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Abstract— We consider a group of N robots moving through
an obstacle field, where only robots that have a clear line of sight
can communicate. When passing the obstacles, the group must
coordinate its motion to remain connected. We propose using
the path–velocity decomposition: Given obstacle-free paths that
fulfill a higher-level goal, we propose a method to coordinate
the robot motions along the paths so visual connectivity is
maintained. The problem is shown to be equivalent to finding a
path through an N -dimensional configuration space, avoiding
unconnected configurations. We solve this problem with a
rapidly exploring random tree algorithm and demonstrate by
simulations how the solution time varies with the obstacle
density.

I. INTRODUCTION

Using multiple mobile sensors has many advantages. A
system of multiple sensors is reconfigurable, more robust
to failures and can provide broader coverage than a single
sensor. This comes at the price of higher system complexity
and the need to maintain communication between sensors
to allow coordination. The latter requires communication-
aware motion planning: the trajectories of all sensors must
be planned so the sensing goals are fulfilled, subject to
constraints on maintaining communication.

This paper considers a problem that can arise in this
context: We assume that a number of mobile sensors are
moving through an obstacle field, following given paths that
are chosen to fulfill a sensing goal. Can the motion of each
sensor along its path be planned, so that the group maintains
visual connectivity despite the obstacles? Fig. 1 illustrates
an example snapshot of seven robots passing through an
obstacle field. Each robot (black circle) follows a pre-defined
path (blue line) between the obstacles (red polygons). Robots
can only communicate along clear lines of sight (green
lines), so the group must coordinate its motion to maintain
connectivity. This paper presents a method to do this, which
could be implemented as a communication-aware layer in
the motion planner, ensuring that the group stays connected.

The outline of the paper is as follows: We first give a brief
overview of related work and what our contributions are. In
Section II, we define models of the robot motion, the terrain
and the communication constraints, and use these to formally
state the problem. Section III explains how the problem can
be represented as a classic robot motion planning problem:
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Fig. 1. Seven robots (black circles) moving along pre-planned paths (blue
lines) in a field of obstacles (red polygons). Only robots with a clear line of
sight (green line) can communicate, but by coordinating their motion, the
group can traverse the paths while maintaining connectivity.

finding an obstacle-free path through a high-dimensional
configuration space. We also motivate why we have chosen
to use rapidly exploring random trees (RRT) to solve this
problem. Section IV presents the RRT algorithm and then
describes the collision detector, here called outage detector.
We also comment on the computational complexity of the
method. To illustrate the method, Section V shows some
simulations and finally we conclude and indicate possible
future directions of research in Section VI.

A. Related Work

In indoor and urban environments, visibility communica-
tion models are useful not only for optical communication
but also for high-bandwidth microwave radios. Signals in
the popular 2.4 GHz band exhibit strong attenuation when
going through obstacles and if there is no direct line of
sight between transmitter and receiver, multipath fading may
also degrade the signal strength. This suggests that if two
robots have a clear line of sight between each other, it is
reasonable to assume that they can communicate. Problems
such as autonomous router placement [1], swarming [2],
rendezvous [3] and sensor deployment [4] have been studied
under such visibility constraints. The constraints can also
be relaxed to requiring connectivity only at certain time
instances [5], [6].

Visibility constraints are interesting not only for com-
munication in the classical sense, but also for sensing the
surroundings or non-cooperative evaders with a camera or
other optical device. This can be used to formulate problems
in searching [7], [8], [9], stationary sensing [10], [11] or
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tracking [12], [13]. The latter is an example of visual
servoing [14] for mobile robotics.

B. Contributions

Our first contribution is to use the path–velocity decom-
position for communication-aware motion planning. It was
proposed by Kant and Zucker [15] to solve a problem of
multi-robot path planning: First paths are planned for all
robots, then the velocities along the paths are modified
to avoid collisions when paths intersect. In contrast, we
assume that the paths have been planned not to intersect,
which removes the collision-avoidance constraints on the
velocities. An example where this is applicable is when
identical robots are used as sensors. If the paths intersect,
this can be avoided by exchanging the allocation of path
segments between robots. Without the velocity constraints,
it is appealing to use this freedom to instead maintain
communications. Our second contribution is to propose and
analyze an RRT solution to the problem, with an efficient
problem-specific collision checker. The result is an algorithm
that can solve problems with up to seven robots in practice,
using a standard laptop.

II. PRELIMINARIES

In this section, we present models for the motion of the
robots, the obstacles and the visibility-constrained communi-
cation. Then we formally define the problem of maintaining
visual connectivity.

A. Robot and World Model

We consider a group of N robots, where each robot i
is given an obstacle-free path Pi ⊂ R

2, consisting of Πi

straight line segments. Each path Pi is defined by its vertices
{p1i , . . . pΠi+1

i }, as illustrated in Fig. 2. When robot i has
moved the fraction xi ∈ [0, 1] of its path length from p1i to
pΠi+1
i , it has position ri(xi) ∈ Pi, where x = (x1, . . . , xN )

denotes the state of the whole group. To ensure that the paths
are collision-free, two different paths may not intersect.

The world contains M obstacles, modeled as (possibly
non-convex) polygons. Obstacle Wk ⊂ R

2 is defined by
its Ωk vertices {w1

k, . . . w
Ωk

k }, also illustrated in Fig. 2.
Obstacles may intersect each other, but obstacles and paths
may not intersect.

B. Communication Model

Motivated by the ray-like propagation of high-frequency
radio signals, we study a visibility-based communication
model. We define a connectivity graph Gc(x) = (Vc, Ec(x))
with vertices Vc = {1, . . . , N}. The state-dependent set of
edges Ec(x) ∈ Vc×Vc consists of undirected links e = {i, j}
between all robots i, j whose connecting line of sight is not
obstructed by any obstacles:

{i, j} ∈ Ec(x) ⇔ convhull(ri(xi), rj(xj))∩
⋃

k∈[1,M ]

Wk = ∅.

At any time instant, the graph is connected if there is a
path in the graph between any two vertices. Connectivity
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Fig. 2. Robots i and j are at positions ri(xi) and rj(xj), respectively.
Each state xi denotes the fraction of its path that robot i has moved. Due
to the obstacle Wk , the robots have an obstructed line of sight.

could also be defined over time intervals, like in delay-
tolerant networks [16], but in this paper we only consider
instantaneous connectivity. We assume that the initial graph
Gc(0) = (Vc, Ec(0)) is connected, since otherwise the
problem is trivially unsolvable.

C. Problem Formulation

Using the models above, we can now define the problem
of path following with continuous connectivity:

Problem 1 Given paths P1, . . . , PN and obstacles
W1, . . . ,WM , find an end-time T > 0 and time-continuous
state trajectory x : [0, T ] → [0, 1]N such that x(T ) = 1 and
Gc(x(t)) is connected for all t ∈ [0, T ].

Note that this problem is not guaranteed to have a solu-
tion. It is easy to construct cases where obstacles make it
impossible to maintain connectivity. We will return to this
in the next section and comment on how it affects the choice
of solution method. But first we will show how the problem
maps to a classic motion planning problem, represented in a
configuration space.

III. CONFIGURATION SPACE REPRESENTATION

The system has N degrees of freedom, each corresponding
to the position of one robot along its path. We thus define
the configuration space of the system as C = [0, 1]N .
Configurations x ∈ C such that Gc(x) is not connected,
are defined to be in outage. Obstacles in the world cause
regions of C to be in outage, and these regions are called C-
obstacles. The set of all configurations not in outage is called
freespace, or Cfree ⊆ C. The problem under consideration is
thus equivalent to finding a continuous path x̃ : [0, 1] → C free

such that x̃(0) = 0 and x̃(1) = 1. This path can then be
traversed at any velocity to find the trajectory x(t). This
is a standard motion planning problem, for which there
exist several solutions. The choice of method depends on,
among other things, the geometry of the C-obstacles and the
requirements on completeness of the solution.

In its general form, with non-parallel paths and multiple
path segments, our problem generates C-obstacles that are
non-convex and cannot be described as polygons. Instead,
they can be described as semi-algebraic sets.
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For problems with this general geometry, the best known
complete methods have time complexity that scales expo-
nentially with the number of dimensions [17]. We remind
the reader that a complete method is guaranteed to find a
solution if it exists or correctly report that the problem is
unsolvable. The traditional way to handle poor scalability
is to relax the completeness requirement and use sampling-
based methods. In this paper, we use the RRT algorithm [18].
It is a probabilistically complete method, which means that
if there is a solution, the probability of finding it converges
to one as the number of samples increases. But if there is
no solution, the solver will run forever. In practice, one can
set a timeout for the solver. We will comment more on this
in Section VI. In the following section, we describe how the
RRT method was used to solve the problem.

IV. RAPIDLY EXPLORING RANDOM TREE SOLVER

By connecting randomly chosen points in C free, we can
construct a tree that eventually contains a path from the
start to the goal configurations. The only problem-specific
component is the collision detector, which we refer to as
the outage detector. It determines if a new sample can be
connected by a straight line to the nearest part of the tree
without colliding with a C-obstacle. We will present the
RRT algorithm and then describe how the outage detector
can be implemented. We end this section by discussing the
computational complexity of the outage detector.

A. Rapidly Exploring Random Tree

The RRT solver builds a tree graphGR(VR, ER, QR), with
vertices VR = {1, . . . ,Γ} and edges ER ∈ VR × VR. The
set QR = {q1, . . . , qΓ} consists of configurations qi ∈ Cfree

corresponding to each vertex vi ∈ VR. If there is an edge
{i, j} ∈ ER, the straight line between qi and qj is contained
in Cfree. This is described in Algorithm 1, taken from [17].

The algorithm iteratively constructs a tree that fills C free. In
each iteration, a random point y ∈ C is chosen. The function
NEAREST(GR, y) returns the index i of the configuration
qi ∈ QR that is closest to y. If y is closer to a point
between two configurations qi, qj such that {i, j} ∈ ER,
than to a configuration qi, the edge {i, j} is split, a new
vertex is inserted there and the corresponding configuration is
returned. Then the outage detector FIRST OUTAGE(q i, y)
returns a point ỹ on the straight line from q i to y, as close
to y as possible such that the line from qi to ỹ is contained
in Cfree. If there is progress, so ỹ 	= qi, we add this new
configuration and the corresponding edge to GR.

Note that Algorithm 1 will run forever, giving an RRT that
is arbitrarily close to any point in Cfree. To make it terminate
in finite time, every 100th iteration, we replace the random
y with y = 1 and abort if ỹ = y. Then the RRT contains a
path to the goal. Next, we describe how the outage detector
can be implemented.

B. Outage Detector

The outage detector answers the question of how far the
system can go from configuration qi to another one, y, before

Algorithm 1 Rapidly Exploring Random Tree [17]
1: Γ := 1
2: VR := {1}
3: ER := ∅
4: QR := {0}
5: loop
6: Randomly select y ∈ C
7: i := NEAREST(GR, y)
8: ỹ := FIRST OUTAGE(qi, y)
9: if ỹ 	= qi then

10: Γ := Γ + 1
11: VR := VR ∪ Γ
12: ER := ER ∪ {i,Γ}
13: QR := QR ∪ ỹ
14: end if
15: end loop

intersecting a C-obstacle, i.e.going into outage. Since under
Algorithm 1, qi ∈ QR, the communication graph Gc(qi) is
always connected. Hence, it is sufficient to check how far
the system can go towards y before any link {i, j} ∈ Ec

is blocked by an obstacle. We update ỹ to this location and
search Gc(ỹ) for an indirect path between vertices i and j. If
it exists, the link {i, j} was redundant, so we can continue.
The iteration ends if Gc(ỹ) is disconnected or we reach y,
as summarized in Algorithm 2.

Algorithm 2 ỹ = FIRST OUTAGE(qi, y)

1: ỹ := qi
2: while ỹ 	= y and Gc(ỹ) is connected do
3: γ∗ := mine∈Ec(ỹ),k∈K(e),n∈(1,Ωk) γ(e, w

n
k , ỹ, y)

4: ỹ := ỹ + (y − ỹ)min(1, γ∗)
5: end while

To check Gc(ỹ) for connectivity in Algorithm 2, we do
a breadth-first search with robot i as the root. Algorithm 2
uses the set

K(e) � {k : ∃ x ∈ C : convhull(ri(x), rj(x)) ∩Wk 	= ∅},
which are the indices of all obstacles that may block the link
e = {i, j}. It also uses the function γ(e, wn

k , x, y), which, for
a link e = {i, j}, is defined as

γ(e, wn
k , x, y) � min{g : (1− λ) [(1− g)ri(x) + gri(y)]

+ λ [(1− g)rj(x) + grj(y)] = wn
k , g ≥ 0, 0 < λ < 1}.

Finding candidate solutions g requires finding the intersec-
tions of two rectangular hyperbola or, in degenerate cases, of
two straight lines. As illustrated in Fig. 3, γ({i, j}, wn

k , x, y)
is the fraction of the straight line from x to y that the system
can move before the line of sight between robots i and j
intersects the obstacle vertex wn

k . For simplicity, we assume
that both robots i and j move on one single segment of their
paths. In the case of multi-segment paths, the computation
is done separately over each interval of γ corresponding to
different combinations of path segments. If the problem is
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Fig. 3. The core of the outage detector: At what fraction γ({i, j}, wn
k , x, y)

of the motion from configuration x to y does the line of sight of robots i
and j intersect the obstacle vertex wn

k ?

infeasible, we let γ = ∞. Note that we do allow solutions
where γ > 1. This allows the result to be reused to speed
up computations, as described below.

C. Computational Complexity

In worst case, finding γ∗ in each iteration of Algorithm 2
requires checking M obstacles per link and N 2 links. If there
is more than one iteration, γ(e, wn

k , x, y) is never recomputed
for a link. Instead, one only needs to subtract γ ∗ to get an
updated value. Evaluating the iteration condition on connec-
tivity requires testing at most N 2 links against M obstacles
in each iteration. In worst case, there could be O(MN 2)
iterations. Since computing γ(e, wn

k , x, y) and testing a link
against an obstacle are constant-time operations, the worst-
case time complexity of each query to the outage detector is
O(M2N4).

As mentioned earlier, the RRT algorithm is only prob-
abilistically complete, so its worst-case execution time is
unbounded. As described by LaValle [17], the running time
grows with the dimensionality N of C, but also heavily
depends on the presence of narrow bottlenecks in C free. In
our problem, this corresponds to dense obstacles, where only
a small set of robot configurations allows the group to pass
without losing connectivity. In the following section, we will
illustrate how the obstacle density affects the solution times.

V. SIMULATIONS

In this section, we show some simulations to illustrate the
solution method. We also demonstrate how the solution times
increase when the obstacles are denser, creating bottlenecks
in C. All simulations were made in Matlab, and we have not
optimized the implementation for speed. It mainly serves as
a proof of concept and to elucidate the relative differences
in typical solution times.

As a small illustrative example, Fig. 4 shows a scenario
with two obstacles and three paths. The robots are depicted
in the start configuration. The corresponding configuration
space is shown in Fig. 5. It shows the C-obstacles, drawn
as point clouds. When the system is at a configuration x
inside a C-obstacle, it means that the group is in outage,
i.e., that not enough robots have a clear line of sight for
the communication graph Gc(x) to be connected. The RRT
GR is grown between the obstacles, starting at (0, 0, 0)
and expanding through free space towards the goal (1, 1, 1).
Its vertices are drawn as circles and the edges are drawn
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Fig. 4. A simple example scenario with three robots and two obstacles.
The robots are depicted in the initial configuration.
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Fig. 5. Configuration space corresponding to the example in Fig. 4. The
RRT vertices are shown as blue circles, joined by edges in the form of blue
lines. The C-obstacles are shown as red point clouds and the start and goal
configurations are indicated.

as straight lines connecting the circles. Fig. 6 shows eight
snapshots of the resulting solution, with dashed red lines
depicting lines of sight that are blocked. A movie of the
resulting robot motion can be found at http://www.ee.
kth.se/˜lindhe/RRT_MOV. At the same location, there
is also a movie of a solution to the example scenario in Fig. 1.
That solution took 144 s to compute on a laptop with an Intel
Core 2 Duo processor at 2.2 GHz and 2 GB of RAM.

Finally, we demonstrate how the solution times depend
on the obstacle density. We define a scenario with five paths
and two triangular obstacles between each path. The triangles
were vertically centered between the paths, but the horizontal
position and the orientation were randomized for each trial.
We first made 100 trials with small obstacles, where the
base of the triangles was 20% of the distance between paths.
Fig. 7 shows a histogram of the solution times, along with
one realization of a scenario. All scenarios were solved and
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Fig. 6. Snapshots of a solution trajectory for the example in Fig. 4. The robots stay connected during the whole trajectory, even though some lines of
sight (red dashed lines) are obstructed by obstacles.

the mean solution time was 6.3 s.
As a comparison, we made 100 similar trials with larger

obstacles, where the base of each triangle was 50% of the
distance between paths. Fig. 8 shows the resulting solution
time histogram and an example realization. (Please note the
different time scale from Fig. 7.) The maximum size of the
RRT was bounded to Γ = 50 000 vertices, and with this
termination rule, 89% of the scenarios were solved. The
solution time was roughly proportional to Γ, and the search
was terminated after about 700 s. The mean solution time for
the solved scenarios was 78 s. We finally note that in similar
experiments, with all 100 trials using the same scenario, the
randomness of the RRT caused a similar spread in solution
times, both for scenarios with small and large obstacles.

These tests illustrate two things: First, as expected, the
solution times increase when the obstacles become denser,
since there are narrower bottlenecks that the RRT needs to
pass through. Second, the solution time histogram has a long
tail of solvable scenarios where the solution takes very long
to find, making the choice of termination time difficult. As
mentioned in Section III, this is a known problem with this
class of sampling-based solvers [19].

VI. CONCLUSIONS

We have shown how the problem of path following under
a visibility connectivity constraint can be represented as a
classic motion planning problem: With N robots moving
along pre-defined paths, we get an N -dimensional config-
uration space. All configurations that cause the group to be
in outage are considered as C-obstacles. The problem can
then be stated as finding a continuous path in C free, from the
initial to the final configuration.

Using the configuration space formulation, we have a
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Fig. 7. Solution times for 100 randomized scenarios with small obstacles.
One example realization is shown above.

number of candidate methods from the motion planning
literature. Choosing the sampling-based RRT method, we get
the advantage that the computation scales favorably with the
number of robots. The main drawback is that the method is
only probabilistically complete, so, as we have illustrated in
simulations, the choice of termination criterion for the search
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Fig. 8. Solution times for 100 randomized scenarios with larger obstacles.
One example realization is shown above. Larger obstacles cause narrow
bottlenecks in the configuration space, slowing down the RRT solver.

will be heuristic. This method cannot in finite time conclude
that a problem is unsolvable, which may well be the case. For
this reason, an interesting direction of future research would
be to find an exact solution method and compare how its
computational complexity scales with the number of robots.

Simulations illustrate the expected result that it takes
longer to solve problems with dense obstacles, since the RRT
needs to pass through bottlenecks in C. Replacing the local
solver FIRST OUTAGE, which searches in a straight line,
with a potential-based solver that can reach further, could
mitigate this effect. This is a tradeoff between complexity
of the local solver and its ability to speed up the passage of
bottlenecks [20, Sec. 3.6].

We end by noting that it would be straightforward to
modify the method to only accept certain restricted types of
connectivity, such as topologies with a specified degree of
redundancy or a maximum number of hops between any two
robots. The former could be useful to make the connectivity
more robust and the latter corresponds to improving the
speed of information sharing within the group. Similarly, the
case of intersecting paths could be solved by extending the
outage detector to also check for inter-robot collisions. When
searching for a path between two points, it would stop just
before the system either goes into outage or there is an inter-
robot collision.
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