, we present the proofs of Theorems 4.1
and 4.2.

1) Proof of Theorem 4.1: Rewrite (4) as

xi(k + 1) =
∑

j∈Ni(k)

aij(k)xj(k) +
∑

j∈Ni(k)

aij(k)αj,k((
PXj (xj(k))− xj(k)

)
+
(
P̂ a
j (k)− PXj (xj(k))

))
. (10)

Based on (7), the second term in last equality is not greater
than

max
1≤i≤n

αi,k|xi(k)|Xi + α+
k tan θk max

1≤i≤n
|xi(k)|Xi . (11)

Note that ϑ = 0 leads to limk→∞ max1≤i≤n |xi(k)|Xi ≤
limk→∞ max1≤i≤n |xi(k)|X0 = 0 and then the term in (11)
tends to zero as k → ∞. Therefore, by applying Lemma
4.10 for (10), we have that if ϑ = 0, then the consensus is
achieved.



Moreover, we claim that if ϑ = 0 and the consensus is
achieved, then all agents will converge to a point in X0.
Since {xi(k), i ∈ V}∞k=0 is bounded by Lemma 4.4 and the
consensus is achieved, there is x∗ ∈ X0 and a subsequence
{kl}∞l=1 such that liml→∞ xi(kl) = x∗ for all i. Similar with
Lemma 4.4, we have

max
1≤i≤n

|xi(k)− x∗| ≤ e
∑∞

p=0 α+
p tan θp max

1≤i≤n
|xi(kl)− x∗|

for k ≥ kl, which implies limk→∞ xi(k) = x∗ for all i.
If there exists some agent i0 such that η−i0 < ϑ, then

by Lemma 4.7, ϑ = 0. Therefore, we only need to prove
ϑ = 0 when η+i = η−i = ϑ for all i, which shall be
proven by contradiction. If ϑ > 0, then for any ε > 0,
there exist K0 = K0(ε) such that |xi(k)|X0 ≤ ϑ + ε
and d0α

+
k θk ≤ ε for k ≥ K0 and all i, where d0 =

(tan θ∗/θ∗) sup1≤i≤n,k≥0 |xi(k)|X0
. We complete the proof

by the following two steps.
(i) Suppose η+i = η−i = ϑ for all i. The consensus is

achieved: limk→∞ |xi(k)− xj(k)| = 0 for all i, j.
Denote

ςi = lim sup
k→∞

αi,k|xi(k)|Xi , i ∈ V.

We prove ςi = 0 for all i by contradiction. If there
exists some agent i0 such that ςi0 > 0, then there is an
increasing time subsequence {kl}∞l=1 with k1 ≥ K0 such
that αi0,kl

|xi0(kl)|Xi0
≥ cςi0 for all l and some 0 < c < 1.

Therefore, by (5) we have

|xi0(kl + 1)|X0 ≤(1− ηαi0,kl
)(ϑ+ ε)

+ η
√
α2
i0,kl

(ϑ+ ε)2 − c2ς2i0 + ε, (12)

which yields a contradiction since the right hand side of (12)
is less than ϑ for sufficiently small ε and sufficiently large l.

Thus, limk→∞ αi,k|xi(k)|Xi = 0 for all i. More-
over, since

∑∞
k=0 α

+
k θk < ∞, limk→∞ α+

k tan θk ≤
(tan θ∗/θ∗) limk→∞ α+

k θk = 0. The two preceding conclu-
sions and the boundedness of {xi(k), i ∈ V}∞k=0 imply that
the term in (11) tends to zero and then the consensus is
achieved by applying Lemma 4.10 for (10) again.

(ii) Suppose η+i = η−i = ϑ for all i. All agents converge
to the optimal set: limk→∞ |xi(k)|X0 = 0 for all i.

Denote

δ = lim inf
k→∞

n∑
i=1

|xi(k)|Xi .

We prove that δ = 0 by contradiction. Otherwise, suppose
δ > 0.

Denote Dk = diag{α1,k, α2,k, ..., αn,k}, |x(k)|X0 =
(|x1(k)|X0

, ..., |xn(k)|X0
)T and y(k) = (y1(k), ..., yn(k))

T ,

yi(k) = |xi(k)|X0
−

√
|xi(k)|2X0

− |xi(k)|2Xi
, i ∈ V.

From inequality (5), we have for k ≥ s,

|x(k + 1)|X0 ≤ Φ(k, s)|x(s)|X0

−
k−T̂−1∑

l=s

Φ(k, l)Dly(l) + d0

k∑
l=s

α+
l θl, (13)

where T̂ = (n− 1)T and Φ(k, s) = A(k) · · ·A(s+ 1)A(s).
For ε̄ = δ2/(4n2ϑ+2δ), there exists sufficiently large K1

such that
∑n

i=1 |xi(k)|Xi > δ − ε̄ and ϑ− ε̄ ≤ |xi(k)|X0 ≤
ϑ+ ε̄ for k ≥ K1. For k ≥ K1, from Lemma 4.9 we have

n∑
i=1

(
|xi(k)|X0 −

√
|xi(k)|2X0

− |xi(k)|2Xi

)
≥ n

(
ϑ− ε̄−

√
(ϑ+ ε̄)2 −

(
(δ − ε̄)/n

)2)
:= ζ > 0.

Namely,
∑n

i=1 yi(l) ≥ ζ for l ≥ K1. Combining the preced-
ing inequality with Lemma 4.8 yields that every component
of Φ(k, l)Dly(l) is not less than ηT̂ ζα−

l for K1 ≤ l ≤
k − T̂ − 1. Then by (13) with taking s = K1, we obtain

|x(k + 1)|X0 ≤ Φ(k,K1)|x(K1)|X0

− ηT̂ ζ

k−T̂−1∑
l=K1

α−
l 1 + d0

k∑
l=K1

α+
l θl, (14)

where 1 is the vector of all ones. Note that
∑∞

l=K1
α−
l =

∞,
∑∞

l=K1
α+
l θl < ∞ and limk→∞ |x(k)|X0 = ϑ1, a

contradiction will yield by taking the limit as k → ∞ in
(14).

Therefore, δ = lim infk→∞
∑n

i=1 |xi(k)|Xi = 0,
that is, there is a subsequence {kl}∞l=0 such that
liml→∞

∑n
i=1 |xi(kl)|Xi = 0. Since the consensus is

achieved by what we have proven in the first step (i), we
have

lim
l→∞

n∑
i=1

|xi(kl)|Xj = 0 for all j ∈ V,

which implies ϑ = liml→∞ max1≤i≤n |xi(kl)|X0 = 0.
2) Proof of Theorem 4.2: The sufficiency has been ob-

tained in Theorem 4.1, here we focus on the necessity. It
is easy to find that if θk ≡ 0, the intersection set in (1)
is the line segment from xi(k) to PXi(xi(k)) and then
P̂ a
i (k) = PXi(xi(k)).
Denote d∗ := supy1,y2∈

∪n
i=1 Xi

|y1 − y2|, which is finite
since Xi, i = 1, ..., n are bounded. We next prove that if∑∞

k=0 α
+
k < ∞, then there exist initial conditions from which

all agents will not converge to set X0. Let x̄ ∈ Rm, which
will be selected later, and xi(0) = x̄ for all i ∈ V .



By (4), xi(1) can be rewritten as

xi(1) =
∑

j∈Ni(0)

aij(0)
(
(1− αj,0)xj(0) + αj,0PXj (xj(0))

)
=

∑
j∈Ni(0)

aij(0)
(
(1− αj,0)x̄+ αj,0PX0(x̄)

)
+∆i0,

= (1− βi,0)x̄+ βi,0PX0(x̄) + ∆i0,

where 1 − βi,0 =
∑

j∈Ni(0)
aij(0)(1 − αj,0) and ∆i0 =∑

j∈Ni(0)
aij(0)αj,0(PXj (x̄)− PX0(x̄)) with |∆i0| ≤ α+

0 d
∗

for all i.
We also have

xi(2) =
∑

j∈Ni(1)

aij(1)
(
(1− αj,1)xj(1) + αj,1PXj

(xj(1))
)

=
∑

j∈Ni(1)

aij(1)(1− αj,1)
(
(1− βj,0)x̄+ βj,0PX0(x̄)

)
+∆i1 +

∑
j∈Ni(1)

aij(1)αj,1PX0

(
(1− βj,0)x̄+ βj,0PX0(x̄)

)
= (1− βi,1)x̄+ βi,1PX0(x̄) + ∆i1,

where 1 − βi,1 =
∑

j∈Ni(1)
aij(1)(1 − αj,1)(1 − βj,0), the

third equality follows from Lemma 2.2 (iii) and ∆i1 = ∆1
i1+

∆2
i1 +∆3

i1 with ∆1
i1 =

∑
j∈Ni(1)

aij(1)(1− αj,1)∆j0;

∆2
i1 =

∑
j∈Ni(1)

aij(1)αj,1

(
PXj (xj(1))− PX0(xj(1))

)
;

∆3
i1 =

∑
j∈Ni(1)

aij(1)αj,1

(
PX0(xj(1))

− PX0

(
(1− βj,0)x̄+ βj,0PX0(x̄)

))
.

Lemma 2.2 (i) implies that |∆1
i1+∆3

i1| ≤ max1≤i≤n |∆i0| ≤
α+
0 d

∗ and then |∆i1| ≤ |∆1
i1 +∆3

i1|+ |∆2
i1| ≤ (α+

0 +α+
1 )d

∗

for all i.
Similarly, we can show by induction that for all i and k,

xi(k + 1) can be expressed as

xi(k + 1) = (1− βi,k)x̄+ βi,kPX0(x̄) + ∆ik, (15)

where |∆ik| ≤
∑k

l=0 α
+
l d

∗ and {βi,k, i ∈ V}∞k=0 satisfy

1− βi,k =
∑

j∈Ni(k)

aij(k)(1− αj,k)(1− βj,k−1). (16)

Based on (16), we can show by induction that

1− βi,k ≥
k∏

l=0

(1− α+
l ) for all i and k. (17)

It follows from (15), Lemma 2.2 (ii), (iii) and (17) that

|xi(k + 1)|X0 ≥
k∏

l=0

(1− α+
l )|x̄|X0 − |∆ik|. (18)

Taking the inferior limit on the two sides in (18), we have

lim inf
k→∞

|xi(k)|X0 ≥
∞∏
l=0

(1− α+
l )|x̄|X0 −

∞∑
l=0

α+
l d

∗,

which is positive provided that

|x̄|X0 >

∑∞
l=0 α

+
l d

∗∏∞
l=0(1− α+

l )
, (19)

where
∏∞

l=0(1 − α+
l ) > 0 since

∑∞
l=0 α

+
l < ∞. Thus, all

agents can not achieve an optimal consensus for all initial
conditions satisfying (19). We complete the proof.

V. A NUMERICAL EXAMPLE

Example 5.1: The multi-agent system consists of three
agents 1, 2 and 3 in R2 with fixed graph, where X1, X2

and X3 are three balls with centers (1, 0), (−1, 0), (0,−1)
and radius 1; X0 = {(0, 0)}; θk ≡ 0; weights a11 =
a12 = a22 = a23 = a31 = a33 = 0.5; the initial condition
x1(0) = (−0.5,−0.5), x2(0) = (0.5,−0.5) and x3(0) =
(0.5, 1.5). Here h(k) = max1≤i≤3 |xi(k)|X0

. The following
figure shows that the APCA (αi,k = 0.5 for all i and k)
converges faster than the exact projected consensus algorithm
(αi,k = 1 for all i and k).
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VI. CONCLUSIONS

In this paper, we presented an approximately projected
consensus algorithm (APCA) for a multi-agent system to
cooperatively compute the intersection of a serial of convex
sets, each of which is known only to a particular node. We
allowed each node to only compute an approximate projec-
tion. Sufficient and/or necessary conditions were obtained for
the considered algorithm on how much projection accuracy is
required to ensure a global consensus within the intersection
set, under the assumption that the communication graph is
uniformly jointly strongly connected. A numerical example



was also given indicating that the APCA sometimes achieves
better performance than the exact projected consensus algo-
rithm. This implied that, individual optimum seeking may
not be so important for optimizing the collective objective.
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