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Distributed Model Predictive Consensus
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Abstract—In this paper we consider the problem of de-
signing a distributed control strategy such that a linear
combination of the states of a number of vehicles coincide at
a given time. The vehicles are described by linear difference
equations and are subject to convex input constraints. It
is demonstrated how primal decomposition techniques and
incremental subgradient methods allow us to find a solution
in which each vehicle performs individual planning of its
trajectory and exchanges critical information with neighbors
only. We explore various communication, computation, and
control structures, and demonstrate the performance of the
algorithms by numerical examples.

I. INTRODUCTION

The problem of cooperatively controlling a system
comprising a large number of autonomous vehicles has
attracted substantial attention in the control and robotics
communities. An emerging problem is the so called con-
sensus problem, see for example [8], [9], [5], [11] and
the references therein. It consists of designing distributed
control strategies such that the output of the vehicles
asymptotically converges to a common value. Typically the
vehicles are modelled by identical first-order systems and
they communicate over a fixed or time-varying commu-
nication network [8], [9], [5], [3]. In this paper we study
the consensus problem in a different setting. In particular,
we assume that the vehicles are described by general
linear dynamics, possibly different for each vehicle, that
the inputs are constrained and that a linear combination
of the states needs to converge to a common value, the
consensus point, after a fixed time. The consensus point is
not specified in advance, but it is negotiated by the vehicles
so that a cost index is optimized.

In order to accommodate all the constraints a distributed
model predictive control (MPC) strategy is used to design
the controller and to determine an optimal consensus point.
In distributed MPC, a static finite-horizon optimization
problem is decomposed into a set of subproblems, each
solved by an individual agent. The coordination of the
subproblems is, generally, achieved by an active commu-
nication, or sensing, among the agents [4].

Distributed MPC for coordinating swarms of mobile
vehicles was recently proposed in the literature. Distributed
MPC strategies for steering vehicles to a stable formation
are studied in [6], [7], [2]. In [6], [7] the authors propose
a scheme where the equilibrium is given a priori, while
in [2] the models and constraints of the other agents are
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needed in order for each agent to solve its optimal control
problem. In this paper we consider less restrictive setups.

The main contribution of this paper is to propose a
decentralized control strategy that yields consensus in fixed
time. In this solution, vehicles can be described by arbi-
trary linear difference equations and be subject to convex
input constraints, while only suggested consensus values
need to be communicated between vehicles. Contrary to
related proposals, the vehicles do not need any model of
the dynamics of its team mates, nor exchange complete
planned trajectories. We explore various communication,
computation, and control structures, and demonstrate the
performance of the algorithms by numerical examples.

The paper is organized as follows. In Section II we
formally define the vehicle models and the distributed
model predictive control problem. In Section III it is shown
how primal decomposition techniques and incremental
subgradient methods allow us to find a distributed solution
to this consensus problem, in which each vehicle performs
individual planning of its trajectory and exchanges critical
information with neighbors only. We explore different
computation and control structures needed in order to cope
with disturbances and changes in the system configuration
in Section IV. The performance of these different structures
are demonstrated by numerical examples in Section V.
Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION

Consider NV > 1 vehicles whose dynamics are described
by the following discrete time state equations

yi(t) = Cizy(1),

where Az S Rnixni’ Bz c R™*XPi gnd Cz c RSX1i We
assume that the inputs are constrained according to

i=1,...,N,

ui(t) € Uy == {v : u; <v <}, (1)

where u,,u; € RP* and the inequalities are elementwise.

Let T' > 0 be a finite and fixed time. We want to find a
sequence of inputs u;(0),...,u;(T—1),withi=1,...,N
and w;(t) € Y; for all t =0,...,T — 1, such that

where # € © is the consensus point and © is a given
convex and compact set. Namely we are seeking a control
sequence and a consensus point so that in fixed time we
reach such a consensus point, meaning that all the outputs
are equal at time 7.
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In order for (2) to hold, the outputs need to have the
same dimensions, i.e., we require that s, = s for all :. We
assume that the following cost function is associated to the
i-th system,

Vilyi(t), ui(t), 0) = (yi(t) — 0)T Qi (i(t) — 0)
+ ui(t)TRiui(t) (3)

where Q; € R**® and R; € RP:*Pi are positive definite
symmetric matrices (i.e., we penalize deviations from the
consensus point and the use of control effort). We then
formulate the following control problem.

Problem: Let 7" > 0 be fixed. Determine the control
vectors u;(t), t = 0,..., T — 1, for all ¢ = 1,...,N
and the consensus point § € ©, that solve the following
optimization problem

N T
minimize Z Z Vi(yi(t), ui(t),0) “4)
=1 t=1

u,z,y,0

In order to make the problem well posed the following
assumptions need to be satisfied. First, the dynamical
systems are assumed to be controllable and observable.
Second, the meeting time 7" is large enough so that all
in the set © is feasible, i.e., all # in the set © are possible
consensus points. Third, for all § € © and i = 1,..., N,
there exists a sequence u;(0), ..., u;(T" — 1) in the relative
interior of U; such that y;(T") = 6. This condition means
that it should be possible to reach 6 without saturating the
control signal. Note that the optimal control signal may
still be saturated.

If we introduce

xi(l) UI(O)
L zi(2) . ui(1)
24(T) wi(T — 1)

then we can rewrite the optimization problem (4) as follows

N
minimizg 3, Vilun9) ®
ESNS
u; € Z/[ZT7

where UT = [];_, U; and the constraints y;(T) = § have

been rewritten as

H,;

= HZ(Ell’? + Fiui) =40

using the fact that

A; B; 0 ... 0
X; = . x? + . . . u; .
AT AT™'B; AT?B; ... B;
——
Ei Fi
The cost function of (5) is given by
T
Vilw,0) = S Vilui(t), wi(t), 6) = (Ci(Eia?
t=1
+F) — 17 ® 0)7Q;(C;(E;ay
+ Fllll) —1r® 9) + uZTRiui
where 17 is the T-dimensional unity vector (1,1,...,1)T,

Q =Ir® Q. R, =Ir® R, and C; = It ® C;
where I is the T-dimensional identity matrix and ® is
the Kronecker matrix product.

When dealing with the coordination of a set of mobile
vehicles, the optimization problem (5) becomes interesting
if the computations can be distributed among the vehicles
and the amount of information that the vehicles need to
exchange is limited. The problem is even more interesting
if each vehicle is constrained to communicate only with
a few neighboring vehicles. In the following we develop
a coordination algorithm in which vehicles only need to
exchange their current values of 6, but still the algorithm
leads to that the vehicles’ outputs converge to the optimal
consensus point.

IIT. DISTRIBUTED NEGOTIATION

In this section we show how the optimal consensus
point, 6, can be computed in a distributed way. The key
idea is to transform (5) using primal decomposition in com-
bination with incremental subgradient methods (e.g., [1]).

Since H;(E;2? + F;u;) = 6, we can eliminate the
dependence from 6 in V;(u;, 6). Thus we have

V() = (Ci(Eix? +F) — 10 @ (H;(Ea?
+ quz))) TQz‘ (Cz(sz? + Fiw)
—1r® (HZ(El:v? + qul))) +uRu; .
We can then define ¢;(6) as follows
q:(0) = min}lr_num
7’ s.t. H;(E;2) + Fyw,) =6
w, Ul .

\Z (uz) (6)
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Then the optimization problem (5) can be written as

N
> a(0) (7)
=1

s.t. feo,

minimize
0

since the only coupling between the vehicles is 6. We
will later use subgradients to find the consensus point and
therefore we give the following definition.

Definition 3.1: ([1]) Let f : R® — R be a convex
function. We say that a vector A € R™ is a subgradient
of f at point x € R" if

f(z) = f(2) + AT(z — )

for all z € R™.

Proposition 3.2: The cost function ¢;(#) defined in (6)
is a convex function and a subgradient \; is given by
the Lagrange multipliers corresponding to the constraint
Hl(El.T? + Fiui) =40.

Proof: We start by showing that a subgradient is given
by the Lagrange multipliers corresponding to the constraint
H,(E;z9 + F;u;) = 0. By Lagrangian relaxation we can
define

L(ui, 07 )\1) = V7(u1) — )\T

K2

(H;(E;zd + Fyw;) — 6),

where \; are Lagrange multipliers. We also introduce the
dual function

d(X\i,0) = min V;(u;) — A\[(H

S J(Eird + Fiug) —0).

Since the constraint H;(E;z{ + F,;u;) = 6 is linear in u;
and there exist a solution to this equation (by assumption)
within the relative interior of 2] and the function V; is
convex and the set U} is convex, strong duality follows
from Theorem 6.4.4 (p. 373) in [1]. Now ¢;(#) can be
expressed as

q:(0) = max d(A;,0) .
Consider two feasible points, 81 and 6%, and let )\I be
the Lagrange multipliers corresponding to the relaxed
constraint for 6, then
min {V (u;) — AT (Hl(szg

7

¢;(#%) = max {

Ag u; eul
+Fu;) - 91)} }
> ufgl Vi(u ADT(H,(Bja?
+Fou;) — 91)}
= u?élz}{lT {VZ T(Hl(Elx;J
+Fou) 9*)} — o)
= q(0") + (\)T(0F - 9*)

Hence, by the definition of a subgradient, )\;r is a subgra-
dient of ¢;(-) at #T. Now ¢;(#*) can be expressed as
4:(6*)

= max { — \THL; (E;2)

1 min {V u;)

u761/1
+F-ui)}+)\T01}

= max {g(N) + )\Tﬁi}

where g();) is some function and g(\;) + AJ 6% is convex
in 0%, Since ¢;(6%) is the pointwise maximum of a family
of convex functions, ¢;(0%) is convex. [ |
To find the consensus point #, we next use incremental and
randomized subgradient methods. Proposition 3.2 provides
the subgradients corresponding to ¢;(9).

A. Incremental Subgradient Algorithms

We present in the following two algorithms that com-
pute the optimal consensus point, 6, using two different
communication strategies. These algorithms are based on
the incremental subgradient methods from optimization
theory [1].

Subgradient methods work in a way that is similar to
gradient methods, i.e., the update is made in the opposite
direction of the subgradient (for minimization). The update
equation is

Or+1 = Po{lr — ar i} ¥

where Po{-} denotes the Euclidean projection on the set
© and «j is the stepsize. The subgradient at time step
k, Ak, is in the standard approach computed for the total
cost y_.¢q;(¢). In this paper we describe two algorithms
where the generic vehicle ¢ computes the subgradient
corresponding to the function g; at time step k, \; 5, based
on the information received by the neighbor vehicles.

In the first algorithm we assume that the generic vehicle
i communicates with vehicle (¢ + 1)mod N, that is to
say the neighbor of vehicle (i + 1)mod N is vehicle i.
Starting with an arbitrary initial condition 6y € O, the
first vehicle computes the subgradient A\; o corresponding
to ¢1(6p). Using (8) an update of the consensus point
0, is computed and communicated to the next vehicle.
This vehicle then computes in the same way the next
update of the consensus point, #5. The algorithm then
proceeds iteratively. A pseudocode version of the algorithm
is summarized in Algorithm 1.

In the second algorithm, at each time step & the vehicle
that has performed the last update of the consensus point,
according to (8), randomly selects another vehicle among
all the available vehicles, and sends the update to the
selected vehicle. The advantage of the method is that
there is no need for a particular communication structure,
even if at each time step every vehicle must be able to
communicate with any other vehicle. The algorithm is
summarized in Algorithm 2.

We then have the following proposition.
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Algorithm 1 Cyclic Incremental Algorithm
1: Initialize 6y and o

2. k:=0

3: loop

4. fori:=1to N do

5: Compute a subgradient, A;j, corresponding to
qi(Ox)

6: Ok+1 1= Po{lr — arlik}

7: ki=k+1

8: Q= Ck()/k

9: end for

10: end loop

Algorithm 2 Randomized Algorithm

4 Choose ¢ € {1,..,N} accordingly to uniform
probability mass function
Compute a subgradient, \;j, corresponding to
i (0x)
Or41 := Pol{br — arXik}
k=k+1
Qp = ao/k

end loop

W

6
7:
8:
9:

Proposition 3.3: Algorithms 1 and 2 converge in the

sense that limy_, .. 0, = 6*, where 6* is the solution to
the optimization problem (7).
The proof follows from Theorem 8.2.6 (p. 480) and The-
orem 8.2.13 (p. 496) in [1], since the set O is convex and
compact (so the norms of all possible subgradients have
an upper bound), and the stepsize ay is square summable
over k but not summable over k.

IV. IMPLEMENTATION

In this section we present three classes of control strate-
gies that address the consensus problem. Figure 1 show
the logical flow of these classes, cf., [10, p. 386]. The
distributed MPC strategies discussed previously belong to
first class, while the second and third class are further
improvements to address various implementation aspects.

The main assumption we make here is that the most
costly phase in the consensus algorithms is the motion
of the vehicles to the consensus point. We thus consider
the communication among the vehicles to be cheap. Such
assumption is plausible when the vehicles are, for example,
large size autonomous robots or unmanned aerial vehicles.

The logical flow of the first scheme is summarized in
Figure 1(a). In the negotiation phase, the optimal consensus
point is computed in a distributed way using Algorithm 1
or Algorithm 2. After the distributed negotiation, the
corresponding control action is applied to the vehicle in
open loop during the execution phase. If there are no dis-
turbances the system will reach the consensus point at time

T'. The main advantage of the scheme proposed is that it is
possible to formally guarantee that the optimal consensus
point is computed in a distributed way. Moreover only a
small amount of information, the current consensus point,
needs to be exchanged at each step. Such strategy, being
completely open loop, is very sensitive to disturbances.
Another disadvantage is that it requires the negotiation
phase to converge to the optimum consensus point before
any control action can be applied, or in more practical
terms it would require a long time before the consensus
point is relatively close the optimum.

In Figure 1(b), a second control strategy is proposed. In
this case, as the previous strategy, the negotiation phase
yields a consensus point that is optimal in the absence
of disturbances. The controller that drives the vehicles
towards the consensus during the execution phase uses
the negotiated consensus point as fixed reference. Each
vehicle can then use a receding horizon (MPC) control
strategy for reaching the consensus point: in each step we
recompute the optimal control sequence for reaching the
consensus point at time 7, apply the first component, sense
the current state and recompute the control sequence.

The third control strategy is shown in Figure 1(c). The
negotiation phase, in this case, is carried out at each time
step and we assume that the negotiation is stopped after
that all the vehicles have communicated only 3 times,
namely we assume that the negotiation is interrupted at
k = BN. In this case we then have N different reference
signals, one for each vehicle. Similarly to above, in the
execution the optimal control sequence for reaching the
consensus point is computed and the first component is
applied. The negotiation phase is then repeated.

Similarly to classical MPC, the control strategies in
Figure 1(b) and Figure 1(c) can cope with disturbances
due to the receding horizon operation. The main advantage
of the strategy in Figure 1(c) is that the negotiation is
not carried out to the optimum and thus we do not
need to wait for the incremental subgradient algorithms
to converge. This solution can also cope with changes in
the vehicle dynamics and/or input constraints. Indeed the
vehicle affected can include these changes locally in its
optimization algorithm. As we will see later, the strategy
can also handle the situation when the number of vehicles
in the consensus problem increases or decreases. In this
case the new vehicle can be included in the negotiation
and the consensus point can be recomputed.

Compared to the open-loop solution of Figure 1(a), the
control strategies of Figure 1(b) and Figure 1(c) are much
harder to analyze formally and an in-depth theoretical
investigation of these approaches are outside the scope of
this paper. Still, since they are relevant from a practical
perspective, we will demonstrate the potential of such
strategies via simulations.

V. NUMERICAL EXAMPLES

In this section we explore the performance of the three
control strategies through numerical examples. The setup is
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(2)

Fig. 1.

Negotiate Negotiate Negotiate
Execute Execute Execute
Sense Sense

(b) (©

The logical flow of the different control strategies. (a) open loop strategy: 6 is negotiated once at the beginning, then the corresponding

control action is applied. (b) set-point strategy: 6 is negotiated once at the beginning and the corresponding control action is then computed at every
time step and applied to the system. (c) renegotiation strategy: 6 is renegotiated at every time step. The corresponding control action is then computed

and applied to the system.

that a number of vehicles with double integrator dynamics
and input constraints should reach the same coordinates at
time 7.

A. Disturbance Free Scenario

The first case is the ideal case, where we assume that
there is no noise, the number of vehicles is constant, and
the dynamics of the vehicles do not change. There is
no need for feedback and the optimal consensus point is
negotiated in the beginning, and then the corresponding
control actions are applied to the systems in open-loop. In
this specific example there are four vehicles with double
integrator dynamics, identical control signal constraints,
but different initial positions and velocities. The vehicles
should meet after 20 time samples. The trajectories are
shown in Figure 2(a). As we expect the vehicles meet after
20 samples. With the same setup we also introduce the
extension that the vehicles can meet in a formation. This is
done by adding an individual bias to the consensus point.
The configuration is identical with the ideal case except
that the system now should meet in a square formation. As
can be seen in Figure 2(b), the vehicles meet in a square
formation after 20 samples.

B. Noisy Scenario

In the second case, we add Gaussian noise with standard
deviation 0.5. Two variants are compared: the open-loop
variant (Figure 1(a)) and the setpoint variant (Figure 1(b)).
In the setpoint variant, the consensus is negotiated before
the vehicles start moving, and then the consensus is used
as a setpoint. The control signals are recalculated at every
time step, yielding a closed loop control. The trajectories
of the open loop variant are shown in Figure 3(a), and as
expected the vehicles do not reach consensus. Figure 3(b)

demonstrates the results for the setpoint variant: the vehi-
cles are very close to achieving consensus in 20 samples
despite the persistent disturbances.

C. Scalability Scenario

The third case starts with three vehicles and adds a
fourth vehicle after 10 samples. The total time of the
simulation is 30 samples. Also in this scenario, two vari-
ants are compared: the setpoint variant discussed above
and the renegotiation variant (Figure 1(c)). In the setpoint
variant the consensus point is negotiated between the three
vehicles in the beginning. When the fourth vehicle is
added, it is given 6 as a setpoint. Figure 4(a) shows
the trajectories of the setpoint variant. The vehicles reach
consensus as expected but the initial condition of the fourth
system does not influence the consensus point at all, irre-
spectively of how hard it is to control and how expensive
its control efforts are. In the renegotiation algorithm, the
cyclic algorithm is executed with 10 iterations at each
step. The trajectories are shown in Figure 4(b), and as
can be seen the final consensus is closer to the added
vehicle in this case compared with the previous algorithm.
Another advantage is that the vehicles can start moving
before the consensus point is completely agreed upon.
However, this is also a drawback since if the current 6 is
far from optimal, then the vehicles can start moving in the
wrong direction. The behavior depends on the setup, e.g.,
the dynamics and initial conditions, and warrants further
theoretical investigations.

VI. CONCLUSIONS

We have formulated a consensus problem where the
output of a number of different vehicles should coincide
after a specified time. The dynamics of the vehicles can

2442



20f o 1 20f ) ]
15, 1 15 E
10 ) 1 10 ! 1
' ...... '
5t ] : T = . 1
of / 1 o+ / E
] ]

5F / B 5r / 1

- SR loaeennnnns, / .
10 b 7 A 10 "
’ * B
A5t I / Y 15 F i1} Y
| / f 3

i ; |

20 7 & 20 b e

| 7 G\ | j g G\ .......
25 1/ 1 25 [ s ]

7
td

20 L ‘ ‘ ‘ ‘ ‘ 20 L ‘ L~ . ‘ ‘ ‘

-30 20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
(a) The vehicles meet at 6 at time T (b) The vehicles meet at a formation, parameterized as the

consensus point 6 + individual offsets, at time T

Fig. 2. The trajectories of four vehicles with double integrator dynamics. The circles are the starting points and the squares are the ending points.
The arrows show the initial velocities.
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Fig. 3. The trajectories of four vehicles with double integrator dynamics and noise added to the states at each sample. The circles are the starting
points and the squares are the ending points. The arrows show the initial velocities.
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for all systems.
Fig. 4. The trajectories of four vehicles with double integrator dynamics. The system starts with three vehicles and after 10 samples a fourth vehicle
is added to the system. The circles are the starting points and the squares are the ending points. The solid lines denote the trajectories before the

fourth system is added, and the dashed lines denote the trajectories after that the fourth system has been added. Finally, the arrows show the initial
velocities.

be arbitrary as long as it is linear and input constraints are convex. We have shown that it is possible to find
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the consensus point in a distributed way where the only
information needed to be communicated is the current con-
sensus point suggestion. Moreover, we have proposed three
different control schemes suited for more realistic scenar-
ios and we have explored the performance by numerical
simulation. The control schemes are very flexible and can
handle several difficulties in multi-vehicle coordination.
The drawback is that the general behavior is difficult to
analyze: we have only been able to analyze the simplest
of these schemes. Natural extensions include investigating
the convergence properties of the more advanced schemes,
extending the set-up to include collision avoidance, and
performing more detailed simulation studies.

REFERENCES

D.P. Bertsekas, A. Nedi¢, and A.E. Ozdaglar. Convex Analysis and

Optimization. Athena Scientific, 2003.

F. Borrelli, T. Keviczky, K. Fregene, and G. J. Balas. Decentralized

receding horizon control of cooperative vehicle formations. In

Proceedings of the 44th IEEE Conference on Decision and Control

/ European Control Conference, 2005.

R. Carli, F. Fagnani, A. Speranzon, and S. Zampieri. Symmetries

in the coordinated rendezvous problem. In P. J. Antsaklis and

P. Tabuada, editors, NESC: Networked Embedded Sensing and Con-

trol, Lecture Notes in Control and Information Sciences. Springer,

2005. To appear.

[4] E. Componogara, D. Jia, B. H. Krogh, and S. Talukdar. Distributed
model predictive control. IEEE Control Systems Magazine, February
2002.

[5] J. Cortés, S. Martinez, and F. Bullo. Robust rendezvous for mobile
autonomous agents via proximity graphs in arbitrary dimensions.
IEEE Transaction on Automatic Control, 2004. Submitted.

[6] W. B. Dunbar and R. M. Murray. Receding horizon control of multi-
vehicle formations: A distributed implementation. In Proceedings
of the IEEE Conference on Decision and Control, 2004.

[71 W. B. Dunbar and R. M. Murray. Distributed receding horizon
control with application to multi-vehicle formation stabilization.
Automatica, 2005. Submitted.

[8] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups

of mobile autonomous agents using nearest neighbor rules. IEEE

Transactions on Automatic Control, 48(6):988-1001, 2003.

R. Olfati-Saber and R. M. Murray. Consensus problems in net-

works of agents with switching topology and time-delays. IEEE

Transactions on Automatic Control, 49(9):1520-1533, 2004.

[10] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control.

John Wiley & Sons, New York-Chichester-Brisbane, 2005.

[11] S.L. Smith, M. E. Broucke, and B. A. Francis. A hierarchical cyclic

pursuit scheme for vehicle networks. Automatica, 41(6):1045-1053,

2005.

[1

—

[2

—

[3

=

[9

—

2444



	Main Menu
	Symposium Overview
	Program at a Glance
	Session Index
	Author Index




