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Abstract: In this paper, we present an algorithm for pose control of a team of mobile sensors
for coverage and inspection applications. The region to cover is abstracted into a finite set
of landmarks, and each sensor is responsible to cover some of the landmarks. The sensors
progressively improve their coverage by adjusting their poses and by transferring the ownership
of some landmarks to each other. Inter-sensor communication is pairwise and intermittent. The
sensor team is formally modeled as a multi-agent hybrid system, and an invariance argument
formally shows that the team reaches an equilibrium configuration, while a global coverage
measure is improving monotonically. A numerical simulation corroborates the theoretical results.
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1. INTRODUCTION

A wide variety of applications involve collecting information
in hazardous environments, which makes it desirable to
delegate such missions to a team of autonomous agents
with sensing capabilities. Therefore, in the last few decades,
a lot of research interest has been devoted to the problem
of autonomous deployment of robot teams in an assigned
space—see Cortés et al. (2004); Martinez et al. (2007);
Zhong and Cassandras (2011); Le Ny and Pappas (2013)
to name just a few. Typically, the goal is to design a
distributed algorithm that gradually drives the agents
to a spatial configuration such that the team’s collective
perception of the environment is optimized. This problem
is commonly known as the coverage problem, and it
is often approached using Voronoi tessellations and the
Lloyd algorithm (see Du et al. (1999)). The majority
of the existing work on coverage considers agents with
omnidirectional perception of the surrounding environment.
Recently, agents with anisotropic sensing patterns (see
Stergiopoulos and Tzes (2013); Gusrialdi et al. (2008);
Laventall and Cortes (2008)) as well as vision-based sensing
patterns (see Kantaros et al. (2015); Marier et al. (2012))
have been considered. Dynamic versions of the coverage
problem have also been studied, where the agents do
not converge to fixed positions, but keep navigating the
environment in order to maintain a satisfactory coverage
over time. This problem is commonly known as effective
or dynamic coverage (see Hussein and Stipanovic (2007)).
A vision-based version of effective coverage is studied in
Panagou et al. (2015).
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Information exchange among the sensing agents constitutes
one of the major challenges in the real-world implementa-
tion of coverage algorithms. For this reason, a gossip-based
communication strategy for coverage is studied in Durham
et al. (2012) among others. In some coverage missions, it
is convenient to abstract the environment into a finite set
of points (see Durham et al. (2012)), which may either
correspond to a sparse set of points of interest, or to a
discretized approximation of the environment itself.

Our contribution with respect to the related work is
twofold. On one hand, we generalize the notions of Voronoi
cell and Voronoi tessellation, thus extending the use
of this formalism to coverage problems with general,
anisotropic sensing patterns. On the other hand, we address
the coverage problem with a distributed hybrid control
algorithm, where system flow is given by the motion of the
sensing agents, while the system jumps are given by the
communication instances between different agents.

Using the hybrid system formalism developed in Goebel
et al. (2012), we formally show that the agents reach an
equilibrium configuration, while a measure of the coverage
attained by the team improves monotonically. The effec-
tiveness of the proposed algorithm is then demonstrated
by simulating a team of sensors in ROS (Quigley et al.
(2009)).

2. PRELIMINARIES

We let N denote the set of the nonnegative integers, and
R≥0 denote the set of the nonnegative real numbers. For
V : Rn → R, with n ∈ N, ∇V (·) denotes the gradient
of V . All vectors in Rn (including gradients) are column
vectors. We let 0n (with n ∈ N) be the vector of Rn
whose entries are all zero. The set of the unity-norm
vectors in R3 is also called the unit sphere, and is denoted
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S2. The special orthogonal group in three dimensions
is denoted SO(3). Each element of SO(3) is represented
as a rotation matrix, and each column of such matrix
belongs to S2; namely, if R ∈ SO(3), then R = [x y z],
with x, y, z ∈ S2. The special Euclidean group in three
dimensions is denoted as SE(3). Each element of SE(3)
is represented as a homogeneous transformation matrix;

namely T =

[
R p
0>3 1

]
, where R ∈ SO(3), and p ∈ R3. The

set of the skew-symmetric matrices in three dimensions is
denoted as so(3). When writing the kinematics of a rigid
body, we use the skew operator, S : R3 → so(3), which
is defined as S(u)v = u × v, where × denotes the cross
product. The trace of a square matrix A is denoted as
Tr(A). Set closure is denoted as Cl(·). In algorithms, =
denotes logical equality, while := denotes assignment.

In this paper, we use the hybrid system formalism from
Goebel et al. (2012) to prove the convergence properties
of our coverage algorithm. Here, we recall some basic
definitions and properties related to this formalism. A
hybrid system is a tuple H = (C, F,D, G), where C,D ⊆
Rn (with n ∈ N) are called respectively the flow set and
the jump set, and F : C → Rn, G : D → Rn are called
respectively the flow map and the jump map. In a hybrid
system, the state is subject to both continuous flow and
instantaneous jumps, according to the differential inclusions{

ẋ ∈ F (x) ∀x ∈ C,

x+ ∈ G(x) ∀x ∈ D.
(1)

A state trajectory of a hybrid system is parametrized
by the time elapsed and the number of jumps occurred;
formally, a state trajectory is a function x : E → Rn,
where E ⊂ R≥0 × N. A solution of H is a state trajectory
that satisfies the following properties: (i) x(0, 0) ∈ C̄ ∪D;
(ii) for all k ∈ N such that Ik = {t : (t, k) ∈ E} has
nonempty interior, x(t, k) ∈ C for all t ∈ int(Ik) and
ẋ(t, k) ∈ F (x(t, k)) for almost all t ∈ Ik; (iii) for all
(t, k) ∈ E such that (t, k + 1) ∈ E, x(t, k) ∈ D and
x(t, k+1) ∈ G(x(t, k)). A solution is complete if its domain
E is unbounded. A solution x : E → Rn is maximal if there
does not exist another solution x′ : E′ → Rn such that
E ⊆ E′ and x′(t, k) = x(t, k) for all (t, k) ∈ E. A set
I ⊆ Rn is weakly invariant for H if, for each ξ ∈ I:
(i) there exists at least one complete solution x(·, ·) with
x(0, 0) = ξ that stays forever in I; (ii) for each τ > 0, there
exists at least one maximal solution such that x(t∗, k∗) = ξ
for some t∗+k∗ ≥ τ and x(t, k) ∈ I for all t+k < t∗+k∗.
The following lemma is used to prove our main result.

Lemma 2.1. (From Corollary 8.4 in Goebel et al. (2012)).
Consider a hybrid system H = (C, F,D, G), and let V :
Rn → R be continuously differentiable in a neighborhood
of C. Suppose that ∇V (x)>φ ≤ 0 ∀x ∈ C, φ ∈ F (x) and
V (x) ≤ V (g) ∀x ∈ D, g ∈ G(x). Let Zc = {x ∈ C :
∇V (x)>φ = 0 ∀φ ∈ F (x)} and Zd = {x ∈ D : V (g) =
V (x) ∀g ∈ G(x)}. Then, there exists r ≥ 0 such that
every complete and bounded solution of H converges to
the nonempty set which is the largest weakly invariant
subset of V −1(r) ∩ (Cl(Zc) ∪ (Zd ∩G(Zd))).

3. PROBLEM FORMULATION

In this paper, we use the abstract concepts of landmark
and sensor to model a coverage problem. A landmark

represents a body, a point, or a small area of interest,
which must be kept under observation. A landmark `
is characterized by its pose T` ∈ SE(3). In this work
landmarks are considered fixed objects; therefore, the pose
of a landmark is constant. A sensor represents a mobile
sensing device, which is deployed in the environment in
order to monitor the landmarks. A sensor s is characterized
by a time-varying pose Ts ∈ SE(3), and by a continuously
differentiable function fs : SE(3) → R≥0, which is called
the footprint of the sensor. When we want to refer to a
sensor with the particular pose that it assumes at time t,
we use the notation s(t) = (Ts(t), fs); otherwise, we use
the notation s = (Ts, fs). The footprint of a sensor is a
mathematical model of how well the sensor can perceive
the landmarks in its surrounding environment. Namely,
fs(T

−1
s T`) is a measure of how well the sensor s perceives

the landmark `. (Note that Ts
−1T` represents the pose of

the landmark from the point of view of the sensor.) This
concept is formalized in the following definition.

Definition 3.1. The perception of a landmark ` attained
by a sensor s is defined as

per(s, `) := fs(T
−1
s T`). (2)

We adopt the convention that a smaller value of the percep-
tion corresponds to a better perception, with per(s, `) = 0
being the best possible perception. Some sensing models
used in the literature can be seen as particular cases of this
model, as it is illustrated in the following examples.

Example 3.1. (Temperature sensors). Typically, a temper-
ature sensor can measure the temperature of the surround-
ing environment with a degree of accuracy that degrades
with the distance from the sensor itself. Therefore, a rea-
sonable footprint for a temperature sensor is

fs(T ) = ‖p‖2, (3)

where p = T{1:3,4}. where ps = Ts{1:3,4} is the position of
the sensor and p` = T`{1:3,4} is the position where we want
to measure the temperature. Most of the existing research
on coverage focuses on this particular sensing pattern—see
for example Cortés et al. (2004).

Example 3.2. (Inspection with aerial robots). Consider the
task of inspecting a wind turbine with a team of aerial
robots endowed with cameras. The perception that a ve-
hicle has of a point on the surface of the turbine depends
on the distance between the vehicle and the point, but also
on the direction that the camera is pointing to: perception
is best if the point lies on the line of sight of the camera,
and it is worse if the point approaches the boundaries of
the camera’s cone of view. This type of perception can be
described by the following footprint:

fs(T ) = k1‖βe1 − p‖2 + k2‖βe1 − p‖(βe1 − p)>e1, (4)

where 0 < k1 < k2, p = T{1:3,4}, e1 = [1, 0, 0]>, and
β > 0 is the optimal distance between the camera and
the observed point. Figure 1 illustrates a contour plot of
footprint (4).

Next, we define the coverage of a set of landmarks attained
by a sensor as the sum of the perceptions of the landmarks.
This concept is formalized in the following definition.

Definition 3.2. The coverage of a finite set of landmarks
L = {`1, . . . , `M}, attained by a sensor s is defined as
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Fig. 1. Contour plot of footprint (4) with β = 1, kf = 0.6,
and kr = 0.4, as a function of px and py, where
p = [px, py, 0].

cov(s,L) :=
∑
`∈L

per(s, `). (5)

In this paper, our aim is to use a team of sensors in order
to optimize the coverage of an environment. Therefore, we
shall now formally define the coverage of a set of landmarks
attained by a team of sensors.

Definition 3.3. Consider a team of sensors S = (s1, . . . ,
sN ) and a set of landmarks L = {1, . . . ,M}. Let L be
partitioned in N subsets L1, . . . ,LN . Each sensor si in
the team is assigned the landmarks Li, thus defining a
partition P = (L1, . . . ,LN ). Then, we define the coverage
of the set L attained by the sensor team S with the
partition P as

Cov(S,P) :=

N∑
i=1

cov(si,Li). (6)

In other words, the coverage attained by the team is simply
the sum of the coverages attained by the single sensors,
each over its own subset of landmarks.

Our objective is to control the poses of the sensors
and the partition of the landmarks in such a way that
the team coverage improves over time (i.e., Cov(S,P)
decreases with time). This objective can be formalized as
an optimization problem. To this aim, introduce the binary
variables σ1,1, . . . , σN,M , such that σi,j = 1 if `j ∈ Li

(i.e., if the sensor si owns the landmark `j), and σi,j = 0
otherwise. Imposing that σi,1 + · · ·σi,N = 1 ensures that
each landmark is owned by exactly one sensor. Then, the
optimization of the team coverage can be formulated as
the following problem:

minimize
T1,...,TN∈SE(3)

σ1,1,...,σN,M∈{0,1}

N∑
i=1

M∑
j=1

σi,jfi(T
−1
i T`j ),

subject to σi,1 + · · ·+ σi,M = 1, i ∈ {1, . . . , N},
(7)

where fi denotes the footprint of sensor si and T`j denotes
the pose of landmark `j . Using (2), (5) and (6), we can see
that the cost function in Problem (7) is indeed equal to
the team coverage Cov(S,P). Finding a globally optimal
solution of Problem (7) may require computationally
demanding optimization algorithms, especially because
of the implicit constraint T1, . . . , TN ∈ SE(3) (which
essentially corresponds to the orthonormality of the vectors
that describe the orientation of each sensor). In the rest
of this paper, we describe a distributed algorithm to
find a locally optimal solution of Problem (7). In the

proposed algorithm, most of the computation is performed
locally and asynchronously by each individual sensor;
communication among the sensors is only intermittent
and pairwise. The algorithm can be performed online (i.e.,
while the sensor team is performing a coverage mission),
and guarantees convergence to an equilibium configuration,
with a monotonically decreasing (i.e., improving) value of
the team coverage.

4. SINGLE-SENSOR CONTROL FOR COVERAGE
IMPROVEMENT

The first step in defining our coverage algorithm is to
define how we control the motion of each individual sensor
to improve the coverage attained by that sensor. Let
Ti(t) ∈ SE(3) be the pose of sensor si at time t, let fi
be its footprint, and let vi(t), ωi(t) ∈ R3 be respectively its
linear velocity and angular velocity. From the laws of the
kinematics of rigid bodies, we have that the pose of the
sensor evolves according to the differential equation

Ṫi(t) =

[
S(ωi(t))Ri(t) vi(t)

0>3 0

]
, (8)

where Ri = Ti{1:3,1:3}. We know that the coverage of a
set of landmarks Li attained by si is given by (5), which,
using (2), can be rewritten as

cov(si(t),Li) =
∑
`∈Li

fi(Ti(t)
−1T`). (9)

Taking the time derivative of both sides of (9), and applying
the chain rule for the derivative of a scalar with respect to
a matrix (see Petersen and Pedersen (2012)), we have

d

dt
cov(si(t),Li) =

∑
`∈Li

Tr

(
∂fi(Ti(t)

−1T`)

∂Ti
>Ṫi(t)

)
.

(10)
Substituting (8) into (10), expanding the trace, and using
the property S(u)w = −S(w)u ∀u,w ∈ R3, we have

d

dt
cov(si(t),Li) =

∑
`∈Li

(
∂fi(Ti(t)

−1T`)

∂pi
>vi(t)

−
∑

ξ∈{xi(t),yi(t),zi(t)}

∂fi(Ti(t)
−1T`)

∂ξ
> S(ξ(t))ωi(t)

)
, (11)

where [xi yi zi pi] = Ti{1:3,1:4}. From (11), we can see
immediately that cov(si(t),Li) can be made nonincreasing
by choosing

vi(t) = −
∑
`∈Li

∂fi(Ti(t)
−1T`)

∂pi
, (12)

ωi(t) = −
∑
`∈Li

∑
ξ∈{xi(t),yi(t),zi(t)}

S(ξ)
∂fi(Ti(t)

−1T`)

∂ξ
. (13)

5. MULTI-AGENT COVERAGE ALGORITHM

Before we start illustrating the proposed multi-agent
coverage algorithm, we characterize the class of locally
optimal solutions of Problem (7) that constitute our control
objective. A feasible solution of Problem (7) is defined by
specifying the pose and the landmarks of each sensor, with
the constraint that the each landmark must belong exactly
to one sensor. We are looking for a feasible solution such
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that the value of the team coverage cannot be improved by
only moving one sensor in a neighborhood of its position
(without changing the ownership of any landmark), or by
only changing the ownership of some landmarks (without
moving any sensor). We call this class of feasible solution
Voronoi solutions, because of their analogy with Voronoi
tessellations (see Du et al. (1999)). The formal definition
of a Voronoi solution is given next.

Definition 5.1. A feasible solution (T1, . . . , TN , σ1,1, . . . ,
σN,M ) of Problem (7) is called a Voronoi solution if it
satisfies the following properties for all i ∈ {1, . . . , N}:∑

`∈Li

∂fi(T
−1
i T`)

∂pi
= 03; (14)

∑
`∈Li

∑
ξ∈{xi,yi,zi}

S(ξ)
∂fi(T

−1
i T`)

∂ξ
= 03; (15)

σν,j = 1 =⇒ per((Tν , fν), `j) ≤ per((Ti, fi), `j). (16)

Obviously, any globally optimal solution of Problem (7) is a
Voronoi solution, but there may exist Voronoi solutions that
are not globally optimal. Our goal is to define a distributed
algorithm that drives the sensors to a Voronoi solution.

We are now ready to present the proposed multi-agent
coverage algorithm. The input to the algorithm is a team
of sensors s1, . . . , sN in their initial poses T 0

1 , . . . , T
0
N , and

a set of landmarks L = {`1, . . . , `M}. The landmarks
constitute an abstract representation of an object or an
area of interest that we want to keep under observation by
using our sensor team.

The algorithm is initialized by assigning each landmark
to one of the sensors. This initial assignment must not
be considered a centralized operation: in fact, it can be
done at random or by assigning all the landmarks to
the same sensor. The pose of each sensor is continuously
controlled by (12) and (13), while occasionally a sensor
interacts with another sensor to transfer the ownership of
some landmarks. A landmark is transferred if the recipient
sensor has a better perception of that landmark than the
original owner. Following these rules, moving a sensor or
transferring a landmark always produces an improvement
in the team coverage Cov(S,P). The time instants when a
sensor si contacts another sensor to give it some landmarks
are denoted as ti,k, with k ∈ N. These time instants
may be periodic, event-triggered, or triggered by user
requests. We only require that there exist a minimum
and a maximum dwell time between two consecutive
communication instances; namely,

∃τmin, τmax > 0 : τmin ≤ ti,k+1 − ti,k ≤ τmax. (17)

For the sake of generality, consider the threshold functions

ςi(τi, Ti,Li) ∈ R≤0, i ∈ {1, . . . , N}, (18)

where τi is a clock, and let the communication times
ti,k be triggered by the condition ςi(τi, Ti,Li) ≥ 0. Note
that this formalism encompasses both time-triggered and
event-triggered communication. If si contacts another
sensor si′ but cannot give it any of its landmarks (i.e.,
if per(sj , `) ≥ per(si, `) for all ` ∈ Li), then si contacts
another sensor until it manages to transfer at least one
landmark, or it has contacted all the other sensors in the
team. The described program can be formalized as the
following algorithm.

Algorithm 5.1. (executed by each sensor si at each t ≥ 0).

compute vi by (12)
compute ωi by (13)
update pose Ti as by (8)
update the clock as by τ̇i = 1
if ςi(τi, Ti,Li) = 0 then

Zi := {S} \ si
while Zi 6= ∅ do

choose another sensor sj from Zi

for ` ∈Li do
if per(sj , `) < per(si, `) then

transfer ` to sj
break while

else remove sj from Zi

end if
end for

end while
τi := 0

end if

6. MAIN RESULT

Our main result is to show that Algorithm 5.1 drives the
sensors to a Voronoi solution of Problem (7). To make this
result into a formal statement, first we model the sensor
team and their landmarks as a hybrid system according to
the formalism defined in Section 2.

The state of the system is given by the values of the
clocks, the poses of the sensors, and the ownership of the
landmarks. The ownership of the landmarks is captured
by the variables σ1,1, . . . , σN,M , introduced in Section 3.
Hence, we let

X = (τ1, . . . , τN , vec(T1)>, . . . , vec(TN )>,

σ1,1, . . . , σN,M )> ∈ RN+16N+NM , (19)

where vec(·) denotes the vectorized form of a matrix.Since
X is the state of a hybrid system, it is a function of both
the time elapsed and the number of jumps occurred, and
we should write X(t, k); the same applies to all the state
variables. However, we omit these dependencies whenever
possible to avoid clutter in the notation.

The state flow is given by the movement of the sensors,
described by (8), (12), and (13). State flow can happen from
any state; therefore, we set C = RN+16N+NM . The flow
map captures the clocks’ progression and the dynamics of
the sensors’ motion. Namely, we set F (X) = {φ(X)}, with

φ(X) = (1, . . . , 1, vec(Ṫ1)>, . . . , vec(ṪN )>, 0>NM )>, where

Ṫi denotes here the closed-loop derivative of Ti, obtained
by using (12) and (13) in (8).

The state jumps are given by the landmark transfers, and
they are triggered by the conditions ςi(τi, Ti,Li) = 0.
Hence, state jumps are only possible from states such that
ςi(τi, Ti,Li) = 0 for some sensor. Therefore, we let

D = {X ∈ C : max
i=1,...,N

{ςi(τi, Ti,Li)} = 0}. (20)

The jump map captures the rules by which the sensors
transfer landmarks to each other. Let gi,i′(X) be the new
state after si has transferred landmarks to si′ . Then, we
have

gi,i′(X) = (τ+1 , . . . , τ
+
N , 0

>
16N , σ

+
1,1, . . . , σ

+
N,M ), (21)
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where: τ+i = 0 and τ+q = τq for all q 6= i; σ+
i,j = 0

and σ+
i′,j = 1 if σi,j = 1 and per(si′ , `j) < per(si, `j);

σ+
ξ,ζ = σξ,ζ otherwise. Let gi(X) be the state after si has

failed to transfer landmarks to all the other sensors. Then,
we have

gi(X) = (τ+1 , . . . , τ
+
N , 0

>
16N , σ1,1, . . . , σN,M ), (22)

with τ+i = 0 and τ+q = τq for all q 6= i. With this notation,
we can write the jump map as

G(X) =

{
{gi,i′(X) : gi,i′(X) 6= X} if gi,i′(X) 6= ∅,
{gi(X)} otherwise.

(23)
Our hybrid system is now defined as H = (C, F,D, G).

Now we need to define Voronoi solutions in terms of H; in
other words, we have to recast (14), (15), (16) in terms of
X. To this aim, first note (using (8), (12) and (13)) that
(14) and (15) are equivalent to

φ(X) = (1, . . . , 1, 0>16N , 0
>
NM )>. (24)

Then, note that (16) means that it is not possible to transfer
any landmark, which, using (23), can also be written as

G(X) = {gi(X)}. (25)

Therefore, the set of the states X corresponding to the
Voronoi solutions of Problem (7) is

V := {X ∈ R16N+NM+N : X ∈ C =⇒
φ(X) = (1, . . . , 1, 016N , 0

>
NM )>,

X ∈ D =⇒ G(X) = {gi(X)}}.
(26)

Our main result can now be formalized as the following
theorem.

Theorem 6.1. (Main theorem). Consider a team of sensors
S = (s1, . . . , sN ), with initial poses T 0

1 , . . . , T
0
N ∈ SE(3),

and a set of landmarks L = {`1, . . . , `M}. Let Li be the
subsets of the landmarks owned by sensor si. Let L0

i be
the set of landmarks initially assigned to sensor si, so that
(L0

1 , . . . ,L
0
N ) is a partition of L. Let H = (C, F,D, G)

be the corresponding hybrid system defined by (19)–(23).
If each sensor executes Algorithm 5.1, and the threshold
functions ςi are such that (17) is satisfied, then each
complete solution of H converges to the set V of the
Voronoi solutions of Problem (7).

Proof. Consider the function C̃ov(X) := Cov(S,P). We
are going to show that this function is nonincreasing both
along the system flow and upon the system jumps, so that
we can then apply Lemma 2.1.

Let us first study the evolution of this function along the

system flow. Differentiating C̃ov(X) with respect to X, we
have

∇C̃ov(X) =

(
0, vec

(
∂ cov(s1,L1)

∂T1

)>
, . . . ,

vec

(
∂ cov(sN ,LN )

∂TN

)>
, 0>NM

)>
. (27)

Trasposing both sides, and right-multiplying by φ(X), we
have

∇C̃ov(X)>φ(X) =

N∑
i=1

vec

(
∂ cov(si,Li)

∂Ti

)>
vec(Ṫi). (28)

Using (5) and (10) in (28), we can rewrite the right-hand
side of (28) as

∇C̃ov(X)>φ(X) =

N∑
i=1

d

dt
cov(si,Li) ≤ 0. (29)

Let us now study the evolution of C̃ov(X) upon the system
jumps. Consider the generic jump time ti,k. If si transfers
some landmarks to another sensor si′ , then the change in

the value of C̃ov(·) is

C̃ov(gi,i′(X))− C̃ov(X) =

=
∑
{`∈Li:

per(si′ ,`)
<per(si,`)}

per(si′ , `)− per(si, `) < 0. (30)

If it is not possible to transfer landmarks to any other
sensor, then G(X) = {gi(X)}. Since gi(X) has the same
values of the σi,j variables as X, we have

C̃ov(gi(X))− C̃ov(X) = 0, (31)

which means that the value of C̃ov(·) does not change upon
this jump. Since (28), (30) and (31) hold, we can invoke
Lemma 2.1 to conclude that the largest weakly invariant

set I contained in A := Cl{X ∈ C : ∇C̃ov(X)>φ(X) =

0} ∪ {X ∈ D : C̃ov(g) = C̃ov(X) ∀g ∈ G(X)} is
not empty, and any complete and bounded solution
converges to it. Moreover, recalling that sensor footprints

are radially unbounded, while C̃ov(X) is nonincreasing,
we can conclude that all solutions of H are bounded.
Therefore, any complete solution of H converges to I,
and we can conclude the proof by showing that I = V.
Obviosuly, V is invariant, and it is a subset of A, so
V ⊆ I. Suppose by contradiction that V ( I. Let

ξ = arg maxX∈I\V C̃ov(X). Since I is weakly invariant,
for any τ > 0 there exists at least one maximal solution
Ξ(t, j) such that Ξ(t∗, j∗) = ξ for some t∗ + j∗ ≥ τ . Since

C̃ov(Ξ) is nondecreasing, it must be C̃ov(Ξ(t, j)) = C̃ov(ξ)
for all (t, j) ≤ (t∗, j∗). However, since (17) holds, if we
choose τ large enough, the solution Ξ must comprise both
flow and jumps between (0, 0) and (t∗, j∗). Hence, the whole

solution must lie in the subset of A such that C̃ov(Ξ) does
not change with either flow or jumps. From (26), we can
see that this set is V. But this is a contradiction, because
we have supposed that ξ ∈ I \V. Hence, we can conclude
that I = V.

7. SIMULATION

In this section, we present a simulation of Algorithm 5.1
built upon the ROS middleware, with each sensor being
implemented as a single ROS node.

We consider a team of N = 4 sensors, which are required
to monitor a square room with side of length 6. The room
is abstracted into a set of M = 625 landmarks, which are
equally spaced about the room. Initially, all the landmarks
are assigned to the same sensor. The initial positions of
sensor si is chosen as pi = (0, 1.25 − 0.25i, 0), while the
initial orientation is chosen as Ri = I3 for all the sensors.
The threshold functions are chosen as

ςi(τi, Ti,Li) = min{τi − τd, ε− ‖vi‖, ε− ‖ωi‖}, (32)
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Fig. 2. Results of the simulation. Seconds elapsed in each
snapshot, in lexicographical order: 0, 0.2, 1.0, 2.0, 5.0,
10.0, 15.0, 20.0, 30.0, 40.0, 75.0, 105.0. The blue sensor
and the red sensor have footprint (4).

where ε = 2 ·10−2, and vi and ωi are computed as (12) and
(13) respectively. It is easy to verify that the thresholds
(32) satisfy (17).

The footprint of the first two sensors is chosen as (4), with
kf = 0.6 and kr = 0.4, while β = 1 for the first sensor
and β = 2 for the second sensor. The footprint of the
other two sensors is chosen as (3). This case corresponds
to the scenario where some agents have normal cameras
with different focal distance, while some other agents have
omnidirectional cameras. The results of the simulation
are shown in Figure 2, where we can see how the sensors
are progressively deployed about the room, and how the
landmark distribution assumes patterns corresponding
to better coverage costs. Note that the final landmark
distribution pattern reflects the shape of the different sensor
footprints.

8. CONCLUSIONS AND FUTURE DEVELOPMENTS

We have presented a distributed algorithm for coverage
and inspection tasks with multi-agent sensor teams. The
proposed algorithm is based on the abstraction of the
environment into a finite set of landmarks, and can
handle sensors with anisotropic and heterogeneous sensing
patterns. The sensor team is modeled as a hybrid multi-
agent system, and the algorithm is formally shown to drive
the agents to an equilibrium configuration, while a global
cost function representing the coverage attained by the
team is nonincreasing. Future work will extend the proposed

algorithm to explicitly account for practical issues such as
collision avoidance.
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