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Asymptotic and finite-time almost global attitude tracking

representations free approach

Jieqiang Wei, Junfeng Wu, Henrik Sandberg and Karl H. Johansson

Abstract— In this paper, the attitude tracking problem is
considered using the rotation matrices. Due to the inherent
topological restriction, it is impossible to achieve global stability
with any continuous attitude control system on SO(3). Hence
in this work, we propose some control protocols that achieve
almost global tracking asymptotically and in finite time, respec-
tively. In these protocols, no world frame is needed and only
relative state information are requested. For the closed-loop
systems, Filippov solutions and non-smooth analysis techniques
are adopted to handle the discontinuities.

Index Terms— Agents and autonomous systems, Attitude
tracking, Nonlinear systems

I. INTRODUCTION

Originally motivated by aerospace developments in the
middle of the last century [3], [11], the rigid body attitude
control problem has continued to attract attention with many
applications such as aircraft attitude control [1], [21], spacial
grabbing technology of manipulators [15], target surveillance
by unmanned vehicles [17], and camera calibration in com-
puter vision [14]. Furthermore, the configuration space of
rigid-body attitudes is the compact non-Euclidean manifold
SO(3), which poses theoretical challenges for attitude con-
trol [2]. The coordination of multiple attitudes is of high
interest both in academic and industrial research, e.g., [6],
[18], [20].

Here we review some related existing work. As attitude
systems evolves on SO(3)—a compact manifold without
a boundary—there exists no continuous control law that
achieves global asymptotic stability [4]. Hence one has to
resort to some hybrid or discontinuous approaches. In [12],
an almost global attitude tracking control system based on an
alternative attitude error function is proposed. This attitude
error function is not differentiable at certain attitudes and
employs the Frobenius attitude difference, and the resulting
control input is not continuous. In [13], one tracking protocol
is proposed for unmanned aerial vehicle (UAV), again using
Frobenius state differences. So far, finite-time attitude track-
ing problems are studied in different settings. One closely
related work is [7], where finite-time attitude synchronization
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was investigated in a leader-follower architecture, namely all
the followers tracking the attitude of the leader.

In this paper, we shall focus on the attitude tracking
problem, based on the rotation matrices in SO(3). First,
based on geodesic direction between two rotation matrices,
two controllers which achieve asymptotic and finite-time
convergence, respectively, are proposed. Similarly, two more
controllers yielding asymptotic and finite-time tracking are
designed when the Frobenius difference between two rotation
matrices, i.e., relative attitude, is available to the follower. All
the controllers designed in this paper only need the relative
state information without world frame and achieve almost
global tracking. For the finite-time tracking case, since these
control schemes are discontinuous, nonsmooth analysis is
employed throughout the paper.

The structure of the paper is as follows. In Section II,
we review some results for the special orthogonal group
SO(3). Section III presents the problem formulation of the
attitude tracking. The main results of the stability analysis
of the finite-time convergence are presented in Section IV,
where two types of controllers, using geodesic and Frobenius
state differences, respectively, are proposed to achieve almost
global tracking. Then, in Section V, the paper is concluded.

Notations. With R_,R_,R>(, and R¢y we denote the
sets of negative, positive, non-negative, non-positive real
numbers, respectively. The rotation group SO(3) = {R €
R3*3 : RRT = I,det R = 1}. The vector space of real
n by n skew symmetric matrices is denoted as so0(3). The
vectors 1,, and 0,, represents a n-dimensional column vector
with each entry being 1 and 0, respectively. We denote

E, =diag[-1,-1,1]

E, = diag[-1,1, 1]

E5 = diag[l, -1, —1],
respectively.

II. PRELIMINARIES

In this section, we briefly review some essentials about
rigid body attitudes [19]. For the definitions related to
Filippov solutions, we refer to [8].

The tangent space at a point R € SO(3) is

TrSO®3) = {Rw : w € s0(3)}. (1)

For SO(3), two exponential maps are needed, namely
Riemannian exponential at the point R and Lie group ex-
ponential, denoted expp and exp respectively.
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For any p = [p1,p2,p3]’ € R3 and p € s0(3) given as

0 -—-p3 p2
p:=| p3 0 -p1],
—p2 M 0

Rodrigues’ formula is the right-hand side of

#)?,

1—cos(||p[)
lipll?

sin(|lplD) 5

Is+ = P+

-[37

o) i ] 0,
if [lp]| = 0.
2
The matrix exp(p) is the rotation matrix through an angle
|Ip|| anticlockwise about the axis p.
Next lemma follows from Euler’s Rotation Theorem.

Lemma 1. The exponential map

exp : $0(3) = SO(3) 3)

is surjective.

The Riemannian exponential map expp : TrSO(3) —
SO(3) is defined as

expp, (v) = (1)

where

v(t) = Ri(R] Ry)!, 0<t<1

is the length of the shortest geodesic curve that connect
Ry and Ry, and +'(0) = v. The relation between these
exponential maps is expg(Rw) = Rexp(w) for any RW €
TrSO(3).

The principle logarithm for a matrix R € SO(3) is defined
as
_0
2 sin(0)
0

(R—RT), if0+#0,

4
if =0 @

log(R) = {

7

where 0 = arccos(%). We define log(Is) as the zero

matrix in R3*3. Note that (4) is not defined for § = .
There are three commonly used metrics in SO(3). A

straightforward one is Frobenius (chordal) metric

dp(Ri, R2) = [|[R1 — Ra2||r
= /6 — (R Ro) - t(R] Ry),

which is Euclidean distance of the ambient space R3*3,
Another metric employs the Riemannian structure, namely
the Riemannian (geodesic) metric

dr(Ry, Ry) = (Ry'Ry)||p.

i” lo
Noihe
The third one is hyperbolic metric defined as dg (R, R2) =
| tog(Ry) ~ log(Ro)] - |

One important relation between SO(3) and R? is that
the open ball B,(I) in SO(3) with radius 7 around the
identity, which is almost the whole SO(3), is diffeomorphic
to the open ball B,(0) in R? via the logarithmic and the
exponential map defined in (4) and (2).
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In the remainder of this section, we define Filippov set-
valued map. Let f be a map from R™ to R™ and let 28"
denote the collection of all subsets of R™. The Filippov set-
valued map of f, denoted F[f] : R™ — 28", is defined
as

Flfiw) =) () o{f(B\9)},

6>0 u(8)=0

where S is a subset of R™, u denotes the Lebesgue measure,
B(x,6) is the ball centered at x with radius ¢ and co{X'}
denotes the convex closure of a set X'. If f is continuous at
x, then F[f](z) contains only the point f(z).

III. PROBLEM FORMULATION

In this paper we consider attitude tracking problem. The
basic model can be considered as two agent where the
follower tracks the attitude of the target. We denote the
world frame as JF,,, the instantaneous body frame of the
target and the follower as F, and Jj, respectively. Let
R,.(t), R1(t) € SO(3) be the attitude of F,. and F; relative
to F,, at time t.

Recall that the tangent space at a point R € SO(3) is

TrSO(3) = {Rw : w € 50(3)}.
Then the kinematics of the two attitudes are given by [19]

R = diag(R,, Ry )w (5)

where
R = [RTT’ RI]T’
w=[wl,wf]T,

where w; is the control input to design. Notice that w,.,w;
are skew-symmetric matrices in s0(3).

By asymptotic and finite time attitude tracking we mean
that for the multi-agent system (5), the absolute rotations of
agent 1 track the rotation of the target in the world frame
Fu asymptotically and in finite time, respectively. In other
words,

Ri — R, ast — oo, and
ir >0, st. Ry > R,, ast — T,

respectively.

IV. MAIN RESULT: SINGLE AGENT TRACKING

In this section, we first assume that the desired velocity
wr(t) € 50(3) and the geodesic difference are available to
the agent 1. Here we present two controllers as

Wia = log(Rl_er) + Wy,

1
Wif = T T
log(Ry ' R,)|lr
which will be proved to achieve asymptotic and finite-time
tracking, respectively.
As discontinuities are introduced if the controller (7) is
employed, we shall understand the trajectories in the sense

(6)

log(R{'R,) +w,r, ()
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of Filippov, namely an absolutely continuous function z(t)
satisfying the differential inclusion

Rr c Rrwr
R1 .F[lel’f]
=:F

for almost all time, where we used Theorem 1(5) in [16].

®)

Theorem 2. Consider system (5). Assume the system initial-
. . . L. tr(R, (0)R1(0))—1
ized without singularity, i.e., arccos(——"——5—-—) # T.
Then
1) the singularity is avoided for all time for both con-
troller (6) and (7);
2) the attitude Ry tracks R, exponentially and in finite
time, respectively, by (6) and (7). For (7), the conclu-
sion holds for all the solutions.

Proof. The proof is divided into two parts, one for each
controller (6) and (7).

Part I: In this part, we prove that by using controller (6),
the asymptotic tracking is achieved and the singularity is
avoided. We can write the closed-loop as

R,, = R,w,
Ry = Ri(log(RT'R,) + w,)
Notice that the singularity only happens at 6

arccos(%) = 7, hence we only need to show that
0(t) € [0,7) for all ¢ > 0. Notice that
a9 -1 0A -1 R
R,  VI_AZOR, 2/1_AZ U ©
90 -1 0A -1 R
ORi  V1I-AZOR, 2y1-A2 "
where A = %. Then we have
. 870 . o7o .
0(t) =tr(=—R, + —
) =GR, B+ g, ®)
-1 0
=t Y o (7_RT T <
24/1 — AZ sin(6) ' ( R, Ba R, Rl) 0

where the last inequality is based on the fact that
R!RiR'R; € SO(3). This proves that if the singularity
is avoid at the initialization, i.e., #(0) < 7, then it is avoided
along the trajectory.

Then consider the Lyapunov function W(R,, R;)
d% (R, Ry) = || log(R, R1)||%, and we have

ow

oR. —R,log(R] Ry)
ow T
OR, Ry log(R; R;)
and
. oTwW . oTwW .
W (t) = tr( R, R, + oR, Ry)
——tr (log" (R] R) log (R R,))
=—-2W.

238

Hence by LaSalle-Yoshizawa Theorem (see e.g., [5]), the
follower tracks the attitude of the target exponentially.

Part Il: In this part we prove that the finite-time tracking
can be achieved by controller (7) and the singularity is
avoided. The proof is similar to Part I. Hence we only
provide the sketch.

For this case, we need to consider differential inclusion (8)
since the discontinuity is present. Notice that the function W
and @ is C', hence regular. Then for 6 # 0, i.e., R R, # I,
we have

P 0 1

2v1 — AZsin(0) || log(R R,)||r
tr (I — R:RlR:Rl)}
CR_.

By the fact that 6 is C' continuous, hence 0(R,(t), R1(t))
is absolutely continuous and 6(t) exists almost everywhere
which belongs to £ r, 6. Then

0(t) /Ot 0(r)dr + 0(0) < 0(0),

which indicate the singularity is avoided.
Next, we prove the finite-time tracking. Consider the error
V := W with a > 1. Then the set-valued derivative is

2

given as
{—av2VP}, if RIR,. #1
’C}—lv = . T
{0}, if R/ R =1
where # = 29=1 € (0,1). Notice that

{(RNRl) | 0e ‘C]:1V} = {(RT7R1) ‘ V= 0}7

and V exists when V # 0, and V exists almost everywhere
when V' = 0 (by the fact that V' is C*, hence regular) and
V C L7,V = {0}. In other words, we have

V =—aV2VP for V#0

with 8 € (0, 1), which implies that V' converge to the origin
in finite time (see, e.g., [10], [9]). Hence we the follower
tracks the attitude of the target in finite time.

O

In the controller (6) and (7), it is assumed that the geodesic
state difference is available. In the rest part of this section,
we show that the same conclusion as in Theorem 2 can be
derived for the controller with Frobenius difference, which
is relative information as well, i.e.,

wia=R{ R, — R Ry +w,,
B 1
R — Rrl|lp

(10)

wi,f (R/ R, — R/ Ry) +w,,. (11

Corollary 3. Consider system (5). AssumeT the system initial-
ized without singularity, i.e., arccos(%) # .
Then
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1) the singularity is avoided for all time for both con-
troller (10) and (11);

2) the attitude Ry tracks R, exponentially and in finite
time, respectively, by (10) and (11). For (11), the
conclusion holds for all the solutions.

Proof. Here the proof is similar to the one of Theorem 2,
hence we only provide the sketch. Here the proof is again
divided into two parts.

Part I: First, by (9), we have
ore A
OR, OR,
RIR(R[ R, — R Ry))

O(t) =tr(==R, + Ry)
Tovioaz

-1
:ﬁ tr(

<0

I- RIRlRIRl)

Hence the singularities are avoided along the trajectory, i.e.,
the rotation matrices R,.(t)" Ri(t) # E;,i = 1,2,3 if the
equality does not hold for R,.(0)" R (0).

Then consider the Lyapunov function W(R,, R;)
1d%(Ry,R1) =3 — tr R Ry, then

W (t)

= — tI‘(R:Rl + R;rRl)
Ctr (I—RIRIRIRI)

<0.

Hence by LaSalle-Yoshizawa Theorem (see e.g., [5]), the
follower tracks the attitude of the target asymptotically.
Moreover, as the # — 0 asymptotically, there exists 1" such
that for any ¢ > 7', we have

tr(R] RiR]R)) <trR|R;.

Hence for ¢t < T, W < —W. This implies the convergence
is in fact exponential.

Part Il: The conclusion for controller (11) can be derived
similar to the proof of Theorem 2, by using the Lyapunov
function V = W for a € (3, 00). O

Remark 1. For the finite-time tracking controller (7) and
(11), one closely related work is [7]. Compare the result
here to the one in Section III in [7], which assumes that
the absolute attitude, the bounded velocity, the bounded
acceleration of the target are available to the follower, the
advantages of our controllers are that the control laws are
very intuitive, that we do not assume that the desired velocity
is bounded, and that only relative measurement is needed,
i.e., the geodesic and Frobenius difference.

V. CONCLUSION

In this paper, we consider the asymptotic and finite-
time attitude tracking problem. Based on the geodesic state
difference, one asymptotic and finite-time tracking protocols
are proposed. These protocols stabilize the system almost
globally, i.e., the state of the follower tracks the attitude
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of the target if the system is initialized without singularity.
For the finite-time controller, the solution of the closed-
loop system is understood in the sense of Filippov. Similar
protocols, asymptotic and finite-time one, are proposed if
the Frobenius state differences are available. Future topics
include estimation of the reference velocity using internal
model principle, and tracking protocols using adaptive con-
trol mechanisms e.g., prescribed performance control.
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