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Abstract— A probabilistic pursuit–evasion game from the lit-
erature is used as an example to study constrained communi-
cation in multi-robot systems. Communication protocols based
on time-triggered and event-triggered synchronization schemes
are considered. It is shown that by limiting the communication
to events when the probabilistic map derived by the individual
pursuers contain new information, as measured through their
map entropy, the utilization of the communication link can be
considerably improved compared to conventional time-triggered
communication.

I. INTRODUCTION

Multi-robot systems have many advantages compared to
single-robot systems, including improved flexibility, sensing,
and reliability. For most mobile robot systems, one need to
address challenges related to sensor noise, self-localization,
and partial knowledge of the environment. For a multi-
robot system, the inter-robot communication adds to this
list. In practice, every communication channel has a limited
bandwidth, which is both due to the fundamental laws on
achievable data rate and to that the channel might be shared
with other users. The performance of the multi-robot system is
often highly dependent on the utilization of the communication
network. However, it seems like integrated design of the
communication protocol so far have not been considered for
multi-robot systems, cf., [1], [2].

The main contribution of this paper is to illustrate how
information theory can be used in the design of a multi-
robot system, in order to optimize the communication protocol
with respect to some control performance. We let a pursuit–
evasion game [3], [4], [5], [6] with several pursuers serve
as a prototype system, since it is a good representative
for several multi-robot tasks. In particular we consider a
probabilistic approach for pursuit–evasion where each pursuer
build a probabilistic map of the environment [5], [7]. Map
entropy is used in the paper as an information measure of
the probabilistic map, cf. [8], [9]. It is used to establish
an event-triggered communication scheme for the pursuers,
cf., [10], [11]. The considered multi-robot problem can be
viewed as a benchmark for the design of integrated control
and communication system [12], [13], [14].

The paper is organized as follow. In Section II we extend the
pursuit–evasion model of Hespanha et al. [5] by introducing an

explicit broadcasting communication protocol for the pursuers.
Two particular communication schemes are discussed in Sec-
tion III: time–triggered and event–triggered synchronization.
The synchronization events are in the latter based on the prob-
abilistic map entropy. In Section IV quantization is utilized to
cope with bandwidth limitations. It is shown that the map
entropy can be used to quantize the probabilistic map in an
efficient way. Simulation results are presented in Section V.

II. PURSUIT–EVASION WITH COMMUNICATION

Consider a pursuit–evasion game with np > 1 pursuers and
one randomly moving evader. Following Hespanha et al. [5],
we suppose that the game is played in a finite-dimensional
space, uniformly partitioned in n2

c < ∞ cells denoted X =
{1, 2, . . . , n2

c}. Each cell can be occupied by the evader, the
pursuers or the obstacles. Neither the evader nor the pursuers
can occupy a cell with an obstacle, although the evader and a
pursuer can share a cell. The latter corresponds to a capture of
the evader. We assume that the time is quantized, such that to
each event is associated a time instance t ∈ T = {0, 1, 2, . . . }.
The motions of the pursuers and the evader are modelled as
a controlled Markov chain, see [6] for details. Pursuer i, i =
1, . . . , np, senses at each time instance t ∈ T the triple

zi(t) = {si(t),oi(t), ei(t)}

where si(t) ∈ X is the position of the pursuer, oi(t) ⊂ X
is a measurement of the obstacle locations sensed by the
pursuer, and ei(t) ∈ X is the corresponding measurement
of the evader.1 We assume that all sensors (detecting position,
obstacles, and evader) are ideal, and thus are not affected by
measurement noise etc. The measurement space is denoted
Z = X × 2X ×X , where 2X denotes the power set of X .

A. Synchronization

We extend the pursuit–evasion model of Hespanha et al.
by introducing limited pursuer communication. The pursuers
gather individual sensor information and make local decisions,
but they can communicate only at synchronization time in-
stances τ ∈ T . We denote the data sent by pursuer i at time
instance τ to the other pursuers with yi(τ).

1Boldface indicates a random variable and the normal typeface its realiza-
tion.



Definition II.1 A synchronization is a complete broadcasting
communication in which all pursuers exchange information
with each other. The data received by pursuer i is

Yi(τ) =
{
yj(τ)

}
j 6=i

for some synchronization time τ ∈ T .

The synchronization operation is depicted in Figure 1. The
pursuers share network channel, which is used simultaneously
when a synchronization is performed at a instance τ ∈ Ts,
where Ts denotes the set of synchronization times. In the
paper we consider two different types of synchronization:
time–triggered and event–triggered synchronization.

Definition II.2 The time-triggered synchronization set is
equal to

Ts = {τ ∈ T |τ = k∆, k = 1, 2, . . . }

where ∆ ∈ T is a fixed synchronization period.

Definition II.3 The event-triggered synchronization set is
equal to

Ts = {τ ∈ T | ∃i : Φ(W
i(τ), τ) < λ(τ)}

where the event map Φ depends on the data W i(τ) available
for pursuer i at time τ and the time instance τ ∈ T . The
synchronization threshold is denoted λ(τ) ∈ R.

In the paper, the synchronized data yi(τ) are the probabilistic
maps introduced next.

B. Probabilistic Map

Definition II.4 The probabilistic map is the probability den-
sity function for the position of the evader xe conditioned
on the available data. For each pursuer i with the local
probabilistic map is given by

p̃it+1|t(xe, xe, Zt) , P (xe(t
′) = xe|xe(t) = xe,Z

i
t = Zt)

where Zi
t ∈ Z

∗ represents the sequence of measurements taken
by pursuer i up to time t and xe is the position of the evader.

The local probabilistic map is updated through a two-step al-
gorithm: a measurement step in which p̃i

t|t(xe, Zt) is computed
using the current measurements, and a prediction step in which
p̃i
t+1|t(xe, xe, Zt) is computed using an evader model, see [5]

for details. The game starts with an a-priori probabilistic map
p̃i0|−1(xe, ∅, ∅) that we assume to be the uniform distribution.
Let M i(t) denote the conditional probability p̃i

t+1|t(xe, xe, Zt)

for a particular realization. Note that M i(t) is an nc × nc

matrix with elements that sum to one. The data received by
pursuer i at synchronization time τ ∈ Ts is then given by a
collection of matrices Yi(τ) = {M j(τ)}j 6=i.

C. Control Policy

The control action at t ∈ T for pursuer i with control policy
γi is

ui(t) = γi(Z
i
t,Y

i
t)

where

Yi
t = {Y

i(τ0),Y
i(τ1), . . . ,Y

i(τj)|} τj ≤ t < τj+1

and
Zi
t = {zi(0), . . . , zi(t)}

In particular, we limit the discussion to greedy control policies
with constrained motion, i.e.,

ui(t) = arg max
v∈N (si)⊂U

pit+1|t(v, x̄e, Zt, Yt)

where N (si) are all neighboring cells of the current position
of pursuer i. Thus, at each time instant t the control policy
γi moves pursuer i to a neighboring cell v that maximizes
the conditional probability of finding the evader at time t+1,
given the measurements and communicated data up to that
time. Note that the greedy policy does not maximize the
local probabilistic map p̃i

t+1|t, but the probabilistic map pi
t+1|t

which depends on the data received through the network. The
probabilistic map pi

t+1|t is the fusion of the local probabilistic
map with all received probabilistic maps. (Fusion of proba-
bilistic maps is discussed in [15].) The fusion in this paper
is computed as a normalized product of all the maps, i.e.,
as an independent opinion pool [16]. This is motivated by
the assumption that the pursuers are far from each other so
measurements are approximately independent.

III. ENTROPY-TRIGGERED SYNCHRONIZATION

In this section we introduce an event-triggered synchroniza-
tion scheme based on the map entropy.

Definition III.1 The map entropy of a probabilistic map
M(t) = pt+1|t is equal to

H(M(t)) = −
1

log |X |

∑

xe∈X

pt+1|t log pt+1|t (1)

The relative entropy [9], D(p||q), gives a measure of the
distance between two probability distributions, p and q defined
over the set X . It is defined as

D(p||q) =
∑

x∈X

(p log (p/q))

In particular, the relative entropy between the probabilistic
map pi

t+1|t(xe, xe, Zt, Yt) and the uniform probabilistic map
pi0|−1(xe, ∅, ∅, ∅) is

D(pit+1|t||p
i
0|−1) ∝ 1−H(M i(t)) (2)

Where D(pi
t+1|t||p

i
0|−1) thus provides a measure of how much

the probabilistic map have changed since initial time. If we
assign to the probabilistic map pi0|−1 zero information content,
then the map entropy H(M i(t)) is a measure of information
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Fig. 1. At a synchronization time τ ∈ T , each pursuer Pi broadcasts the data M i(τ) to the network and receives the data {M j(τ)}j 6=i from the other
pursuers.

content of a probabilistic map as expressed by (1). In the
following we consider two event-triggered synchronization
schemes based on the map entropy.

A. Synchronization based on threshold

Let the event map be equal to the map entropy: Φ =
H . Then a synchronization event is triggered whenever
H(M i(τ)) < λ(τ), where λ is the synchronization threshold.
We consider two cases: synchronization based on a fixed
threshold and synchronization based on a dynamic threshold.
In the latter case, the time-varying threshold λ(τ) is given by
the difference equation

λ(τ + 1) = αλ(τ)

λ(0) = λ0

where λ0 is the initial threshold and 0 < α < 1. Since the
map entropy H in most experiments is decreasing, a fixed
threshold, λ(τ) = λ, leads to that the synchronization event
H < λ is triggered for all t > τ ∈ T , where τ is the
first synchronization instance. The synchronization will hence
take place also when there is no new information in the
probabilistic map M i. Therefore, it is natural to introduce a
decreasing dynamic threshold.

B. Synchronization based on relative entropy

Synchronization based on relative entropy triggers a syn-
chronization event when the local probabilistic map differs
sufficiently much from the previously broadcasted map. The
difference is measured through the relative entropy Di. Note
that in deriving D, we need to neglect the zero elements
corresponding to the pursuers positions. The synchronization
is carried out when

D(pit+1|t||p
i
τ−1|τ−2) > λ τ − 1 ≤ t < τ

that is, synchronization is performed when the relative entropy
between the current probabilistic map and the last synchro-
nized probabilistic map is larger than λ > 0.

IV. BANDWIDTH LIMITATIONS

In order to cope with communication bandwidth limitations,
it is natural to send only a part of the probabilistic map M that
contains most of the information.2 The idea is to transform the

2In this section, the pursuer index i and the time dependence are suppressed.

map M into a new map K, denoted reproduction probabilistic
map. That map should contain almost all information in M
but it should require less bits to be encoded. We consider a
vector quantization

Q : R
nc×nc → R

nc×nc : M 7→ K = Q(M)

where Q defines a partition of the matrix M into square
sub-matrices M1, . . . ,MN of dimension n1, . . . , nN such that∑N

i=1 ni = nc. The reproduction probabilistic map K is block
partitioned correspondingly into K1, . . . ,KN with

Ki =
1

n2
i

�
ni×1Mi

�
1×ni

�
ni×ni

(3)

where
�
k×` defines a k × ` matrix with unit elements. Each

element of Ki is thus given by the average of the elements of
Mi. Associated with the quantization Q, we define a distortion
measure

d(M,K) = |H(M)−H(K)| (4)

where H(M) and H(K) are the map entropies of M and K,
respectively. The choice of granularity in the block partition,
i.e., the size ni×ni of the sub-matrices of the partition, should
be chosen such that d(M,K) is small. This corresponds to a
small loss of information in the quantization. That choice of
quantization granularity is not always possible due to limited
communication bandwidth. Trade-off between quantization
granularity and distortion is treated by the rate distortion
theory [17]. Analytical solutions seem to be hard to obtain
in our case. We therefore consider two heuristic approaches
next.

A. Uniform quantization

For uniform quantization, the block partition of
Q is such that the dimensions of all square blocks
M1, . . . ,MN ,K1, . . . ,KN are equal to n. An illustrative
example is shown to the right in Figure 2(a). The reproduction
probabilistic map K contains O(n2

c/n
2) values (one for each

sub-matrix) instead of O(n2
c) as is the case for (the whole

map) M .

B. Non-uniform quantization

A possible non-uniform quantization is illustrated in Fig-
ure 2(b). This corresponds to a “divide-and-conquer” scheme,
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Fig. 2. Vector quantization of probabilistic map M into K = Q(M).

which is known as vector quantization with QuadTree
map [18]. The partition M1, . . . ,MN imposed by the quanti-
zation Q is in this case carried out recursively, such that

dimM1 =
1

4
dimM

dimMi+1 =

{
dimMi, if i mod 3 = 0;
1
4 dimMi, otherwise (5)

where mod is the modulus operation. In each recursion step,
the current block is divided into four sub-matrices. Three
of them are quantized using (3), while the remaining sub-
matrix is partitioned in four smaller sub-matrices, and so on.
The recursion stops when the smallest block has reached the
preassigned dimension n.

Compared with uniform quantization, one advantage of the
proposed non-uniform quantization is the possibility of an on-
line termination of the quantization if the loss of information
is too high, i.e., if the distortion measure (4) is large. Solving
the recursion (5), we find that the number of values to transmit
is equal to O(log n2

c + n2).

V. SIMULATION RESULTS

Sets of 100 Monte Carlo simulations have been performed
in order to evaluate the presented synchronization and quanti-
zation strategies. The capture time T ∗ and the mean number
of synchronization instances |Ts| are used as performance
indices.

Figures 3 and 4 show the results for a game with two
pursuers and one evader on a grid with n2

c = 576 cells.
Three different synchronization schemes are compared: time-
triggered, event–triggered based on dynamic threshold, and
event-triggered based on relative entropy. The time-triggered
synchronization had a synchronization period ∆ = 20 s.
We see in Figure 3 that the capture time T ∗ is varying
considerably much over the set of experiments. The mean
capture time T

∗
is similar for all the synchronization schemes

as indicated by the dashed lines (dashed-dotted lines indicate
the standard deviations). The values are collected in the
following table

Synchronization schemes T
∗

|Ts|
Time-Triggered 68 3.859
Event-Triggered Dynamic Threshold 64 2.454
Event-Triggered Relative Entropy 66 2.576

Note that the mean number of synchronization times
|Ts| is much smaller for the event-triggered schemes than
for the time-triggered. Hence, event-triggered synchronization
allow a more efficient utilization of the communication
channel. This fact is also illustrated in Figure 4. The main
difference between the two event-triggered schemes is mainly
the distribution of synchronization times. We see that when
using relative entropy the pursuers tend to communicate more
regularly. This is due to that new information is available
quite regularly for the pursuers and this information triggers



the synchronization events in this scheme.
In Figure 5 the uniform and non-uniform quantization

strategies are compared. The results are for a game with two
pursuers and one evader on an environment that consists of
n2
c = 1024 cells. The synchronization of the probabilistic

maps among pursuers is time-triggered with period ∆ = 20 s.
The quantization map Q has been chosen so that the
dimension of the sub-matrices Ki is n2 = 64. Figure 5 shows
T ∗ for the following cases: no quantization (n = 1), uniform
quantization with n = 8 and non-uniform quantization with
n = 8. The averaged experimental results are collected in the
following table

Quantization T
∗

d(M,K) V
Uniform (n = 1) 90.64 s (0, 0) 1024
Uniform (n = 8) 141.46 (0.09, 0.1) ≈ 16
Non-uniform (n = 8) 120.26 0.04, 0.04 ≈ 70

Here d(M,K) denotes the average distortion over all
experiments and V the average number of broadcasted values.
Notes that V is one or two magnitudes smaller for the
quantized cases compared with the non-quantized case. Still
the mean capture time is only about 50% larger. The uniform
quantization compared with the non-uniform quantization
has quite high average distortion d(M,K) (in the table
the average distortion for two probabilistic map of the two
pursuers that are playing the game are reported). This implies
a relevant loss of information that makes T

∗
larger in this last

case. On the other hand the average number of transmitted
data V is considerably reduced.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented communication protocols
based on time-triggered and event-triggered synchronization
for a distributed pursuit–evasion game. The event-triggered
schemes were based on the entropy of the probabilistic map.
Simulations showed that by limiting the communication to
certain events, the utilization of the communication link can
be considerably improved compared to conventional time-
triggered communication. Two different vector quantization
maps are considered in order to cope with bandwidth limita-
tion. A distortion measure based on map entropy is introduced
for evaluating the compression of the probabilistic map. The
problem of the compression of the probabilistic map M
can be also treated considering in the framework of image
transmission. Using standard algorithms, like for example
JPEG, we would cope with the bandwidth limitation of the
channel but it would be difficult to guarantee that the new
probabilistic map would contain most of the information of
the original one.

The communication schemes developed in the paper can be
applied in many cases when a probabilistic map has to be
sent through a network channel to a decision maker. These
kind of problems are common in robotics, examples are the
occupancy grids used for localization of robots in an unknown
environment [19], [2] and applications of particle filters [20].
A related problem of our current interest is optimal control of
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mobile sensors that share a bandwidth limited communication
channel.

VII. ACKNOWLEDGMENTS

The authors gratefully acknowledge Joao P. Hespanha for
fruitful discussions and for providing us with a simulation
environment. This work is supported by the European Com-
mission though the RECSYS project IST-2001-32515 and the
Swedish Research Council.

REFERENCES

[1] T. Balch and R. C. Arkin, “Communication in reactive multiagent robotic
systems,” Autonomous Robots, pp. 27–52, 1994.

[2] S. Thrun, W. Burgard, and D. Fox, “A probabilistic approach to con-
current mapping and localization for mobile robots,” Machine Learning
and Autonomous Robots (joint issue), vol. 31, pp. 29–53, 1998.

[3] R. Isaac, Differential Games, 2nd ed. Robert E. Kriger Publisher
Company, 1967.

[4] T. Basar and J. G. Olsder, Dynamic noncooperative game theory, 2nd ed.
Academic Press, 1995.



0 20 40 60 80 100
0

5

10

15

0 20 40 60 80 100
0

5

10

15

0 20 40 60 80 100
0

5

10

15PSfrag replacements
|Ts|

|Ts|

|Ts|

Time-triggered synchronization

Event-triggered synchronization
based on dynamic threshold

Event-triggered synchronization
based on relative entropy

Experiment number

Experiment number

Experiment number

Fig. 4. In the plots are shown the number of synchronization instances |Ts|
for all the 100 Monte Carlo experiment. In dashed-line the mean number of
synchronization instances |Ts|. In dashed-dotted line the standard deviation.
The map size consider in this simulations is n2

c = 576.

[5] J. P. Hespanha, H. J. Kim, and S. Sastry, “Multiple-agent probabilistic
pursuit-evasion games.” in In 38th Conf. on Decision and Control, vol. 3,
1999, pp. 2432–2437.

[6] J. P. Hespanha and M. Prandini, “Optimal pursuit under partial infor-
mation,” in In Proc. of the 10th Mediterranean Conference on Control
and Automation, 2002.

[7] J. P. Hespanha, H. H. Kizilocak, and Y. S. Ateskan, “Probabilistic map
building for aircraft–traking radars,” University of Southern California,
Los Angeles, CA, Tech. Rep., 2000.

[8] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379–423,623–656, 1948.

[9] T. M. Cover and J. A. Thomas, Elements of Information Theory, D. L.
Schilling, Ed. Wiley Interscience, 1991.

[10] H. Koeptz, “Should responsive systems be event triggered or time
triggered?” IEICE Trans. on Information and Systems, no. 10, pp. 1525–
1532, 1993.
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