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Fig. 5. Coefficient of restitution versus logarithm of impact velocity for the
contact between (A) brass spheres (R1 = R2 = 1.5 cm), (B) a steel sphere
(R = 1.27 cm) and a cast iron plate, (C) cork spheres (R1 = R2 = 1.66 cm),
(D) a steel sphere (R = 1.65 cm) and a cork plate, (E) a steel sphere (R =
1.27 cm) and a brass plate, and (F) a steel sphere (R = 1.27 cm) and a cold-
worked lead plate.

The empirical data were obtained by hand measurements from [4, Fig.
172] and [7, Fig. 3]. The model curves were obtained by calculating k
from the appropriate material properties and sphere radius using (5),
and tuning λ to obtain a least-squares best fit to the data points. Some
of the curves appear to fit the data better at higher velocities than at
lower ones, but this is simply a consequence of the distribution of data
points along the data curves (more points at the high end because of the
logarithmic scale used) and the fact that all data points were weighted
equally.

From Fig. 5, we can immediately see that the data follow approxi-
mately straight lines, and that the new model fits the data much better
than the Hunt/Crossley model. Furthermore, in cases (A), (C), (D), and
(F), the model fits the data very well. Although the fit is not so good
in cases (B) and (E), it is still better than any fit that can be achieved
with either the linear or the Hunt/Crossley model. One possible reason
for the less accurate fit in cases (B) and (E) is that these are the two
cases in which the sphere and plate are made of different materials
having similar stiffnesses; therefore, it is possible that the assumption
in Section II does not hold.

It has been frequently assumed in the literature that the coefficient of
restitution varies linearly with the impact velocity; for example, in [4],
[5], [9], and [10]. However, this is not a good assumption because,
as Fig. 5 clearly shows, the coefficient of restitution actually varies
linearly with the logarithm of impact velocity.

IV. CONCLUSION

A new nonlinear model of contact normal force during compliant
contact has been presented. It differs by only a single exponent from
the well-known model of Hunt and Crossley [5]. However, detailed
comparisons between published experimental measurements of the co-
efficients of restitution between spheres and plates of various materials,
and the coefficients of restitution predicted by the new model and the
Hunt/Crossley model, show that the new model provides a substantially
more accurate fit to the experimental data. It is, therefore, likely to be
a better choice when physically accurate simulations are required.
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Abstract—In this paper, we study the coordinated tracking problem
of multiple heterogeneous Lagrange systems with a dynamic leader. Only
nominal parameters of Lagrange dynamics are assumed to be available. Un-
der the local interaction constraints, i.e., the followers only have access to
their neighbors’ information and the leader being a neighbor of only a sub-
set of the followers, continuous coordinated tracking algorithms with adap-
tive coupling gains are proposed. Except for the benefit of the chattering-
free control achieved, the proposed algorithm also has the attribute that it
does not require the neighbors’ generalized coordinate derivatives. Global
asymptotic coordinated tracking is guaranteed, and the tracking errors be-
tween the followers and the leader are shown to converge to zero. Examples
are given to validate the effectiveness of the proposed algorithms.
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Manuscript received May 8, 2013; revised September 24, 2013; accepted
December 2, 2013. Date of publication December 23, 2013; date of current ver-
sion June 3, 2014. This paper was recommended for publication by Associate
Editor P. R. Giordano and Editor G. Oriolo upon evaluation of the reviewers’
comments. This work was supported in part by the Knut and Alice Wallenberg
Foundation, the Swedish Research Council. A preliminary version of this work
was presented at the 52nd IEEE Conference on Decision and Control, Palazzo
dei Congressi, Florence, Italy, [19].

The authors are with ACCESS Linnaeus Centre, School of Electrical En-
gineering, Royal Institute of Technology, Stockholm 10044, Sweden (e-mail:
ziyangm@kth.se; dimos@kth.se; kallej@kth.se).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2013.2294060

1552-3098 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



740 IEEE TRANSACTIONS ON ROBOTICS, VOL. 30, NO. 3, JUNE 2014

I. INTRODUCTION

Coordination of multiagent systems has been extensively studied for
the past two decades due to its broad range of applications. One fun-
damental problem is coordinated tracking with a time-varying global
objective [1], [3]. The goal is to control a group of followers to track
a time-varying global objective function (often denoted as a leader) by
using only local information interactions [23]. The coordinated track-
ing problem was introduced and studied in [12], where the followers
were modeled as single integrators and the input delays were consid-
ered. With the emphasis on the delay effect analysis, Meng et al. [21]
studied the stability conditions for the leader–follower tracking prob-
lem for both single integrator networks and double integrator networks.
Recently, in [4], algorithms using variable structure approaches are pro-
posed. Both the case of multiple single integrators and that of multiple
double integrators were considered, and the tracking errors were shown
to be zero using the proposed discontinuous control algorithms.

In this paper, instead of modeling the follower dynamics as single or
double integrators, we study the coordinated tracking problem of mul-
tiple heterogeneous Lagrange systems with a dynamic leader. Here,
a Lagrange system is used to represent a mechanical system, such as
autonomous vehicles, robotic manipulators, and walking robots [27].
Therefore, the study on the coordination control of multiple Lagrange
systems may provide some basic ideas for the applications on the
formation control of multiple mobile robots and the coordinated ob-
ject grabbing of multiple robot manipulators. Existing works on the
coordination control of multiple Lagrange systems include [5]–[8],
[11], [13], [14], [17], [20], [22], and [25] with different emphasis. For
example, time-varying delays, limited communication rates, and non-
vanishing bounded disturbances were considered in [11], coordinated
tracking with finite-time convergence was studied in [13], and a class
of nonlinear function was introduced in [8] to alleviate the chattering
issues raised by the discontinuous coordinated tracking algorithm. The
influence of communication delays was studied in [14] and [22], a
flocking behavior was guaranteed in [7], and the containment control
with group dispersion and group cohesion behaviors was reconstructed
in [20]. In addition, the applications of coordination algorithms of mul-
tiple Lagrange systems on the shape and formation control were given
in [10], and the application to task-space synchronization of multiple
robotic manipulators was given in [15].

In this paper, by focusing on the leader–follower coordinated track-
ing problem of multiple Lagrange systems, we improve the existing
works in three aspects. First, the proposed zero-error coordinated track-
ing algorithm is distributed, continuous, and guaranteeing zero-error
tracking. Note that discontinuous control algorithms were proposed
in [13], [17], and [20] to ensure zero-error coordinated tracking, the
leader is assumed to be available to all the followers in [22], and the
tracking errors were shown to be bounded instead of approaching zero
in [5], although the proposed algorithms are continuous. Second, in
contrast with [17] and [18], where the eigenvalues of the interaction
Laplacian matrix and the upper bound of states of the bounded time-
varying leader are assumed to be available to all the followers, the pro-
posed algorithm in this paper is purely distributed in the sense that both
the control input and coupling gain depend only on local information.
Third, the neighbors’ generalized coordinate derivative information is
not required to be available in the proposed algorithm. Thus, such an
approach may provide a solution to the case when the agents are not
equipped with the sensors capable of obtaining relative generalized co-
ordinate derivative information (e.g., relative velocity measurements).
Moreover, since we do not need the neighbors’ generalized coordinate
derivative information, the communication capacities may be reduced.
This is particularly important when the number of agents is large and
when the communication structure is complex.

Fig. 1. Information flow associated with the leader and the six followers.

The outline of the paper is as follows. In Section II, we formulate
the problem of coordinated tracking of multiple Lagrange systems
and give some basic notations and definitions. The main results are
presented in Section III. Numerical studies are carried out in Section IV
to validate the theoretical results, and a brief concluding remark is given
in Section V.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement

Suppose that there are n follower agents in the group, labeled by
ν1 , ν2 , . . . , νn . The system dynamics of the followers are described by
the Lagrange equations

Mi (qi )q̈i + Ci (qi , q̇i )q̇i + gi (qi ) = τi , i = 1, 2, . . . , n (1)

where qi ∈ Rp is the vector of generalized coordinates, Mi (qi ) ∈ Rp×p

is the p × p inertia (symmetric) matrix, Ci (qi , q̇i )q̇i is the Coriolis
and centrifugal terms, gi (qi ) is the vector of gravitational force, and
τi ∈ Rp is the control force. The dynamics of a Lagrange system
satisfies the following properties [27]:

1) 0 < kM Ip ≤ Mi (qi ) ≤ kM Ip , ‖Ci (x, y)‖ ≤ kC ‖y‖ for all
vectors x, y ∈ Rp , and ‖gi (qi )‖ ≤ kg , where kM , k

M
, kC , and

kg are positive constants.
2) Ṁi (qi )− 2Ci (qi , q̇i ) is skew symmetric.
3) The left-hand side of the dynamics can be parameterized,

i.e., Mi (qi )y + Ci (qi , q̇i )x + gi (qi ) = Yi (qi , q̇i , x, y)θi , ∀x,
y ∈ Rp , where Yi ∈ Rp×p θ is a regression matrix with a con-
stant parameter vector θi ∈ Rp θ .

From Property 3, we know that the nominal dynamics (available
dynamics) satisfy

M̂i (qi )q̈i + Ĉi (qi , q̇i )q̇i + ĝi (qi ) = Yi (qi , q̇i , q̇i , q̈i )θ̂i

where M̂i (qi ), Ĉi (qi , q̇i ), ĝi (qi ), and θ̂i are nominal dynamics terms.
In addition to the n followers, we denote the global information as

a leader agent in the group, labeled as agent ν0 with the desired time-
varying generalized coordinate q0 ∈ Rp and the desired time-varying
generalized coordinate derivative q̇0 ∈ Rp . The objective of this paper
is to design continuous coordinated tracking algorithms for follower
dynamics (1) such that qi (t) → q0 (t) and q̇i (t) → q̇0 (t) as t →∞
by using only local interactions, i.e., the leader’s states q0 and q̇0 are
only available to a subset of the followers, and the followers only have
access to their local neighbors’ information.

Considering that there are six followers (n = 6) in the group, Fig. 1
gives an example of information flow among the leader and six follow-
ers. Note that the leader’s states are only available to followers ν3 and
ν6 , and the followers only have access to their neighbors’ information.

B. Basic Definitions in Graph Theory

We use graphs to represent the communication topology among
agents. A directed graph Gn consists of a pair (Vn , En ), where Vn =
{ν1 , ν2 , . . . , νn } is a finite, nonempty set of nodes and En ⊆ Vn × Vn

is a set of ordered pairs of nodes. An edge (νi , νj ) denotes that node
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νj has access to the information from node νi . An undirected graph is
defined such that (νj , νi ) ∈ En implies (νi , νj ) ∈ En . A directed path
in a directed graph or an undirected path in an undirected graph is a
sequence of edges of the form (νi , νj ), (νj , νk ), . . .. The neighbors of
node νi are defined as the set Ni := {νj |(νj , νi ) ∈ En }.

For a follower graph Gn , its adjacency matrixAn = [aij ] ∈ Rn×n is
defined such that aij is positive if (νj , νi ) ∈ En and aij = 0 otherwise.
Here, we assume that aii = 0, ∀i = 1, 2, . . . , n and aij = aj i , ∀i, j =
1, 2, . . . , n. The Laplacian matrix Ln = [lij ] ∈ Rn×n associated with
An is defined as lii =

∑
j �= i aij and lij = −aij , where i �= j. For the

leader–follower graph Gn +1 := (Vn +1 , En +1 ), the adjacency matrix
An +1 = [aij ] ∈ R(n +1)×(n +1) is defined such that ai0 is positive if
(ν0 , νi ) ∈ En +1 and ai0 = 0 otherwise, ∀i = 1, 2, . . . , n.

Assumption 1: The global information q0 and q̇0 are available to
at least one follower, i.e.,ai0 > 0 for at least one i, i = 1, 2, . . . , n. In
addition, the follower graph Gn is undirected and connected.

Note that Fig. 1 is an example that satisfies Assumption 1. Let-
ting M = Ln + diag(a10 , a20 , . . . , an 0 ) (Ln is the Laplacian matrix
associated with Gn ), we recall the following result.

Lemma 1 [12]: Under Assumption 1, M is positive definite
(symmetric).

C. Filippov Solution and Nonsmooth Analysis

Consider the vector differential equation

ẋ = f (x, t) (2)

where f : Rp ×R→ Rp is measurable and essentially locally
bounded. A vector function x(t) is called a solution of
(2) on [t0 , t1 ] if x(t) is absolutely continuous on [t0 , t1 ]
and for almost all t ∈ [t0 , t1 ], ẋ ∈ K[f ](x, t). Here, K[f ](x, t) =⋂

δ> 0

⋂
μN =0 cof(B(x, δ) \N, t),

⋂
μN =0 denotes the intersection

over all sets N of Lebesgue measure zero, co(X) is the convex closure
of X , and B(x, δ) denotes the open ball of radius δ centered at x.

For a locally Lipschitz function V : Rp ×R→ R, the gen-
eralized gradient of V at (x, t) is defined by ∂V (x, t) =
co{lim∇V (x, t)|(xi , ti ) → (x, t), (xi , ti ) �∈ ΩV }, where ΩV is the
set of measure zero where the gradient of V is not defined. The
generalized time derivative of V with respect to (2) is defined as

˙̃V :=
⋂

ζ∈∂ V ζT

(
K[f ](x, t)

1

)

. In addition, f (x, t) : Rp ×R→ R

is called regular if for all ψ, the usual one-sided directional deriva-
tive f ′(x; ψ) exists, and f ′(x; ψ) = fo (x; ψ), where fo (x; ψ) =
limy→x,t↓0 sup f (y + tψ )−f (y )

t
[24], [26].

Lemma 2 [9]: Let (2) be essentially locally bounded and 0 ∈
K[f ](x, t) in a region Rp × [0,∞). Furthermore, suppose that f (0, t)
is uniformly bounded for all t ≥ 0. Let V : Rp × [0,∞) → R be lo-
cally Lipschitz in t, and regular such that ∀t ≥ 0, W1 (x) ≤ V (t, x) ≤
W2 (x), ˙̃V (x, t) ≤ −W (x), where W1 (x) and W2 (x) are continuous
positive definite functions, and W (x) is a continuous positive semidefi-

nite function. Here, ˙̃V (x, t) ≤ −W (x) means that ψ ≤ −W, ∀ψ ∈ ˙̃V .
Then, all Filippov solutions of (2) are bounded and satisfy W (x(t)) →
0, as t →∞.

D. Other Notation

Given a vector x = [x1 , x1 , . . . , xn ]T , we define sgn(x) =
[sgn(x1 ), sgn(x2 ), . . . , sgn(xn )]T , and |x| = [|x1 |, |x2 |, . . . , |xn |]T .
In addition, diag(x) denotes the diagonal matrix of a vector x, ‖x‖1 =∑n

i=1 |xi | denotes 1-norm of a vector x, λm in (P ) and λm ax (P ) denote
respectively the minimum and maximum eigenvalues of the matrix P ,

and P > 0 and P ≥ 0 mean that P is positive definite and positive
semidefinite, respectively.

III. MAIN RESULT

The objective here is to drive the states of the followers to converge
to those of the global objective. Note that the global objective is avail-
able to only a portion of the followers and we use nominal parameters
of Lagrange dynamics. We also assume that the neighbors’ general-
ized coordinate derivative information is not available. The following
continuous control algorithm is proposed for each follower:

τi = Yi (qi , q̇i , q̇r i , ˙̂vi )θ̂i − αi (t)si , i = 1, 2, . . . , n, (3)

where Yi is defined in Section II-A, and α̇i = αis
T
i si , with αi > 0, i =

1, 2, . . . n being an arbitrary positive constant. The sliding surface and
the adaptive control term are designed by

si = q̇i − q̇r i (4)

˙̂
θi = −κiY

T
i (qi , q̇i , q̇r i , ˙̂vi )si (5)

where κi > 0, i = 1, 2, . . . n is an arbitrary positive constant, and, mo-
tivated by [17] and [18], the virtual reference trajectory q̇r i and the
leader’s generalized coordinate derivative estimator v̂i are proposed,
respectively, as

q̇r i = v̂i −
(

n∑

j=1

aij (qi − qj ) + ai0 (qi − q0 )

)

(6)

˙̂vi (t) = − 2v̂i (t)−
∫ t

0

(

k2 i (τ )
n∑

j=0

aij (v̂i (τ )− v̂j (τ ))

+βi (τ )sgn

(
n∑

j=0

aij (v̂i (τ )− v̂j (τ ))

))

dτ (7)

where v̂0 (t) = q̇0 (t), aij , i, j = 1, 2, . . . n, is the (i, j)th entry of An

associated with Gn defined in Section II-B, ai0 > 0 if the follower i
has access to the global information ν0 and ai0 = 0 otherwise

k2 i (t) =
1
2
k2 i

(
n∑

j=0

aij (v̂i (t)− v̂j (t))

)T( n∑

j=0

aij (v̂i (t)− v̂j (t))

)

+ k2 i

∫ t

0

(
n∑

j=0

aij (v̂i (τ )− v̂j (τ ))

)T

×
(

n∑

j=0

aij (v̂i (τ )− v̂j (τ ))

)

dτ (8)

and

βi (t) = βi

∥
∥∥
∥
∥

n∑

j=0

aij (v̂i (t)− v̂j (t))

∥
∥∥
∥
∥

1

+ βi

∫ t

0

∥
∥
∥∥
∥

n∑

j=0

aij (v̂i (τ )− v̂j (τ ))

∥
∥
∥∥
∥

1

dτ (9)

with k2 i > 0 and βi > 0, i = 1, 2, . . . n being arbitrary positive
constants.

Before moving on, we need the following assumption and lemmas.
Assumption 2: q̇0 is bounded up to its third derivative.
Note that the assumption on that q̇0 , q̈0 are bounded is a necessary as-

sumption to ensure zero-error tracking of generalized coordinates and
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generalized coordinate derivatives for the adaptive case. The assump-
tion on

. . .
q0 ,

. . . .
q0 being bounded is necessary to ensure the convergence

for the leader’s generalized coordinate derivative estimator. In addition,
note that in contrast with [13], [17], [18], and [20], the upper bound on
any derivative of q0 is not assumed to be available in the design of the
controllers. Generally speaking, Assumption 2 is a mild assumption.

Lemma 3 [2]: Let S be a symmetric matrix partitioned as S =[
S11 S12

ST
12 S22

]

, where S22 is square and nonsingular. Then, S > 0 if

and only if S22 > 0 and S11 − S12S
−1
22 ST

12 > 0.
Lemma 4 [28]: Define ξ(t) ∈ R as ξ = (μ + μ̇)T (−βsgn(μ) +

Nd ), where μ(t) ∈ Rp , β is a positive constant, and Nd (t) ∈
Rp is a bounded disturbance. Then, we have that

∫ t

0 ξ(τ )dτ ≤
B, if β > supt{‖Nd (t)‖∞ + ‖Ṅd (t)‖∞}, where B = β‖μ(0)‖1 −
μT (0)Nd (0) > 0.

Theorem 1: Let Assumptions 1 and 2 hold. Under the local contin-
uous coordinated tracking algorithm (3)–(9), the states of the follow-
ers governed by the Lagrange dynamics (1) converge to those of the
leader, i.e., limt→∞(qi (t)− q0 (t)) = 0 and limt→∞(q̇i (t)− q̇0 (t)) =
0, ∀i = 1, 2, . . . , n.

Proof: It follows from Property 3 of Lagrange dynamics in
Section II-A that Mi (qi )q̈r i + Ci (qi , q̇i )q̇r i + gi (qi ) = Yi (qi , q̇i ,
q̇r i , ˙̂vi )θi −Mi (qi )

∑n
j=0 aij (q̇i − q̇j ). We then further have that

Mi (qi )ṡi + Ci (qi , q̇i )si = Yi (qi , q̇i , q̇r i , ˙̂vi )�θi +Mi (qi )
∑n

j=0 aij

(q̇i − q̇j )− αisi , where �θi = θ̂i − θi .
It also follows from (7) that

v̈i = − 2v̇i − k2 i

(
n∑

j=1

aij (vi − vj ) + ai0vi

)

− βi sgn

(
n∑

j=1

aij (vi − vj ) + ai0vi

)

+ Ndi

where vi = v̂i − q̇0 , Ndi = −2q̈0 −
. . .
q0 , for all i = 1, 2, . . . , n. We

then have that for i = 1, 2, . . . , n

v̈i (t) = − 2v̇i (t)− k2 i (t)

(
n∑

j=1

mij vj (t)

)

− βi (t)sgn

(
n∑

j=1

mij vj (t)

)

+ Ndi (t) (10)

where mij denotes the (i, j)th entry ofM defined after Assumption 1.
Note that the right-hand side of (10) is discontinuous. Because the
signum function sgn is measurable and essentially locally bounded,
we can rewrite (10) in terms of differential inclusions as

v̈i ∈a .e . K

[

−2v̇i − k2 i

(
n∑

j=1

mij vj

)

−βi sgn

(
n∑

j=1

mij vj

)

+Ndi

]

(11)

where a.e. stands for “almost everywhere,” and K is defined in
Section II-C. Define ηi = vi + v̇i . It also follows from (8) and (9)
that for i = 1, 2, . . . , n

k̇2 i = k2 i

(
n∑

j=1

mij vj

)T ( n∑

j=1

mij ηj

)

(12)

and from the fact that the signum function sgn is measurable and locally
essentially bounded

β̇i ∈a .e . K

⎡

⎣βi

(
n∑

j=1

mij ηj

)T

sgn

(
n∑

j=1

mij vj

)⎤

⎦ . (13)

We then construct a Lyapunov function candidate as

V = V0 +
1
2

n∑

i=1

sT
i Mi (qi )si +

n∑

i=1

1
2κi

(�θi )T�θi +
1
2
qT q

+
1
2
ηT (M⊗ Ip )η +

1
2
kvT (M2 ⊗ Ip )v +

n∑

i=1

1
2k2 i

× (k2 i − k)2 +
n∑

i=1

1
2βi

(βi − β)2 +
n∑

i=1

1
2αi

(αi − α)2

where

V0 =
n∑

i=1

Bi −
n∑

i=1

∫ t

0

(
n∑

j=1

mij ηj (τ )

)T

×
(

−βsgn

(
n∑

j=0

aij (v̂i (τ )− v̂j (τ ))

)

+ Ndi (τ )

)

dτ

η = [ηT
1 , ηT

2 , . . . , ηT
n ], v = [vT

1 , vT
2 , . . . , vT

n ], qi = qi − q0 , q = [qT
1 ,

qT
2 , . . . , qT

n ]T ,Bi = β‖
∑n

j=1 mij vj (0)‖1 −(
∑n

j=1 mij vj (0))T Ndi

(0). In addition, we select β and k as two positive constants
satisfying that β > supt{2‖q̈0 (t)‖∞ + 3‖ . . .

q0 (t)‖∞ + ‖ . . . .
q0 (t)‖∞} and

k > b + 1
4λm in (M) and b > 1

4λ3
m in (M) . In addition, α is a constant

to be determined later. It follows from Lemma 4 that V0 > 0 when
β > supt{2‖q̈0 (t)‖∞ + 3‖ . . .

q0 (t)‖∞ + ‖ . . . .
q0 (t)‖∞}. It follows that

the generalized time derivative of V (see the definition of ˙̃V in
Section II-C) can be evaluated as

˙̃V =
⋂

ξ∈∂ ‖μ‖1

− ((M⊗ Ip )η)T (−βξ + Nd

)

+ K

[
n∑

i=1

sT
i

(

Yi (qi , q̇i , q̇r i , ˙̂vi )�θi − αisi + Mi (qi )

×
n∑

j=0

aij (q̇i − q̇j )

)

−
n∑

i=1

(�θi )T Y T
i (qi , q̇i , q̇r i , ˙̂vi )si

+
n∑

i=1

(
n∑

j=1

mij ηj

)T(

−k2 i

n∑

j=1

mij vj− v̇i − vi

+vi + Ndi −βi sgn

(
n∑

j=1

mij vj

))

+kvT (M2 ⊗ Ip )(η − v) +
n∑

i=1

(k2 i − k)

(
n∑

j=1

mij vj

)T

×
(

n∑

j=1

mij ηj

)

+
n∑

i=1

(βi − β)

(
n∑

j=1

mij ηj

)T

×sgn

(
n∑

j=1

mij vj

)

+
n∑

i=1

(αi − α)sT
i si + qT q̇

]
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=
⋂

ξ∈∂ ‖μ‖1

− ((M⊗ Ip )η)T (−βξ + Nd

)

+ ((M⊗ Ip )η)T (−β∂‖μ‖1 + Nd

)

+
n∑

i=1

sT
i

(

−αisi + Mi (qi )
n∑

j=0

aij (q̇i − q̇j )

)

− ηT (M⊗ Ip )η + ηT (M⊗ Ip )v − kvT (M2 ⊗ Ip )

× v +
n∑

i=1

(αi − α)sT
i si + qT (s− (M⊗ Ip )q + v)

where Nd = [NT
d1 , N

T
d2 , . . . , N

T
dn ]T

μ = (M⊗ Ip )v, ∂|μk | =

⎧
⎪⎨

⎪⎩

{−1}, μk ∈ R−

{1}, μk ∈ R+

[−1, 1], μk = 0

and μk is kth entry of μ. In addition, we have used (11)–(13), Property
2 of Lagrange dynamics in Section II-A, and the fact that K [f ] = {f}
if f is continuous [24].

If ˙̃V �= ∅, suppose that φ ∈ ˙̃V . By following a similar analysis as the
one given in the example in [26, Sec. II] and noting that

⋂
ξ 2 ∈[−1 ,1] [ξ2 −

1, ξ2 + 1] = 0, we know that

φ =
n∑

i=1

sT
i

(

−αisi + Mi (qi )
n∑

j=0

aij (q̇i − q̇j )

)

− ηT (M⊗ Ip )η + ηT (M⊗ Ip )v − kvT (M2 ⊗ Ip )

× v +
n∑

i=1

(αi − α)sT
i si + qT (s− (M⊗ Ip )q + v).

It is clear to see that ˙̃V is a singleton. We then have that

˙̃V ≤ − α
n∑

i=1

sT
i si + sT M (q)(M⊗ Ip )s

− sT M (q)(M2 ⊗ Ip )q + sT M (q)(M⊗ Ip )v

− qT (M⊗ Ip )q + qT s + qT v − bvT (M2 ⊗ Ip )v

− (k − b)vT (M2 ⊗ Ip )v − ηT (M⊗ Ip )η

+ ηT (M⊗ Ip )v

where M (q) = diag(M1 (q1 ), M2 (q2 ), . . . , Mn (qn )), b > 1
4λ3

m in (M)

is a constant and we have used the fact that
∑n

j=0 aij (q̇i − q̇j ) =∑n
j=1 mij (q̇j − q̇0 ) =

∑n
j=1 mij (q̇j − v̂j + vj ) =

∑n
j=1 mij (sj −∑n

j=1 mij qj + vj ). It then follows that

˙̃V ≤ − [ ηT vT ]

⎡

⎢
⎣
M⊗ Ip −M⊗ Ip

2

−M⊗ Ip

2
(k − b)M2 ⊗ Ip

⎤

⎥
⎦

[
η

v

]

− [ sT qT vT ] Ω

⎡

⎢
⎣

s

q

v

⎤

⎥
⎦

�
= −W (η, q, v, s)

where

Ω =

⎡

⎢
⎢
⎢
⎣

Ω11 Ω12 Ω13

ΩT
12 M⊗ Ip −1

2
Ipn

ΩT
13 −1

2
Ipn bM2 ⊗ Ip

⎤

⎥
⎥
⎥
⎦

, Ω11 =αIpn−
1
2

(M (q)(M⊗ Ip )

+(M⊗ Ip )M (q)) , Ω12 =
M (q)(M2 ⊗ Ip )

2
− Ipn

2

and Ω13 = −M (q )(M⊗Ip )
2 .

Note that b > 1
4λ3

m in (M) guarantees that

[M⊗ Ip − 1
2 Ipn

− 1
2 Ipn bM2 ⊗ Ip

]

is positive definite. Then, it follows that Ω is positive definite from
Lemma 3 when α is chosen large enough satisfying α > kM λ +
(1+ k

M
λ
2
)2 bλ2 + k

M
λ(1+ k

M
λ
2
)+ (k

M
λ)2 λ

4bλ3 −1
, where λ and λ denote, respec-

tively, λm ax (M) and λm in (M). Therefore, W (η, q, v, s) ≥ 0 when
k > b + 1

4λm in (M) . It follows that
∫ t

0 W (η(τ ), q(τ ), v(τ ), s(τ ))dτ
is bounded. Thus, we know that V is bounded and therefore
si ,�θi , ∀i = 1, 2, . . . , n, v, v̇, η, and q are bounded. It then fol-
lows that q̇r i , ∀i = 1, 2, . . . , n are bounded from (6) and the facts
that vi , ∀i = 1, 2, . . . , n, q̇0 , q are bounded and M is positive def-
inite. This in turn shows that q̇i , ∀i = 1, 2, . . . , n, are bounded
from (4). This further implies that q̈r i , ∀i = 1, 2, . . . , n are bounded
since v̇i , ∀i = 1, 2, . . . , n, and q̈0 are bounded. In addition, based
on the first property of Lagrange dynamics given in Section II-A
and the relationship of Mi (qi )q̈r i + Ci (qi , q̇i )q̇r i + gi (qi ) =
Yi (qi , q̇i , q̇r i , ˙̂vi )θi −Mi (qi )

∑n
j=0 aij (q̇i − q̇j ), ∀i = 1, 2, . . . , n, we

know that Yi (qi , q̇i , q̇r i , ˙̂vi ) is bounded, ∀i = 1, 2, . . . , n. It there-
fore shows that ṡi , ∀i = 1, 2, . . . , n are bounded. In addition, we
know that η̇i , ∀i = 1, 2, . . . , n are bounded based on the fact that
. . .
q0 is bounded and (11). We then know that si (t), ηi (t), qi (t), and
vi (t), ∀i = 1, 2, . . . , n are uniformly continuous in t. This shows
that W (η(t), q(t), v(t), s(t)) is uniformly continuous in t. There-
fore, it follows from Lemma 2 that W (η(t), q(t), v(t), s(t)) → 0, as
t →∞. This shows that η(t) → 0, v(t) → 0, q(t) → 0, and s(t) → 0,
as t →∞. It follows from (4) and (6) that q̇i = −

∑n
j=1 mij qj +

si + vi . We can then easily have that limt→∞(qi (t)− q0 (t)) = 0 and
limt→∞(q̇i (t)− q̇0 (t)) = 0, ∀i = 1, 2, . . . , n. �

Remark 1: The proposed algorithm possesses the following at-
tributes. First, it is distributed, i.e., the leader’s information is available
to only a portion of the followers and the followers only have local
interactions. This is a rather mild communication topology assumption
compared with those in existing works, such as [6] and [22], where
the leader’s information is assumed to be available to all the follow-
ers. Second, the proposed algorithm is continuous and the tracking
errors are shown to converge to zero, even when the leader’s general-
ized coordinate derivative is time-varying. This improves the ultimate
boundedness results reported in [5] and avoids the chattering phe-
nomenon in the discontinuous designs of [13], [17], and [20]. Third, by
introducing an adaptive gain scheduling technique, the coupling gain
no longer relies on a certain bound relevant to the global information
and the exact value of the upper bound of states of the time-varying
leader is not required to be available. Therefore, in contrast with [17]
and [18], the proposed algorithm is purely distributed in the sense that
both the control input and the coupling gains depend only on the lo-
cal information interactions and is feasible as long as that the leader’s
generalized coordinate derivative is bounded up to its third derivative.
Fourth, the neighbors’ generalized coordinate derivative information
is not required to be available. This reduces the communication as the
relative velocity measurements do not need to be exchanged between
neighbors.
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Remark 2: Coordination algorithms without using neighbors’ gener-
alized coordinate derivative information were proposed in [16] for static
leader–follower regulation and leaderless synchronization of multiple
Lagrange systems. One necessary assumption of [16] is that the target
generalized coordinate derivative is constant. In contrast, the proposed
algorithm (3)–(9) in this paper can be applied to the case when the
leader’s generalized coordinate derivative is time-varying.

IV. SIMULATION RESULTS

In this section, numerical simulation results are given to validate
the effectiveness of the theoretical results obtained in this paper. We
assume that there exist six followers (n = 6) in the group. The system
dynamics of the followers are given by the Lagrange dynamics of the
two-link manipulators [17], [27]

[
M11 , i M12 , i

M21 , i M22 , i

] [
q̈ix

q̈iy

]

+

[
C11 , i C12 , i

C21 , i C22 , i

] [
q̇ix

q̇iy

]

+

[
g1 , i

g2 , i

]

=

[
τix

τiy

]

, i = 1, 2, . . . , 6

where M11 , i = θ1 i + 2θ2 i cos qiy , M12 , i = M21 , i =θ3 i +θ2 i cos qiy ,
M22 , i = θ3 i , C11 , i =−θ2 i sin qiy q̇iy , C12 , i =−θ2 i sin qiy (q̇ix + q̇iy ),
C21 , i = θ2 i sin qiy q̇ix , C22 , i = 0, g1 , i = θ4 i g cos qix + θ5 i g cos(qix

+ qiy ), g2 , i = θ5 i g cos(qix + qiy ), and g = 9.8. In addition, θ1 i =
m1 i l

2
c1 , i + m2 i (l21 i + l2c2 , i ) + J1 i + J2 i , θ2 i = m2 i l1 i lc2 , i , θ3 i =m2 i

l2c2 , i + J2 i , θ4 i = m1 i lc1 , i + m2 i l1 i , θ5 i = m2 i l2 i . We choose m1 i =
1 + 0.3i, m2 i = 1.5 + 0.3i, lli = 0.2 + 0.06i, l2 i = 0.3 + 0.06i,

lc1 , i =0.1+0.03i, lc2 , i =0.15+0.03i, J1 i =
m 1 i l2

l i
12 , J2 i =

m 2 i l22 i
12 ,

i = 1, 2, . . . , 6. According to property 3 of Lagrange dynamics given
in Section II-A, the dynamics of the followers can be parameterized
as Yi (qi , q̇i , q̇r i , q̈r i ) = [ypq ]i ∈ R2×5 [27].

The initial states of the followers are given by qix (0) = 0.6i,
qiy (0) = 0.4i− 1, q̇ix (0) = 0.05i− 0.2, q̇iy (0) = −0.05i+ 0.2, i=
1, 2, . . . , 6. The leader–follower communication topology is given
in Fig. 1. The adjacency matrix An of the generalized coordinate
derivatives associated with Gn is chosen to be

An =

⎡

⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

0 1 0 1 0 0

1 0 1 0 1 0

0 1 0 0 0 1

1 0 0 0 1 0

0 1 0 1 0 1

0 0 1 0 1 0

⎤

⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

and a10 = 0, a20 = 0, a30 = 1, a40 = 0, a50 = 0, a60 = 1. The ini-
tial estimations for θ1 i , θ2 i , θ3 i , θ4 i , and θ5 i for each follower i =
1, 2, . . . , 6 are given by θ̂1 i (0) = 0, θ̂2 i (0) = 0, θ̂3 i (0) = 0, θ̂4 i (0) =
0, and θ̂5 i (0) = 0.

For the case of coordinated tracking without using neighbors’
generalized coordinate derivative information [algorithms (3)–(9)],
the trajectories of the leader are given by q0x (t) = cos( π

15 t) and
q0y (t) = sin( π

15 t). The constant control parameters are chosen by
κi = 2, αi = 1, k2 i = 0.001, and βi = 0.1, ∀i = 1, 2, . . . , 6. The ini-
tial states of k2 i and βi for each follower i = 1, 2, . . . , 6 are given by
k2 i (0) = 0 and βi (0) = 0. The initial states of v̂i for each follower
i = 1, 2, . . . , 6 are given by v̂i (0) = ˙̂vi (0) = [0, 0]T and the initial
states of αi for each follower i = 1, 2, . . . , 6 are given by αi (0) = 0.
The control parameters are chosen by αi = 1, ∀i = 1, 2, . . . , 6. Under
the feedback algorithm (3)–(9), the generalized coordinates, the gener-
alized coordinate derivatives, and the control torques of the followers

(a)

(b)

Fig. 2. States and the control torques of system (1) under algorithm (3)-(9).
(a) Trajectories of the states and the control torques of the followers and the
leader in x-coordinate. (b) Trajectories of states and the control torques of the
followers and the leader in y-coordinate.

and the leader are shown in Fig. 2(a) and (b). We see that the coor-
dinated tracking is achieved for a group of heterogeneous Lagrange
systems without using neighbors’ generalized coordinate derivative
information.

V. CONCLUDING REMARKS

In this paper, we study the leader–follower coordinated tracking
problem for multiple heterogeneous Lagrange systems. The continu-
ous coordinated tracking algorithms with uncertain parameter adaptive
control and the leader’s generalized coordinate derivative estimator are
proposed. Except for benefit of the chattering-free control, the proposed
algorithm also has the attribute that does not require the neighbors’ gen-
eralized coordinate derivatives. Global asymptotic coordinated track-
ing is guaranteed and the tracking errors between the followers and the
leader are shown to converge to zero. Simulations are given to vali-
date the effectiveness of the proposed continuous coordinated tracking
algorithms. Further directions include the study of directed communi-
cation topology and an arbitrary varying leader for the leader–follower
coordinated tracking problems of multiple Lagrange systems.
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Stability Analysis of a Hierarchical Architecture for
Discrete-Time Sensor-Based Control of Robotic Systems

Magnus Bjerkeng, Pietro Falco, Ciro Natale, and Kristin Y. Pettersen

Abstract—The stability of discrete time kinematic sensor-based control
of robots is investigated in this paper. A hierarchical inner-loop/outer-loop
control architecture common for a generic robotic system is considered.
The inner loop is composed of a servo-level joint controller and higher
level kinematic feedback is performed in the outer loop. Stability results
derived in this paper are of interest in several applications including visual
servoing problems, redundancy control, and coordination/synchronization
problems. The stability of the overall system is investigated taking into
account input/output delays and the inner loop dynamics. A necessary and
sufficient condition that the gain of the outer feedback loop has to satisfy to
ensure local stability is derived. Experiments on a Kuka K-R16 manipulator
have been performed in order to validate the theoretical findings on a real
robotic system and show their practical relevance.

Index Terms—Calibration and identification, discrete-time stability,
kinematics, output feedback control, redundant robots, velocity control.

I. INTRODUCTION

Industrial robot manipulators have mainly been applied in highly
tailored situations, where preprogrammed motions are sufficient for
task completion. As the industry is looking to extend the use of manip-
ulators to unstructured environments, pure motion control is no longer
viable and sensor-based control must be introduced.

Feedback for motion control of robot manipulators in the control
literature is usually considered in the continuous time framework, as-
suming direct torque input [1, Ch. 6]. These assumptions may hold
for some model research platforms, whereas control interfaces of most
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