
Networked operation of a UAV using Gaussian process-based delay
compensation and model predictive control

Dohyun Jang1, Jaehyun Yoo2, Clark Youngdong Son1, H. Jin Kim1, and Karl H. Johansson3

Abstract— This study addresses an operation of unmanned
aerial vehicles (UAVs) in a network environment where there
is time-varying network delay. The network delay entails
undesirable effects on the stability of the UAV control system
due to delayed state feedback and outdated control input.
Although several networked control algorithms have been
proposed to deal with the network delay, most existing studies
have assumed that the plant dynamics is known and simple, or
the network delay is constant. These assumptions are improper
to multirotor-type UAVs because of their nonlinearity and
time-sensitive characteristics. To deal with these problems, we
propose a networked control system using model predictive
control (MPC) designed under the consideration of multirotor
characteristics. We also apply a Gaussian process (GP) to learn
an unknown nonlinear model, which increases the accuracy
of path planning and state estimation. Flight experiments
show that the proposed algorithm successfully compensates
the network delay and Gaussian process learning improves the
UAV’s path tracking performance.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) offer promising ver-
satility and agility to achieve a wide range of missions at
low costs [1]–[4]. Many UAV applications can show more
outstanding effectiveness if the UAVs are controlled over
longer distance [5]. However, long distance communication
increases the time delay in a network, and the irregular,
long time delay may degrade the control performance due
to following reasons: 1) the observed UAV state in a remote
side does not match the current UAV state due to the delayed
state feedback, 2) the UAV also receives the outdated control
input from the remote. Nevertheless, UAV research has often
ignored the negative impact of the communication delay
and most experiments were performed in well-equipped
communication environments such as indoor laboratories.

Networked control system (NCS) approaches have been
studied to overcome the problems related to the delay. NCS
is a control framework to integrate many sensors, controllers,
and plants at different geographical locations and to exchange
signal over communication networks [6], [7]. The most
striking difference between the NCS and the other control
systems is that the NCS uses a general-purpose network

1Dohyun Jang, Clark Youngdong Son, and H. Jin Kim
are with Department of Mechanical and Aerospace Engi-
neering, Seoul National University (SNU) and Automation
and Systems Research Institute (ASRI), Seoul, South Korea
{dohyun,clark.y.d.son,hjinkim}@snu.ac.kr

2Jaehyun Yoo is with the Department of Electrical, Electronic and
Control Engineering, Hankyong National University, Anseong, South Korea
jhyoo@hknu.ac.kr

3Karl H. Johansson is with the School of Electrical Engineering, KTH
Royal Institute of Technology, Stockholm, Sweden kallej@kth.se

Cloud
Network

Server 2Server 1
Fig. 1: Remote controlled UAVs via cloud network

for various irrelevant yet concurrent applications [6], which
means that the perfect communication is no longer assured.

Nonetheless, the NCS has some of the advantages: 1) it
can address the network delay induced in a control loop, 2)
various sensors, server, controller and plant can be connected
simultaneously, and 3) it is suitable for small plants such
as the UAV because it requires less computing power,
small memory space by performing complicated control and
utilizing a large amount of database on the server side. This
mechanism is called as local simple and remote complex
(LSRC).

There have been several researches that take advantage
of the NCS in remote control. In [8]–[10], predictive control
approaches are taken to provide a local plant with a sequence
of predicted control inputs. Then, the local plant chooses a
proper control input corresponding to the current network
condition. These papers assume that the plant dynamics is
known and simple such as a single servo motor. On the other
hand, the multirotor dynamics that we are interested in is not
so simple and may not be precisely known especially in the
NCS setting. A small difference in the dynamics can cause
an unexpected movement, or even crash in the worst case.
In [11], [12], they tried to learn the network delay itself and
used it for the networked control. However, both only learn
the approximate tendency of network delay, thus cannot cope
with the volatile delay. In [13], [14], the NCS problems for
the UAV are addressed. However, both papers also assume
that the plant dynamics is known, and network delays are
time-invariant.

To solve problems in a more realistic environment, this
study aims at establishing the NCS connecting SNU (South

2019 International Conference on Robotics and Automation (ICRA)
Palais des congres de Montreal, Montreal, Canada, May 20-24, 2019

978-1-5386-6027-0/19/$31.00 ©2019 IEEE 9216

Velocity
Controller

Attitude
Controller

Uplink Delay
Compensator

Server

Downlink Delay
Compensator

Up

2

Do
C

D
4

GP-MPC
Path

Planner

1
PlantV

Co
V

3

Downlink
delay

Uplink
delay

|)

Fig. 2: The overall structure of the proposed algorithm: 1 GP-MPC path planner (in server) sends control horizon U(k),
2 uplink delay compensator (in client) chooses proper control input u∗ in the delayed control horizon U(k− τu) according
to the current time, 3 UAV inner control loop (in client) performs cascade control and sends full-state observation x(k) of
the UAV, 4 downlink delay compensator (in server) estimates the current state of UAV x̂(k) by compensating for downlink
delay

Korea) and KTH (Sweden) for a cooperative flight of the
multirotor-type UAVs. We build an internet-based networked
control system, and design a path planning algorithm for the
multirotor against a time-varying delay as shown in Fig. 1.
Considering the characteristic of the NCS, we assume that
the exact plant physical properties are unknown.

The main contribution of this paper is to design the
networked controller using model predictive control (MPC)
for the multirotor platforms. It can cope with not only the
time-varying network delay but also any type of delay due to
calculation or transmission. A machine learning technique is
applied to improve the control performance by learning the
multirotor dynamic models. It does not learn the time delay
itself but learns a multirotor’s unknown nonlinear model.
Thus, we do not need a precise dynamic model in advance.

We employ the Gaussian process (GP) to learn the mul-
tirotor dynamics. The GP is an algorithm that has received
much attention in recent years and has been widely used in
applications including the UAV control [15] and the model
learning of the MPC [16], [17]. We utilize a spare GP
technique with the fully independent training conditional
algorithm (FITC), which is less computationally intensive
than the general GP algorithm.

The remainder of this paper is organized as follows. In
Section II, we propose the problem statement which will
be introduced. Section III explains the plant model learning
with the GP. Section IV introduces the design process of the
MPC for networked UAV, and Section V details real-time
experiment results. The final Section discusses the results
and the control performance improvements.

II. PROBLEM STATEMENT

We present the proposed NCS configuration for a
multirotor system to compensate the time-varying network
delay occurring in the networked control situation. The
overall structure can be divided into two parts, one on the
server side and the other on the client side. In this study, the
remote side is the server, and the multirotor is the client.

They communicate fixed-size data, called packets, for the
control loop. The uplink delay τu occurs when the packets
are transmitted from the server to the client. The downlink
delay τd occurs in the opposite case. To configure the NCS,
we suggest a compensation method that consists of the
following four parts.

• Part 1: GP-MPC for path planning (Section II.A)
• Part 2: uplink delay compensation (Section II.B)
• Part 3: UAV inner control loop
• Part 4: downlink delay compensation (Section II.C)

Fig. 2 shows overall structure. The MPC path planner
in the server solves an optimization problem to predict a
trajectory and results a control input set during H time steps.
It puts the predicted control horizon in the packet with the
time stamp and sends it to the client, during which the uplink
time delay occurs. The uplink delay compensator calculates
τu on the client side by comparing the time stamp when
the packet was generated and the current time and sends
proper control input to the UAV according to τu. The UAV’s
inner controller conducts a cascade control with the received
control input and sends out a full state feedback to the server.
In the server, the downlink delay compensator calculates τd
and estimates the current state of the UAV using a control
input history. Estimated values are also used in the MPC path
planner again.

A. GP-MPC for path planning

Let us define the state variables of the UAV as x :=
[pT vT]T := [x y ẋ ẏ]T ∈ IR4. It includes the position
p ∈ IR2 and the velocities v ∈ IR2 in the inertial frame. The
proposed setting works in the same manner in 3-D, but we
use 2-D notation for simplicity. xd := [xd yd ẋd ẏd]

T ∈ IR4

is the desired position and velocities, u := [ux uy]
T ∈ IR2 is

the control input vector. We assume that the altitude and yaw
angle of the UAV are maintained by a separate controller. The
reason why the state variables do not include roll and pitch

9217

angle unlike the previous works [1] is because the attitude
of the UAV changes rapidly, either estimating or measuring
the current roll and pitch angle in the network environment
with time delay is not reasonable.

The main objective of this research is to follow the desired
trajectory with minimum deviation. We use the MPC for path
planning, which tries to minimize the trajectory deviation∑H

i=1 ||x(k + i) − xd(k + i)|| → 0 during the look-ahead
horizon H . The multirotor dynamic model f(x,u) for the
MPC is set as

x(k + 1) = f(x(k),u(k))
= fn(x(k),u(k)) + g(x(k),u(k)).

(1)

fn(x,u) is the nominal known model which is derived
in (6)−(9), g(x,u) is an unknown nonlinear model, to be
learned by the GP. Setting the multirotor dynamics as the
sum of nominal and data-driven model via the GP improves
the prediction accuracy because these models are comple-
mentary. In other words, the GP model can supplement the
nominal model’s residual dynamics, and the nominal model
can mitigate the failure of the GP prediction because the GP
tends to result a zero output when the input of the sample is
not around the domain of the existing training data set [5].
Using these definitions, we obtain optimized control horizon
U(k) and prediction horizon X(k) as

U(k) = {u(k + i|k)}H−1
i=0 ∈ IR2×H ,

X(k) = {x(k + i|k)}Hi=1 ∈ IR4×H .
(2)

Typical MPC executes only the first input u(k|k). However,
to make use of the network advantage of the transmitting
data packets, which can include large data sets in a single
fixed-size package, a set of serial control inputs are packed
and transmitted through the network at time k [10].

B. Uplink delay compensation

The client receives the packet including the control horizon
and the time stamp. However, due to the uplink delay τu,
the client receives a packet at τu time later than the time
it was created. τu can be calculated by comparing the time
stamp included in the data packet with the time when the
client receives the packet. During this delay, the UAV is
following the previous trajectory so that the current UAV
state is expected to be at the predicted position x(k|k−τu) ∈
X(k−τu). The uplink delay compensator chooses the proper
control input u∗ in the delayed control horizon U(k − τu)
according to the current time,

u∗ = u(k|k − τu) ∈ U(k − τu). (3)

u∗ is given to the UAV velocity controller.

C. Downlink delay compensation

The downlink delay τd can be calculated by comparing
the time stamp included in the data packet with the time
when the server receives the packet. First we define the
estimation function f{n} with a recurrence relationship using
the dynamic model f(x,u). The server stores the history of
past control inputs {u(k − j|k − j)}t0j=1, and the estimation

function f{n} to calculate the estimated current position x̂(k)
is given by

f{0}(x(k)) =Δ x(k)

f{1}(x(k)) =Δ f(f{0}(x(k)),u(k|k))
f{2}(x(k)) =Δ f(f{1}(x(k)),u(k + 1|k + 1))

...
...

f{n+1}(x(k)) =Δ f(f{n}(x(k)),u(k + n|k + n))
= x(k + n+ 1), (n = 0, 1, ...)

(4)

When the delayed observation x̂(k − τd) is given, x̂(k) is
calculated by the following equation:

x̂(k) = f{τd}(x̂(k − τd)). (5)

III. MODEL LEARNING USING GAUSSIAN
PROCESS

In the previous section, we define the UAV’s dynamic
model f(x,u) as the sum of the nominal model fn(x,u)
and the unknown model g(x,u). We use a linear model of
the UAV for the nominal model, which was derived from
[18]. We approximate the nominal model as a 1st order
dynamics and set the control input u as a desired velocity
of the UAV’s velocity controller, which is more stable than
setting the direct control input such as a desired moment or
attitude because the velocity controller is less time-sensitive
than both a motor thrust controller and attitude controller. If
the UAV model can be considered as a point mass model,
the dynamics equation of the UAV is defined as

ẋ = Acx+Bcu, (6)

Ac =
Δ

⎡
⎢⎢⎣
0 0 1 0
0 0 0 1
0 0 −1/tx 0
0 0 0 −1/ty

⎤
⎥⎥⎦ , (7)

Bc =
Δ

⎡
⎢⎢⎣

0 0
0 0

1/tx 0
0 1/ty

⎤
⎥⎥⎦ . (8)

Time constants tx and ty in the 1st order dynamics of v can
be determined experimentally [19]. Using (6), the difference
equation for discrete system can be derived as

x(k + 1) = Adx(k) +Bdu(k)
= fn(x(k),u(k)),

(9)

where Ad and Bd in the discrete domain correspond to Ac

and Bc in the continuous version, respectively.
However, using an approximated dynamic model can

cause inaccurate prediction horizon X(k). Erroneous predic-
tion horizon is more harmful in the NCS because both uplink
and downlink delay compensators assume that the UAV
follows the prediction horizon. To generate more accurate
prediction horizon, the GP learns the unknown UAV model
g(x,u) with state x and control input u. The main downside
of the GP is a computational burden. To overcome this draw-
back, the sparse GP was developed. The sparse GP makes it
possible to reduce the runtime by making assumptions about

9218

a prior distribution. In this paper, we use the sparse GP with
the fully independent training conditional algorithm (FITC),
which is introduced in [20].

To learn such an unknown model g(x,u) using the GP
modelling techniques, we define the state control tuple x̃(k)
and the residual model z(k) as follows:

x̃(k) = [v(k)Tu(k)T]T ∈ IR4,
z(k) = g(x(k),u(k)) + ε

= x(k + 1)− fn(x(k),u(k)) + ε ∈ IR4.
(10)

x̃(k) does not include p(k) because it does not affect the
residual model z(k). We assume that the output of the
function g(x(k),u(k)) is corrupted by white noise ε with
variance σn. x̃∗ is a GP test input data and z∗ is a GP test
target data. To predict the GP test target data, we first acquire
the GP training input data X̃ = {x̃(i)}Ni=1 and the training
target data Z = {z(i)}Ni=1. Then, we assume that the prior
distribution of Z and z∗ have a joint Gaussian distribution
with zero-mean written as[

Z
z∗

]
∼ N

(
0,

[
k(X̃, X̃) + σnI k(X̃, x̃∗)

k(x̃∗, X̃) k(x̃∗, x̃∗)

])

= N
(

0,

[
Kzz + σnI Kz∗

K∗z K∗∗

])
,

(11)

In this paper, the squared-exponential kernel function k is
used, which is defined as

k(x̃, x̃∗) = σ2
s(−

1

2
(x̃− x̃∗)TΣ−1(x̃− x̃∗)), (12)

where σ2
s is the variance of the function g(x,u) and Σ is the

length scale that determines how fast the correlation between
data points decreases. The hyper parameters represent the
smoothness of the function estimated by the GP. Typically,
the hyper parameters can be learned by evidence maximiza-
tion [21]. The posteriori distribution of z∗ is derived as
follows:

p(z∗|X̃, x̃∗) ∼ N (μ∗,Σ∗)
μ∗ = K∗z(Kzz + σnI)

−1Z

= g(x,u)

Σ∗ = K∗∗ −K∗z(Kzz + σnI)
−1Kz∗

(13)

We use the sparse GP to reduce the computational com-
plexity. The sparse GP starts with the generation of the induc-
ing input data x̃c and corresponding target data zc. With the
sparse GP algorithm and inducing GP data, the probability
of z∗ can be calculated with a lower computational cost
compared with that of nominal GP model [22].

As a result, we learn the unknown model g(x,u) and
obtain the total dynamic equation f(x,u). It is used for
MPC path planning in section II.A, and downlink delay
compensation in section II.C.

IV. MODEL PREDICTIVE CONTROL FOR
NETWORKED UAV

In the previous section, we introduced the nominal model
fn(x,u) and the GP model g(x,u). We use a total dynamic

model of the UAV f(x,u) as the model constraint in the
following MPC setup:

min
u(k+i|k),0≤i<H

Jk = ||x(k +H)− xd(k +H)||2P
+

H−1∑
i=0

(||x(k + i)− xd(k + i)||2Q+||u(k + i|k)||2R)
(14)

subject to

x(k + i+ 1) = f(x(k + i),u(k + i|k))
|u(k + i|k)| ≤ umax

i = 0, · · · , H − 1

x̂(k) = f{τd}(x̂(k − τd))

x(k) = x̂(k).

(15)

Here ||k||2A is a quadratic form of vector k with a positive
semi-definite weighting matrix A. Jk is the cost function and
x̂(k) is the estimated state obtained in the downlink delay
compensator described in section II.C. The MPC calculates
the state transition up to the look-ahead horizon of H steps.
The positive semi-definite matrices P , Q, and R are weights
for the final state error, ith state error, and control input,
respectively. The vector umax denotes the constraint of
control input. The results of the MPC are signals defined
in (2).

To solve for the optimal control problem in real time, a
stable and fast optimal control solver is required. We use
a Sequential Linear Quadratic (SLQ) solver whose speed
and performance were previously demonstrated in agile flight
experiments [23]. The discrete-time dynamic model (1) can
be easily computed from the continuous dynamics using the
Euler’s method. The detailed algorithm of SLQ for the MPC
is shown in [24].

In section II.C, the downlink delay compensator uses
u(k−i|k−i) to transfer x(k−i) to the next step x(k−i+1)
in each k − i time step. However, u(k − i|k − i − τu) ∈
U(k−i−τu) was actually used as a result of the uplink delay
compensator, and the downlink delay compensator does not
know τu because it varies every moment. The best strategy
is to make u(k+i|k) and u(k+i|k−1) as close as possible.
As a result, the server can choose the (k− i)-th step control
input with minimum difference from the actual control input
used. To consider this changes to the MPC constraints, we
redefine the cost function of (14) as follows:

min
u(k+i|k),0≤i<H

Jk = ||x(k +H)− xd(k +H)||2P
+

H−1∑
i=0

(||x(k + i)− xd(k + i)||2Q+||u(k + i|k)||2R)

+
H−2∑
i=0

(||u(k + i|k)− u(k + i|k − 1)||2S)
(16)

Even though the inclusion of the last term decreases the
optimal performance, it increases stability which is a more
critical factor in networked control systems.

V. FLIGHT EXPERIMENT
A. Delay analysis

This subsection shows the result of the network delay
characteristics analysis between Korea and Sweden. It was

9219

confirmed that the network communication between Korea
and Sweden is on average 20 nodes. The delays that occur
at each node can be seen to follow the Poisson distribution.
Thus, we can assume that the round-trip network delay which
is a sum of each node delay follows the normal distribution
according to the central limit theorem even though they have
different parameters. Fig. 3 supports that our assumptions.
For a fair comparison with each experiment, we set the
artificial delays τu and τd to follow the normal distribution
N (0.5, 0.1) with a random seed.

0 100 200 300 400 500 600

time (sec)

300

450

600

R
ou

nd
-t

rip
 d

el
ay

 (
m

s)

(a) Round-trip delay

(b) Histogram

Fig. 3: Delay analysis between SNU (South Korea) and
KTH (Sweden) (a) round-trip delay during 600 seconds (b)
histogram of the round-trip delay

B. Experimental setup

We validated the effectiveness of the proposed framework
through actual flight experiments. The experimental setup
is illustrated in Fig. 4. We use the Crazyflie 2.0 multirotor
developed by Bitcraze [25], whose weight is approximately

1

UAV1
trajectory

VICON

Crazyflie

UAV2
trajectory

Fig. 4: A snapshot of the experimental setup of the trajectory
tracking control with NCS configuration

32 g and maximum takeoff weight is 42 g. Position of the
multirotor is measured by a VICON motion capture system
operating at 100 Hz and all the other states are estimated
using Kalman filter from the position information. We use
a server computer with Intel i7 6700K 4.0GHz CPU and
Robot Operating System (ROS). The server computer solves
the MPC and sends the predicted control horizon to the
multirotor. The MPC look-ahead horizon H is set to 20,
and the MPC sampling time is 0.1 seconds. The constraint
on the control input is given by umax = [0.6 0.6]T .

Experiment 1: tracking control with a single multirotor

In this experiment, we conducted the path tracking control
experiment in the presence of both uplink delay and down-
link delay. We give a circular desired path with period 10
seconds, radius 0.5 meters. Fig. 5 shows the results of our
first experiment, which compares three cases: (a) tracking
control without any delay compensation, (b) the proposed
delay compensation algorithm without the GP model learn-
ing, (c) the proposed delay compensation algorithm with the
GP model learning. Even though the prior information of the
time delay is not given to the delay compensator, tracking
control performances of (b) and (c) are satisfactory because
of the robustness of the proposed algorithm. Especially the
learned GP model enhances the control performance because
of more accurate prediction horizon and downlink delay
compensation. Table I shows the comparison of tracking
performance.

TABLE I: RMSE corresponding to given trajectory

Exp 1-(a) Exp 1-(b) Exp 1-(c)
x RMSE 0.1048 0.0807 0.0507
y RMSE 0.0861 0.0495 0.0350

(x, y) RMSE 0.1352 0.0946 0.0616

Experiment 2: cooperative path tracking with two multirotors

In this experiment, we conducted the cooperative path
tracking control with two multirotors. We assume a scenario
where each multirotor is manipulated in different locations.
Thus we set the both artificial delays τu and τd to fol-
low the normal distribution N (0.5, 0.1) and N (0.3, 0.05)
for each multirotor. We give a circular desired path with
period 10 seconds, radius 0.5 meters. The two multirotors
fly a half meter apart in x-axis. Fig. 6 shows the results
of our second experiment, which compares two cases: (a)
cooperative tracking control without any delay compensation,
(b) cooperative tracking control with the proposed delay
compensation algorithm and the GP model learning. Even
though the network delays of each multirotor are different,
the proposed algorithm maintained the given distance com-
pared to the result without compensation algorithm.

VI. CONCLUSIONS

This paper presented a configuration of NCS for the UAV
to compensate the time-varying network delay. The NCS

9220

-0.3 0.1 0.5 0.9 1.3
x (m)

-1.8

-1.4

-1

-0.6

-0.2

y
(m

)

(a) without compensation

-0.3 0.1 0.5 0.9 1.3
x (m)

-1.8

-1.4

-1

-0.6

-0.2

y
(m

)

(b) with compensation, without GP learning

-0.3 0.1 0.5 0.9 1.3
x (m)

-1.8

-1.4

-1

-0.6

-0.2

y
(m

)

Reference trajectory at server
UAV trajectory

(c) with compensation, with GP learning

Fig. 5: Experiment 1 : path tracking control of the single multirotor

0 10 20 30 40 50 60

time (sec)

0

0.5

1

x
-

di
ffe

re
nc

e
(m

)

0 10 20 30 40 50 60

time (sec)

-0.5

0

0.5

y
-

di
ffe

re
nc

e
(m

)

(a) without compensation

0 10 20 30 40 50 60

time (sec)

0

0.5

1

x
-

di
ffe

re
nc

e
(m

) Position difference
Target position difference

0 10 20 30 40 50 60

time (sec)

-0.5

0

0.5

y
-

di
ffe

re
nc

e
(m

)

(b) with compensation and with GP learning

Fig. 6: Experiment 2 : cooperative tracking control of two multirotors with different network delays. The blue line represents
the distance difference of each multirotor. The closer the blue line is to the red line, the better.

structure proposed in this paper consists of 4 parts: GP-
MPC path planner, uplink delay compensator, UAV inner-
loop controller, and downlink delay compensator. This struc-
ture was configured to compensate the network delay and
control the multirotor efficiently. We also used the GP model
learning to improve the delay compensation performance
and MPC path planning accuracy. The first experiment on
tracking control of the multirotor UAV confirms that the
control performance was improved. The second experiment
on cooperative path tracking control of the two multirotors
shows that the proposed algorithm can cope with unknown
network delays.

ACKNOWLEDGMENT

This research was supported by the MSIT(Ministry of
Science, ICT), Korea, under the ITRC(Information Technol-
ogy Research Center) support program (IITP-2019-2017-
0-01637) supervised by the IITP(Institute for Informa-
tion & communications Technology Promotion) and High-
Speed Vehicle Research Center of KAIST with the sup-
port of the Defense Acquisition Program Administration
and the Agency for Defense Development under Contract
UD170018CD.

REFERENCES

[1] S. Bouabdallah,P. Murrieri, and R. Siegwart, "Design and control of
an indoor micro quadrotor." in Proc. IEEE International Conference
on Robotics and Automation, 2004. Vol. 5.

[2] H. Lee, H. Kim, W. Kim, and H. J. Kim, "An integrated framework
for cooperative aerial manipulators in unknown environments." IEEE
Robotics and Automation Letters 3.3 (2018): 2307-2314.

[3] M. Bernard, K. Kondak, I. Maza, and A. ollero, "Autonomous trans-
portation and deployment with aerial robots for search and rescue
missions." Journal of Field Robotics 28.6 (2011): 914-931.

[4] S. Kim, S. Choi, and H. J. Kim, "Aerial manipulation using a
quadrotor with a two dof robotic arm." in Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2013.

[5] J. Yoo and K. H. Johansson, "Learning communication delay patterns
for remotely controlled UAV networks." IFAC-PapersOnLine 50.1
(2017): 13216-13221.

[6] F.-Y. Wang and D. Liu, "Networked control systems." Theory and
Applications (2008).

[7] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu. "A survey of recent results
in networked control systems." Proceedings of the IEEE 95.1 (2007):
138-162.

[8] L. A. Montestruque, and P. J. Antsaklis. "On the model-based control
of networked systems." Automatica 39.10 (2003): 1837-1843.

[9] P. L. Tang, and C. W. de Silva, "Compensation for transmission delays
in an ethernet-based control network using variable-horizon predictive
control." IEEE transactions on control systems technology 14.4 (2006):
707-718.

[10] G.-P. Liu, "Analysis and Design of Networked Predictive Control
Systems." Networked Control Systems. Springer, London, 2008. 95-
119.

9221

[11] Y. Tipsuwan, and M.-Y. Chow, "Control methodologies in networked
control systems." Control engineering practice 11.10 (2003): 1099-
1111.

[12] T. Zuo, H. Min, T. Zhang, and X. Zhang, "The self-tuning networked
control system with online delay prediction." Transactions of the
Institute of Measurement and Control 39.9 (2017): 1365-1373.

[13] J. Yoo, S. Lee, H. J. Kim, and K. H. Johansson, "Trajectory generation
for networked UAVs using online learning for delay compensation."
in Proc. IEEE Conference on Control Technology and Applications
(CCTA). IEEE, 2017.

[14] J. Yoo, H. J. Kim, and K. H. Johansson, "Path planning for remotely
controlled UAVs using Gaussian process filter." in Proc. 17th Inter-
national Conference on Control, Automation and Systems (ICCAS).
IEEE, 2017.

[15] F. Berkenkamp, and A. P. Schoellig, "Safe and robust learning control
with Gaussian processes." 2015 European Control Conference (ECC).
IEEE, 2015.

[16] J. Kocijan, R. Murray-Smith, C. E. Rasmussen, and A. Girard,
"Gaussian process model based predictive control." in Proc. American
Control Conference. Vol. 3. IEEE, 2004.

[17] G. Cao, E. M-K. Lai, and F. Alam, "Gaussian process model predictive
control of an unmanned quadrotor." Journal of Intelligent & Robotic
Systems 88.1 (2017): 147-162.

[18] D. Jang, J. Yoo, and H. J. Kim, "Tracking Control of a Multirotor UAV
in a Network Environment with Time-Varying Delay." in Proc. Inter-
national Conference on Control, Automation and Systems (ICCAS).
IEEE, 2018.

[19] M. Kamel, T. Stastny, K. Alexis, and R. Siegwart, "Model predictive
control for trajectory tracking of unmanned aerial vehicles using robot
operating system." Robot Operating System (ROS). Springer, Cham,
2017. 3-39.

[20] J. Quiñonero-Candela, and C. E. Rasmussen, "A unifying view of
sparse approximate Gaussian process regression." Journal of Machine
Learning Research 6.Dec (2005): 1939-1959.

[21] C. E. Rasmussen, "Gaussian processes in machine learning." Summer
School on Machine Learning. Springer, Berlin, Heidelberg, 2003.

[22] H. Bijl, T. B. Schön, J.-W. van Wingerden, and M. Verhaegen, "Online
sparse Gaussian process training with input noise." stat 1050 (2016):
29.

[23] D. W. Mellinger, "Trajectory generation and control for quadrotors."
(2012).

[24] C. Y. Son, H. Seo, T. Kim, and H. J. Kim, "Model Predictive Control
of a Multi-Rotor with a Suspended Load for Avoiding Obstacles."
in Proc. IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018.

[25] https://www.bitcraze.io/

9222

