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Abstract— An important class of multi-robot formations is
specified by desired distances between adjacent robots. In
previous work, we showed that distance-based formations can
be globally stabilized by negative gradient, potential field based,
control laws, if and only if the formation graph is a tree. In this
paper, we further examine the relation between the cycle space
of the formation graph and the resulting equilibria of cyclic
formations. In addition, the results are extended to the case of
distance based formation control for nonholonomic agents. The
results are supported through computer simulations.

I. INTRODUCTION

Decentralized control of networked multi-agent systems is

a field of increasing research interest, due to its applications

in robotics and large-scale systems. A particular problem

considered in the robotics’ literature is that of multi-agent

formation control, where agents usually represent multiple

robots of similar dynamics that aim to converge to a specified

pattern in the state space. The desired formation can be either

static [4],[7] or moving with constant velocity [18],[20].

Two main approaches in the formation control literature

can be distinguished: position-based and distance-based for-

mation control. In the first case, agents aim to converge to

desired relative position vectors with respect to a subset

of the rest of the team. Control designs that guarantee

position-based formation stabilization have appeared for

single integrator agents [7],[15] as well as nonholonomic

agents [17]. On the other hand, distance-based formations

have been studied in the context of graph rigidity where

a series of results have appeared in recent literature, e.g.,

[2], [19],[9], [13]. Roughly speaking, a formation is called

rigid if the fact that all desired distances are met is sufficient

for the maintenance of the distances of any pair of agents.

Necessary and sufficient conditions for graph rigidity have

been provided in [8], [13]. The reader is also referred to

the recent PhD thesis [12] and the references therein for

more information on the topic. A common factor in the

graph rigidity literature is the lack of globally stabilizing

control laws that drive the agents to the desired distance.

Existing control laws such as the ones proposed in [2],[16]

only have local validity for small perturbations around the
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desired formation, while the control law in [1] refers solely to

triangular formations. Motivated by this, in the recent paper

[5] we examined the stabilization issue for distance-based

formations. A negative gradient control law was proposed

based on a potential function between each of the pairs

of agents that form an edge in the formation graph. The

first result of that paper stated that the system is stabilized

to the desired formation provided that the formation graph

is a tree. The second result of [5] stated that this was in

fact also a necessary condition: the multi-robot system is

globally stabilizable to the desired formation with negative

gradient control laws if and only if the formation graph is

a tree. A summary of the results of [5] is provided here for

completeness.

In this paper, we further elaborate on the results of our

previous effort and provide additional results on distance

based formations. In particular, for the case of cyclic graphs,

a characterization of the resulting infinite equilibria of the

system is derived relating the edges corresponding to cycles

in the formation graph with the ones belonging to its span-

ning tree. The result further highlights the role of cycles in

the equilibria of the system. Furthermore, the control laws

are redefined to take into account nonholonomic unicycle

type agents.

The rest of the paper is organized as follows: Section II

presents the system and formulates the problem treated in

this paper, and the necessary mathematical background is

presented in Section III. Section IV provides the control law

and reviews the results of [5], and proceeds to present the

new relation regarding the equilibria of the system in the

case of cyclic graphs. Nonholonomic agents are treated in

Section V. Simulated examples are included in Section VI

while the results are summarized in Section VII.

II. SYSTEM AND PROBLEM STATEMENT

We consider a group of N kinematic agents operating

in R
2. Let qi ∈ R

2 denote the position of agent i. The

configuration space is spanned by q = [qT
1 , . . . , qT

N ]T . More-

over, each agent i ∈ N is assigned a particular orientation

θi ∈ (−π, π]. The objective of the control design is distance-

based formation control. Each agent can only communicate

with a specific subset Ni ⊂ N . By convention, i /∈ Ni. The

desired formation can be encoded in terms of an undirected

graph, from now on called the formation graph G = {N , E},

whose set of vertices N = {1, ..., N} is indexed by the

team members, and whose set of edges E = {(i, j) ∈
N × N|j ∈ Ni} contains pairs of vertices that represent

inter-agent formation specifications. Each edge (i, j) ∈ E is
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assigned a scalar parameter dij = dji > 0, representing the

distance at which agents i, j should converge to. Define the

set

Φ
∆
=

{

q ∈ R
2N | ||qi − qj || = dij , ∀ (i, j) ∈ E

}

(1)

of desired distance based formations. The problem is to

derive control laws, for which the information available for

each agent i is encoded in Ni, that drive the agents to the

desired formation, i.e., limt→0 q(t) = q∗ ∈ Φ.

III. PRELIMINARIES

We first review in this section some elements of algebraic

graph theory [10] used in the sequel and also present a lemma

and a decomposition that will be important for the subsequent

analysis.

For an undirected graph G with N vertices the adjacency

matrix A = A(G) = (aij) is the N × N matrix given by

aij = 1, if (i, j) ∈ E and aij = 0, otherwise. If there is

an edge (i, j) ∈ E, then i, j are called adjacent. A path

of length r from a vertex i to a vertex j is a sequence of

r +1 distinct vertices starting with i and ending with j such

that consecutive vertices are adjacent. For i = j, this path

is called a cycle. If there is a path between any two vertices

of the graph G, then G is called connected. A connected

graph is called a tree if it contains no cycles. A spanning

tree in a connected graph G is a tree subgraph that contains

all the vertices of G. An orientation on the graph G is the

assignment of a direction to each edge. The graph G is called

oriented if it is equipped with a particular orientation. The

incidence matrix B = B(G) = (Bij) of an oriented graph

is the {0,±1}-matrix with rows and columns indexed by

the vertices and edges of G, respectively, such that Bij =
1 if the vertex i is the head of the edge j, Bij = −1 if

the vertex i is the tail of the edge j, and 0 otherwise. The

Laplacian matrix is given by L = BBT [10]. If the graph G
contains cycles, then its cycle space is the subspace spanned

by vectors representing cycles in G [11]. The edges of each

cycle in G have a direction, where each edge is directed

towards its successor according to the cyclic order. A cycle

C is represented by a vector vC with number of elements

equal to the number of edges M of the graph. For each edge,

the corresponding element of vC is equal to 1 if the direction

of the edge with respect to C coincides with the orientation

assigned to the graph for defining the incidence matrix B,

and −1, if the direction with respect to C is opposite to the

orientation. The elements corresponding to edges not in C
are zero. While L is always positive semidefinite, the matrix

BT B can be either positive semidefinite or positive definite.

The next lemma states that in the case of a tree graph, the

matrix BT B is always positive definite:

Lemma 1: If G is tree, then BT B is positive definite.

Proof : For arbitrary y ∈ R
M we have yT BT By = |By|2

and hence yT BT By > 0 if and only if By 6= 0, i.e., the

matrix B has empty null space. For a connected graph, the

cycle space of the graph coincides with the null space of

B (Lemma 3.2 in [11]). This corresponds to the fact that

for G, which has no cycles, zero is not an eigenvalue of B.

This implies that λmin(BT B) > 0, i.e., that BT B is positive

definite. ♦
The matrix BT B was also defined as the “Edge Laplacian”

in [21] and its properties were used for providing another

perspective to the agreement problem. In this paper, we will

use the decomposition of BT B introduced in [21] to examine

the resulting equilibria in the case of formation graphs that

contain cycles.

Consider a connected graph G. Similarly to [21], we

consider the partition of the incidence matrix

B = [ BT BC ] (2)

where BT contains the edges of the spanning tree while BC

contains the remaining edges of the graph. From Lemma 1,

we know that BT
T BT is positive definite.

IV. CONTROL STRATEGY

We provide first in this section the control strategy for

single integrator agents introduced in [5] and provide some

complementary results. Assume that agents’ motion obeys

the single integrator model:

q̇i = ui, i ∈ N = {1, . . . , N} (3)

where ui denotes the velocity (control input) for each agent.

Denote by βij(q) = ‖qi − qj‖2
the distance of any pair of

agents in the group. The class Γ of formation potentials γ ∈
Γ between agents i and j with j ∈ Ni is defined to have the

following properties:

1) γ : R
+ → R

+ ∪ {0} is a function of the distance

between i and j, i.e., γ = γ(βij),
2) γ(βij) is continuously differentiable,

3) γ(d2
ij) = 0 and γ(βij) > 0 for all βij 6= d2

ij .

We also define

ρij
∆
=

∂γ(βij)

∂βij

Note that ρij = ρji, for all i, j ∈ N , i 6= j. The proposed

control law is

ui = −
∑

j∈Ni

∂γ(βij(q))

∂qi
= −

∑

j∈Ni

2ρij (qi − qj), i ∈ N

(4)

The set of control laws (4) is written in stack vector form

as u = −2 (R ⊗ I2) q, where u = [uT
1 , . . . , uT

N ]T and the

symmetric matrix R is given by

Rij =











−ρij , j ∈ Ni
∑

j∈Ni

ρij , i = j

0, j /∈ Ni

Consider the candidate Lyapunov function V (q) =
∑

i

∑

j∈Ni

γ(βij(q)). Its gradient can be computed as ∇V =

4 (R ⊗ I2) q, so that its time-derivative is given by

V̇ = −8 ‖(R ⊗ I2) q‖2 ≤ 0 (5)

The first easy consequence of V̇ being negative semidefi-

nite is the following Lemma:
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Lemma 2: Consider system (3) driven by the control (4).

Then the set of S0 = {q|V (q) < V0 < ∞} is positively

invariant for the trajectories of the closed-loop system.

Proof: This is a consequence of (5). ♦
We next consider the case when the formation potential is

given as

γ (βij (q)) =

(

βij − d2
ij

)2

βij
(6)

Note that this potential satisfies all properties of the set Γ.

For this case we have

ρij =
∂γ(βij)

∂βij
=

β2
ij − d4

ij

β2
ij

(7)

The next result involves the fact that with this choice of

formation potential, communicating agents do not collide and

there is a minimum separation distance between them when

the system starts within S0:

Lemma 3: Consider system (3) driven by the control (4)

with γ as in (6), and starting from a set of initial conditions

S0 = {q|V (q) < V0 < ∞}. Then it holds that

0 < ξ1 < βij(t) < ξ2

where

ξ1,2 =
1

2

(

2d2
ij + V0 ∓

√

4V0d2
ij + V 2

0

)

for all (i, j) ∈ E and all t ≥ 0.

Proof: For every initial condition q(0) ∈ S0, the time

derivative of V remains non-positive for all t ≥ 0, by virtue

of (5). Hence V (q(t)) ≤ V (q(0)) < V0 < ∞ for all t ≥ 0.

Moreover, since V (q) =
∑

i

∑

j∈Ni

γ(βij(q)), we have that

γ(βij) < V0, so that 0 ≤ (βij−d2

ij)
2

βij
≤ c, which implied ξ1 <

βij < ξ2 where ξ1,2 = 1

2

(

2d2
ij + V0 ∓

√

4V0d2
ij + V 2

0

)

. It

is easily seen that ξ1 is strictly positive. ♦
Lemmas 2 and 3, along with LaSalle’s Invariance Principle

also imply that the system converges to the largest invariant

subset of the set S =
{

q|V̇ (q) = 0
}

which corresponds to

u = −2 (R ⊗ I2) q = 0, i.e., all agents eventually stop at

steady state.

We next review the results of [5] involving stabilization

of distance based formations with the control law (4) and γ
given as in (6).

Denote by q̄ the M -dimensional stack vector of relative

position differences of pairs of agents that form an edge

in the formation graph, where M is the number of edges,

i.e, M = |E| and q̄ =
[

q̄T
1 , . . . , q̄T

M

]T
, where for an edge

e = (i, j) ∈ E we have q̄e = qi − qj .

With simple calculations, we can derive that q̇ =
−2 (R ⊗ I2) q is equivalent to

˙̄q = −
(

BT BW ⊗ I2

)

q̄ (8)

where the diagonal matrix W is given by

W = 2 · diag {ρe, e ∈ E} ∈ R
M×M

Using the previous equation, the convergence properties of

the closed-loop system were established in the following

theorem in [5]. We review here its proof since it will be

useful in the subsequent analysis:

Theorem 4: [5] Assume that the system (3) evolves under

the control law (4) with γ as in (6), and that the formation

graph is a tree. Then the agents are driven to the desired

formation, i.e., limt→∞ q(t) = q∗ ∈ Φ.

Proof (sketch): Since at steady state, q̇ = u =
−2 (R ⊗ I2) q = 0, we also have ˙̄qe = 0 for all e ∈ E
and thus ˙̄q = 0. Then (8) yields

(

BT BW ⊗ I2

)

q̄ = 0. By

Lemma 1, BT B is positive definite, and thus (W ⊗ I2) q̄ =
0. Since W is diagonal, the last equation is equivalent to

ρeq̄e = 0 for all e ∈ E. Since ρe is scalar this implies ρe = 0
or q̄e = 0. However, for all e ∈ E we have q̄e(t) 6= 0 for all

t ≥ 0, by virtue of Lemma 3. We conclude that ρe = 0
for all e ∈ E at steady state and hence βij = d2

ij , i.e,

||qi − qj || = dij for all (i, j) ∈ E, by virtue of (7). ♦
We next provide the result of [5] that states that the

tree structure is a necessary and sufficient condition for

global stabilization of distance based formations under the

negative gradient control law of the form (4). For any

choice of function γ ∈ Γ, the closed-system dynamics

are given by q̇ = u = −2 (R ⊗ I2) q,, or equivalently by
˙̄q = −

(

BT BW ⊗ I2

)

q̄ in the edge space. The analysis

leading to Theorem 4 guarantees that
(

BT BW ⊗ I2

)

q̄ = 0
at steady state. By virtue of Lemma 1, the matrix BT B
is non-singular only when the formation graph contains no

cycles. The following was derived in [5]:

Theorem 5: [5] Assume that the system (3) evolves under

the control law (4) and that Φ is non-empty. Consider con-

ditions (i) u(q) = 0 only for q ∈ Φ, and (ii) limt→∞ q(t) =
q∗ ∈ Φ. Then there exists a formation potential γ ∈ Γ such

that (i),(ii) hold if and only if the formation graph is a tree.

Proof (sketch): The “if” part is shown in Theorem 4, with the

choice of formation potential field (6). For the “only if part”,

assume that the closed-loop system has reached a steady state

at which u = 0. We will show that (i) cannot hold if G is not

a tree. If G is not a tree, then BT B is singular and then the

null space of B, and thus BT B, is nonempty. In fact, in this

case, using properties of Kronecker products [14], [3], we

can show (BW ⊗ I2) q̄ = 0. Using the notation x̄,ȳ for the

stack vectors of the elements of q̄ in the x and y coordinates,

the last equation implies BWx̄ = BWȳ = 0, i.e., Wx̄,Wȳ
belong to the null space of B. Since G contains cycles, the

null space of B is non-empty. Thus we cannot reach the

conclusion of the proof of Theorem 4 that (W ⊗I2)q̄ = 0. In

fact, equations BWx̄ = BWȳ = 0 have an infinite number

of solutions, since BT B is now singular. Thus condition (i)

cannot hold if G is not a tree. We conclude that (i) and (ii)

hold only if G is a tree. ♦

A. Cyclic Graphs

In this section we further examine the equilibria of

distance-based formations with negative gradient control

laws for the case of graphs that contain cycles. Consider the

partition (2). Then the edge vector q̄ can also be partitioned
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as

q̄ = [ q̄T
T q̄T

C ]T (9)

where q̄T corresponds to the edges of the spanning tree and

q̄C to the remaining ones. Similarly, the matrix W = 2 ·
diag {ρe, e ∈ E} can be decomposed as

W =

[

WT 0
0 WC

]

Using (2), we can also compute

BT B =

[

BT
T

BT
C

]

[

BT BC

]

=

[

BT
T BT BT

T BC

BT
CBT BT

CBC

]

so that ˙̄q = −
(

BT BW ⊗ I2

)

q̄ can be written as
[

˙̄qT

˙̄qC

]

= (

[

BT
T BT BT

T BC

BT
CBT BT

CBC

] [

WT 0
0 WC

]

⊗I2)

[

q̄T

q̄C

]

or, equivalently

˙̄qT = −(BT
T BT WT ⊗ I2)q̄T − (BT

T BCWC ⊗ I2)q̄C (10)

˙̄qC = −(BT
CBT WT ⊗ I2)q̄T − (BC

T BCWC ⊗ I2)q̄C (11)

Since ˙̄qT = ˙̄qC = 0 at steady state, we get

−(BT
T BT WT ⊗ I2)q̄T − (BT

T BCWC ⊗ I2)q̄C = 0

and since BT
T BT is positive definite, we have

(WT ⊗ I2)q̄T = −((BT
T BT )−1BT

T BCWC ⊗ I2)q̄C (12)

at steady state.

We can further characterize the infinite solutions of equa-

tion ˙̄q = −
(

BT BW ⊗ I2

)

q̄ in the case of cyclic graphs

using (12). For a l × l matrix M , and k ≤ n, let (M)k

denote the k × n matrix that includes the last k rows of M .

From the proof of Theorem 4 we know that for each edge

e we have either ρe = 0 at steady state, in the case that this

edge has converged to the desired relative distance for the

agents that constitute it, or ρe 6= 0 in the case it has not.

Partition now the set of edges corresponding to q̄T as

q̄T =
[

q̄T
Ts

q̄T
Tu

]T

where q̄Ts
corresponds to the edges that have successfully

converged to the desired distance and q̄Tu
to the ones that

have not. Let dim(q̄Ts
) = Ts and dim(q̄Tu

) = Tu. Then the

the matrix WT will have the block diagonal form

WT =

[

0 0
0 WTu

]

since the edges that have converged to the desired values

render the corresponding elements of W equal to zero. Mor-

ever, WTu
is invertible, since all the elements of this diagonal

matrix are nonzero (since they correspond to edges that have

not reached the desired distance). Then the following relation

holds for q̄Tu
:

(WTu
⊗ I2)q̄Tu

= −(((BT
T BT )−1BT

T BCWC)Tu
⊗ I2)q̄C

so that finally

q̄Tu
= −(W−1

Tu
((BT

T BT )−1BT
T BCWC)Tu

⊗ I2)q̄C (13)

The last equation provides the relation of all edges that have

failed to converge to their desired values at steady state in

terms of the cycle edges of the graph.

V. NONHOLONOMIC AGENTS

In this section we modify the control design of the previ-

ous sections in order to tackle with nonholonomic kinematic

unicycle agents. The control law used in [6] for agreement

of multiple nonholonomic agents is redefined in this case to

treat distance based formation stabilzation. Agent motion is

now described by the following nonholonomic kinematics:

ẋi = ui cos θi

ẏi = ui sin θi

θ̇i = ωi

, i ∈ N = {1, . . . , N} , (14)

where ui, ωi denote the translational and rotational velocity

of agent i, respectively.

Define now

γi(q) =
∑

j∈Ni

γ(βij(q))

for each agent i ∈ N . We can now use the control design

of [6] for the problem in hand. Specifically, the following

discontinuous time-invariant feedback control law is used for

each agent i:

ui = −sgn {γxi cos θi + γyi sin θi} ·
(

γ2
xi + γ2

yi

)1/2
, (15)

ωi = − (θi − θnhi
) , (16)

where

γxi =
∂γi

∂xi
= 2

∑

j∈Ni

ρij (xi − xj)

γyi =
∂γi

∂yi
= 2

∑

j∈Ni

ρij (yi − yj)

and θnhi
= arctan 2 (γyi, γxi). Then the following result

holds:

Theorem 6: Consider the system of nonholonomic agents

(14) with the control law (15),(16). Then the agents are

driven to the set

Snh = {(q, θ) :
(

BT BW ⊗ I2

)

q̄ = 0, θ1 = . . . = θN = 0}
Proof : Using the same steps as in the proof of Theorem 4

in [6], we deduce that the agents converge to a configuration

where γxi = γyi = 0 for all i with zero orientations.

The result now follows from the fact that γxi = γyi = 0
for all i implies 2(R ⊗ I2)q = 0 which furter implies
(

BT BW ⊗ I2

)

q̄ = 0. ♦
Hence the control design (15),(16) forces the nonholo-

nomic multi-agent system to behave in exactly the same way

as in the single integrator case. Thus, the results regarding

the equilibria of the distance based formation controller

discussed in the previous sections hold in the nonholonomic

case as well.
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Fig. 1. Example of three single integrator agents from [5]. The resulting
configuration belongs to the cycle space of the graph and does not coincide
with a point in Φ.

VI. SIMULATIONS

The results of the paper are supported in this section by

computer simulations. The purpose of these examples is to

show the effect of the nonholonomic kinematics and the

communication topology to the resulting equilibria.

In the first simulation we provide a comparison of the

single integrator and nonholonomic unicycle cases. We first

consider the example taken from [5] where the control

law (4) failed to stabilize a system of three single inte-

grator agents to a desired triangular formation. The graph

considered is a complete cycle graph,i.e., N1 = {2, 3},

N2 = {1, 3}, N3 = {2, 3}, and d2
12 = d2

13 = d2
23 =

√
2.

The agents start from initial positions q1(0) = [0, 0]T ,

q2(0) = [−1, 0]T and q3(0) = [1, 0]T . The evolution in the

single integrator case is depicted in Figure 1, taken from

[5], where the crosses represent the initial positions of the

agents and their final locations are noted by a black circle.

The system converges to an undesired steady state given by

q1 = [0, 0]T , q2 = [−0.6866, 0]T and q3 = [0.6866, 0]T . The

edge distances satisfy (BW ⊗ I2)q̄ = 0 and (W ⊗ I2)q̄ 6= 0,

and thus the desired formation is not reached. The exact same

initial positions are used in Figure 2, where we now consider

nonholonomic agents driven by (15),(16). As witnessed in

the figure, the agents in the nonholonomic case converge to

the desired triangular formation. Thus the undesirable sets of

initial conditions that are attractors to the cycle space of the

graph G are different than the single integrator case. This is

due to the nonholonomic constraints in the agents’ motion

in the second case.

The next example involves four single integrator agents. In

the first example we have a a complete graph and a rectan-

gular formation, to which the agents do indeed converge, as

depicted in Figure 3. By deleting the edges between agents

1,3 and 2,4 the resulting equilibria are now shown in Figure

4. In fact, in this example, agents 2 and 4 converge to the

same point, since there is no edge and hence no repulsion

between them.
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Fig. 2. The three agents now have nonholonomic kinematics and are
controlled by (15),(16). The system converges to the desired final formation
from the same initial conditions as in the single integrator case.
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Fig. 3. Four agents with control law (4),(6) and a complete formation
graph reach a rectangular formation.

VII. CONCLUSIONS

In this paper we provided new results for distance based

formation control. In particular, we examined the relation

between the cycle space of the formation graph and the re-

sulting equilibria of cyclic formations. Moreover, the results

are extended to the case of distance based formation con-

trol for nonholonomic agents. Finally, computer simulations

supported the derived results.

Future work will focus on further exploring the role of

the cycle space and the incidence matrix in other cooperative

control problems.
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