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Abstract— The design of optimal H2 dynamic controllers
for interconnected linear systems using limited plant model
information is considered. Control design strategies based on
various degrees of model information are compared using the
competitive ratio as a performance metric, that is, the worst
case control performance for a given design strategy normalized
with the optimal control performance based on full model
information. An explicit minimizer of the competitive ratio
is found. It is shown that this control design strategy is not
dominated by any other strategy with the same amount of
model information. The result applies to a class of system
interconnections and design information characterized through
given plant, control, and design graphs.

I. INTRODUCTION

Many large-scale physical systems are composed of sev-
eral smaller interconnected units. For these interconnected
systems, it seems natural to employ local controllers which
observe local states and control local inputs. The prob-
lem of designing such subcontrollers is usually addressed
in the decentralized and distributed control literature [1]–
[3]. Lately, there has been some efforts in formulating the
problem of designing optimal decentralized controllers as
a convex optimization problem for some specific classes
of subsystem interconnection [4]–[8]. At the heart of all
these decentralized and distributed control problems is the
assumption that the control design is done with complete
knowledge of the plant model. This is however not always
possible in large-scale systems. It might be the case that
(a) different subsystems belong to different individuals and
they might be unwilling to share their model information
since they may consider these information private, (b) the
design of each subcontroller is done by a different designer
with no access to the global plant model since in the time of
design the complete model information is not available, or
(c) the designer is interested in designing each subcontroller
using only local model information, so that the resulting
subcontrollers do not need to be modified if the model
parameters of a particular subsystem change over time. We
call this special class of control design problems limited
model information control design problems [9], [10]. In
these problems, we assume that only some part of the
plant model information is available to each subcontroller
designer, but that the system interconnection structure and
the common closed-loop cost function to be minimized are
global knowledge.
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The main contribution of this paper is to study the
influence of the subsystem interconnection, the controller
structure, and the amount of model information available to
each subdesign on the closed-loop performance that a limited
model information control design method can produce. We
compare the control design methods using a performance
metric called the competitive ratio, that is, the worst case
control performance for a given design strategy normalized
with the optimal control performance based on full model
information. We find an explicit minimizer of the competitive
ratio for a wide range of problems. Since this minimizer
might not be unique, we show that it is also undominated,
that is, there is no other control design method that acts
always better while having the same worst-case ratio.

This paper is organized as follows. We formulate the
problem of interest in Section II. We define a control design
strategy and find its competitive ratio in Section III. In
Section IV, we study the influence of interconnection pattern
between different subsystems on the best limited model
information control design method. We further study the
achievable performance of limited model information design
strategies when the controllers that they can produce are
structured in Section V. The trade-off between the amount
of plant information available to different parts of a control
design strategy and the quality of controllers it can produce
is considered in Section VI. Finally, we give the discussions
on extensions in Section VII and end with the conclusions
in Section VIII.

A. Notation

The sets of integer numbers, natural numbers, real num-
bers, and complex numbers are denoted respectively by Z,
N, R, and C. The boundary of the unit circle in C is shown
by T. The space of Lebesgue measurable functions that are
bounded on T is presented by L∞ and RL∞ is the set of
real proper rational transfer functions in L∞. Additionally,
all other sets are denoted by calligraphic letters such as P
and A.

Matrices are denoted by capital roman letters such as A.
The entry in the ith row and the j th column of matrix A is
aij . Aj will denote the j th row of A. Aij denotes a submatrix
of matrix A, the dimension and the position of which will
be defined in the text.
A > (≥)0 means that the symmetric matrix A ∈ Rn×n

is positive definite (positive semidefinite) and A > (≥)B
means A−B > (≥)0. Let Sn

++ (Sn
+) be the set of symmetric

positive definite (positive semidefinite) matrices in Rn×n.
All graphs considered in this paper are directed with vertex

set {1, ..., q} for a given q ∈ N. All self-loops are present in



the graphs that we consider in this paper, that is, (i, i) ∈ E
for all 1 ≤ i ≤ q. We say that a vertex i is a sink if there does
not exist j �= i such that (i, j) ∈ E. The adjacency matrix
S ∈ {0, 1}q×q of graph G is a matrix whose entry sij = 1
if (j, i) ∈ E and sij = 0 otherwise for all 1 ≤ i, j ≤ q.
In this paper, since the set of vertices is fixed for all the
graphs, a subgraph of a graph G is a graph whose edge set
is a subset of the edge set of G and a supergraph of a graph
G is a graph of which G is a subgraph. We use the notation
G′ ⊇ G to indicate that G′ is a supergraph of G.
σ(Y ) and σ̄(Y ) denote the smallest and the largest sin-

gular values of the matrix Y , respectively. Vector e i denotes
the column vector with all entries zero except the i th entry
which is equal to one. The function δ : Z → {0, 1} is the
unit-impulse function which is equal to one at origin and
zero anywhere else.

II. PROBLEM FORMULATION

A. Plant Model

Let a plant graph GP with adjacency matrix SP be given.
Based on the adjacency matrix SP , we define the following
set of matrices

A(SP ) = {Ā ∈ R
n×n | Āij = 0 ∈ R

ni×nj for all

1 ≤ i, j ≤ q such that (sP)ij = 0},
where for each 1 ≤ i ≤ q, ni ∈ N is the order of subsystem
i and consequently

∑q
i=1 ni = n. Besides, we define

B(ε) = {B̄ ∈ R
n×n | σ(B̄) ≥ ε, B̄ij = 0 ∈ R

ni×nj

for all 1 ≤ i �= j ≤ q},
for some given scalar ε > 0 and

H = {H̄ ∈ R
n×n | det(H̄) �= 0, H̄ij = 0 ∈ R

ni×nj

for all 1 ≤ i �= j ≤ q}.
Now we can introduce the set P of plants of interest as the
space of all discrete-time linear time-invariant systems

x(k + 1) = Ax(k) +Bu(k) +Hw(k) ; x(0) = 0, (1)

with A ∈ A(SP ), B ∈ B(ε), and H ∈ H. With slightly abus-
ing notation, we show a plant P ∈ P with triple (A,B,H)
since the set P is clearly isomorph to A(SP) × B(ε) × H.
We will denote the ordered set of state indices related to
subsystem i with Ii, that is, Ii := (1 +

∑i−1
j=1 nj , . . . , ni +∑i−1

j=1 nj). For subsystem i, state xi ∈ Rni , control input
ui ∈ Rni , and exogenous input w i ∈ Rni are defined as

xi =

⎡
⎢⎣

x�1
...

x�ni

⎤
⎥⎦ , ui =

⎡
⎢⎣

u�1
...

u�ni

⎤
⎥⎦ , wi =

⎡
⎢⎣

w�1
...

w�ni

⎤
⎥⎦

where the ordered set of indices (�1, . . . , �ni) ≡ Ii, and its
dynamic is specified by

xi(k + 1) =

q∑
j=1

Aijxj(k) +Biiui(k) +Hiiwi(k).

An example of a plant graph GP is given in Figure 1(a).
For instance, the plant graph GP shows that the second
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Fig. 1. GP and G′
P are examples of plant graphs, GK and G′

K are
examples of control graphs, and GC and G′

C are examples of design graphs.

subsystem can affect the first and the third subsystems, that
is, A12 and A32 can be nonzero. The first system is also a
sink in the plant graph GP . An example of a plant graph
G′

P without sink is given in Figure 1(a′).

B. Controller

Let a control graph GK with adjacency matrix SK be
given. In this paper, we are interested in dynamic discrete-
time linear time-invariant state feedback control laws of the
form

xK(k + 1) = AKxK(k) +BKx(k) ; xK(0) = 0,

u(k) = CKxK(k) +DKx(k),

which can also be represented as the transfer function

K �
[

AK BK

CK DK

]
= CK(zI −AK)−1BK +DK ,

where z is the symbol for one time-step forward shift
operator. The controller K must belong to

K(SK) = {K̄ ∈ (RL∞)n×n|K̄ij = 0 ∈ (RL∞)ni×nj

for all 1 ≤ i, j ≤ q such that (sK)ij = 0}.
We refer to the set of controllers as K when adjacency matrix
SK can be deduced from the context or it is not relevant.

Figure 1(b) shows an example of an incomplete control
graph GK that characterizes a set of structured controllers.
For instance, using control graph GK, we know that the
third subsystem only has access to state measurements of
the second subsystem beside its own state measurements,
that is, K31 = 0 while K32 and K33 can be nonzero.

C. Control Design Methods

A control design method Γ is a map from the set of plants
P to the set of controllers K. Let a control design method
Γ be partitioned according to subsystems dimensions like

Γ =

⎡
⎢⎣

Γ11 · · · Γ1q

...
. . .

...
Γq1 · · · Γqq

⎤
⎥⎦ (2)

and a design graph GC with adjacency matrix SC be given.
Each element Γij is a mapping A(SP) × B(ε) × H →
(RL∞)ni×nj . We say that Γ has structure GC if, for all
1 ≤ i ≤ q, the subsystem i subcontroller is constructed with



the knowledge of those subsystems 1 ≤ j ≤ q plant model
such that (j, i) ∈ EC , that is, the mapping [ Γi1 · · · Γiq ] is
only a function of {[ Aj1 · · · Ajq ] , Bjj , Hjj | (sC)ij �= 0} .
The set of all these limited model information control design
methods with structure GC is denoted by C.

Figure 1(c) shows an example of a design graph GC . For
instance, using this design graph GC , we realize that the third
subsystem model is available to the designer of the second
subsystem controller but not the first subsystem model.
Figure 1(c′) illustrates an example of a fully disconnected
design graph G′

C with self-loops only which shows that the
controller of all subsystems are constructed using only their
own model information.

D. Performance Metric

The considered performance metrics is a modified version
of the performance metrics originally defined in [9], [10].
Let us start with introducing the closed-loop performance
measure.

To each plant P = (A,B,H) ∈ P and controller K ∈ K,
we associate a performance measure which is the H2 norm
of the transfer function between the exogenous input w(k)
and the output

y(k) =
[
CT 0

]T
x(k) +

[
0 DT

]T
u(k),

where the matrices C ∈ Rn×n and D ∈ Rn×n are block
diagonal full-rank matrices with each diagonal block entry
belonging to Rni×ni . Figure 2 illustrates the feedback system
with the given controller K and the overall-plant

P̂ =

⎡
⎣ A H B

Ĉ 0 D̂
I 0 0

⎤
⎦

where Ĉ =
[
CT 0

]T
and D̂ =

[
0 DT

]T
. Using the

notation F(P̂ ,K) for the closed-loop transfer function from
w(k) to y(k), the performance measure can be written as

JP (K) = ‖F(P̂ ,K)‖2. (3)

We make the following standing assumption:
ASSUMPTION 2.1: C = D = I .
This is without loss of generality because the change of

variables (x̄, ū) = (Cx,Du) transforms the output of the
system and its state space representation into

y(k) =
[
I 0

]T
x̄(k) +

[
0 I

]T
ū(k),

and

x̄(k + 1) = CAC−1x̄(k) + CBD−1ū(k).

This is done without changing the plant, control, or design
graphs because of the block diagonal structure of matrices
C and D.

DEFINITION 2.2: (Competitive Ratio) Let a plant graph
GP , a control graph GK, and a constant ε > 0 be given.
Let us assume that, for each plant P ∈ P , there exists an
optimal controller K∗(P ) ∈ K such that

JP (K
∗(P )) ≤ JP (K), ∀K ∈ K.

 

 

 

 

  

  

Fig. 2. The feedback system with the given controller K and the overall-
plant P̂ .

The competitive ratio of a control design method Γ is defined
as

rP (Γ) = sup
P=(A,B,H)∈P

JP (Γ(P ))

JP (K∗(P ))
,

with the convention that “ 0
0” equals one.

DEFINITION 2.3: (Domination) A control design method
Γ′ is said to dominate another control design method Γ if

JP (Γ
′(P )) ≤ JP (Γ(P )), ∀ P = (A,B,H) ∈ P , (4)

with strict inequality holding for at least one plant in P .
When Γ ∈ C and no control design method Γ ′ ∈ C exists
that satisfies (4), we say that Γ is undominated in C.

E. Mathematical Problem Formulation

Now we can formulate the primary question concerning
the connection between closed-loop performance and limited
model information control design strategies. For a given plant
graph GP , control graph GK, and design graph GC , we want
to solve

argmin
Γ∈C

rP(Γ). (5)

Since the solution to this problem might not be unique, we
are interested in finding a minimizer that is also undomi-
nated. These solutions are the best worst-case designs with
limited model information.

III. PRELIMINARY RESULTS

In order to give the main results of the paper, we need
to define a control design strategy and find its competitive
ratio.

DEFINITION 3.1: Let a plant graph GP and a constant
ε > 0 be given. The control design method ΓΘ is defined as

ΓΘ(P ) = −diag(W1(P ), . . . ,Wq(P ))A, (6)

for all plants P = (A,B,H) ∈ A(SP)× B(ε)×H, where

Wi(P ) =

{
(I +BT

iiXiiBii)
−1BT

iiXii, if i is a sink,
B−1

ii , otherwise,

and for each sink i the matrix Xii is the unique positive
definite solution of the discrete algebraic Riccati equation

AT
iiXiiAii −AT

iiXiiBii(I +BT
iiXiiBii)

−1BT
iiXiiAii

−Xii + I = 0.
The control design method ΓΘ applies the so-called dead-

beat strategy [10] to every subsystem that is not a sink (thus
those closed-loop subsystems reach origin in just one time-
step [11]) and, for every sink, applies the same optimal



control law as if the node were decoupled from the rest of
the graph.

LEMMA 3.2: The competitive ratio of the control design
method ΓΘ defined in (6) is rP(ΓΘ) =

√
1 + 1/ε2 if one of

the following conditions is satisfied:

(a) the plant graph GP contains no isolated node and the
control graph GK is a complete graph;

(b) the acyclic plant graph GP contains no isolated node
and GK ⊇ GP .

Proof: Let K∗
C(P ) denotes the optimal static full-state

feedback (centralized) controller for each plant P ∈ P .
According to the proof of the “only if” part of Theorem 3.6
in [10], we have

Z ≤ ATB−TB−1A+ I, (7)

for all plants P = (A,B,H) ∈ P , where Z is the unique
positive definite solution of discrete algebraic Lyapunov
equation

(A+ BΓΘ(P ))TZ(A+BΓΘ(P ))− Z

+ I + ΓΘ(P )TΓΘ(P ) = 0.
(8)

Thus, the cost of the control design strategy ΓΘ for each
plant P = (A,B,H) is upper-bounded as

JP (Γ
Θ(P ))2 = tr

(
HTZH

)
≤ tr

(
HT

(
ATB−TB−1A+ I

)
H
)
.

(9)

where tr(·) denotes the trace of a matrix. According to
Theorem 3.2 in [10], it is evident that

ATB−TB−1A ≤ (
1 + 1/ε2

)
(X − I),

and equivalently

tr(HTATB−TB−1AH) ≤ (
1 + 1/ε2

)
tr(HT (X − I)H),

(10)
where X is the unique positive definite solution of discrete
algebraic Riccati equation

ATXA−ATXB(I +BTXB)−1BTXA = X − I. (11)

Putting (10) in (9), we get

JP (Γ
Θ(P ))2 ≤ (

1 + 1/ε2
)

tr(HTXH)

=
(
1 + 1/ε2

)
JP (K

∗
C(P ))2.

Clearly, because JP (K
∗
C(P )) ≤ JP (K

∗(P )), irrespective of
the control graph GK, we have

JP (Γ
Θ(P ))2 ≤ (

1 + 1/ε2
)
JP (K

∗(P ))2,

and as a result

rP (ΓΘ) = sup
P=(A,B,H)∈P

JP (Γ
Θ(P ))

JP (K∗(P ))
≤

√
1 + 1/ε2.

To show that this upper-bound is tight, we should exhibit
plants for which it is attained.

Part a: Condition (a) is satisfied. Since there is no isolated
node in the plant graph, we can pick indices 1 ≤ i �= j ≤ q

such that (sP)ij �= 0. The rest of the proof is given in two
different cases.

Case a.1: Node i is not a sink. Pick indices i1 ∈ Ii and
j1 ∈ Ij . Let A(s) = sei1e

T
j1

, B = εI , and H = I . We get

rP (ΓΘ) ≥ lim
s→∞

√
s2/ε2 + n

s2/(1 + ε2) + n
=

√
1 + 1/ε2,

since the unique positive definite solution of discrete alge-
braic Riccati equation in (11) is X = I+[s2/(1+ε2)]ej1e

T
j1

,
and as a result JP (K

∗(P )) =
√
s2/(1 + ε2) + n.

Case a.2: Node i is a sink. We know (sP)ii �= 0 since
all the self-loops are present. Pick i1 ∈ Ii and j1 ∈ Ij . Let
A(r, s) = rei1e

T
i1
+ sei1e

T
j1

, B = εI , and H = I . According
to Theorem 3.8 in [10], we get

JP (Γ
Θ(P )) =

√
βΘ(s2 + r2) + n,

where

βΘ =

√
r4 + 2r2ε2 − 2ar2 + ε4 + 2ε2 + 1 + r2 − ε2 − 1

2ε2r2
.

Again, using Theorem 3.8 in [10], the optimal closed-loop
performance is

JP (K
∗(P )) =

√
βK∗(s2 + r2) + n,

where βK∗ is

βK∗ =
ε2s2 + r2(1 + ε2)− (ε2 + 1)2 +

√
c+c−

2ε2(ε2 + 1)(s2 + r2)
,

c± = ε2s2 + (r2 ± 2r)(ε2 + 1) + (ε2 + 1)2.

Then, we get

rP (ΓΘ) ≥ lim
r→∞, sr→∞

JP (Γ
Θ(P ))

JP (K∗(P ))
=

√
1 + 1/ε2.

Part b: Condition (b) is satisfied. Any acyclic directed
graph has at least one sink. Let i denote a sink in plant graph
GP . Since there is no isolated node in the plant graph, there
exists an index j �= i such that (sP)ij �= 0. Pick i1 ∈ Ii
and j1 ∈ Ij . Let A(r, s) = rei1e

T
i1 + sei1e

T
j1 , B = εI , and

H = I . According to Lemma 4.1 in [12], we get

JP (K
∗
P(P )) =

√
βK∗s2 + βΘr2 + n,

where K∗
P(P ) is the optimal controller when GK is equal to

GP . This results in

rP(ΓΘ) ≥ lim
r→∞, sr→∞

JP (Γ
Θ(P ))

JP (K∗(P ))

≥ lim
r→∞, sr→∞

JP (Γ
Θ(P ))

JP (K∗
P(P ))

=
√
1 + 1/ε2

since clearly JP (K
∗(P )) ≤ JP (K

∗
P(P )).

Lemma 3.2 shows that, if we apply the control design
strategy ΓΘ to a particular plant, the performance of the
closed-loop system, at most, can be

√
1 + 1/ε2 times the

cost of the optimal control design strategy K ∗.
There is no loss of generality in assuming that the plant

graph GP contains no isolated node since it is always
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Fig. 3. State transition of the closed-loop system and its controller as a
function of time for the exogenous input w(k) = δ(k)ej1 .

possible to design an optimal controller for an isolated
subsystem without any model information about the other
subsystems and without affecting them. In particular, this
implies that there are q ≥ 2 vertices in the plant graph.

IV. PLANT GRAPH INFLUENCE ON ACHIEVABLE

PERFORMANCE

In this section, we study the achievable closed-loop perfor-
mance, in terms of the competitive ratio and the domination,
for different plant interconnection pattern. The next theorem
shows that the control design strategy ΓΘ is an undominated
minimizer of the competitive ratio for all given plant graphs
GP when the control graph GK is a complete graph and the
design graph GC is fully disconnected.

THEOREM 4.1: Let the plant graph GP contain no iso-
lated node, the control graph GK be a complete graph,
and the design graph GC be a totally disconnected graph.
Then, the competitive ratio of any control design strategy
Γ ∈ C satisfies rP (Γ) ≥ rP (ΓΘ). Furthermore, the control
design strategy ΓΘ is undominated by set of limited model
information control design strategies with design graph GC .

Proof: We use the following notation

Γ(P ) =

[
AΓ(P ) BΓ(P )
CΓ(P ) DΓ(P )

]
,

to work with different parts of the state-space representation
of a control design strategy Γ. The entries AΓ(P ), BΓ(P ),
CΓ(P ), and DΓ(P ) are matrices with appropriate dimension
for each plant P = (A,B,H) ∈ P . The matrices AΓ(P )
and CΓ(P ) are block diagonal matrices since different sub-
controllers should not share state variables (each controller
should be implemented in a decentralized fashion). This
realization is not necessarily a minimal realization.

Consider indices 1 ≤ i �= j ≤ q such that (sP)ij �= 0 (this
is always possible since there is no isolated node in the plant
graph). The rest of the proof is given in two different cases.

Case 1: Node i is not a sink. Therefore, there exists an
index � �= i such that (sP )�i �= 0. Pick indices �1 ∈ I�,
i1 ∈ Ii and j1 ∈ Ij and define A(r, s) = sei1e

T
j1
+ re�1e

T
i1

and B = εI . Let Hjj = rI and Htt = I for all t �= j.
Using the exogenous impulse input w(k) = δ(k)ej1 and the
time-steps given in Figure 3, we get

JP (Γ(P ))2 ≥ u�1(2)
2 + x�1(3)

2

= u�1(2)
2 +

(
r2(s+ ε(dΓ)i1j1(s)) + εu�1(2)

)2
≥ r4(s+ ε(dΓ)i1j1(s))

2/(ε2 + 1),

because, irrespective of the choice of u�1(2), the function
u�1(2)

2+(r2(s+ε(dΓ)i1j1(s))+εu�1(2))
2 is lower-bounded

by r4(s + ε(dΓ)i1j1(s))
2/(ε2 + 1). It is worth mentioning

that (dΓ)i1j1(s) is only a function of the scalar s and it is
independent of the scalar r, since r is in model parameters
of subsystems �, j �= i and the design graph is fully
disconnected. On the other hand

JP (Γ
Δ(P )) =

√
tr (HT ((1/ε2)ATA+ I)H)

=
√
(s2r2 + r2)/ε2 + n− nj + njr2,

where ΓΔ is the deadbeat control design strategy and it is
defined as ΓΔ(P ) = −B−1A [10]. Therefore

rP (Γ) = sup
P∈P

JP (Γ(P ))

JP (K∗(P ))

= sup
P∈P

[
JP (Γ(P ))

JP (ΓΔ(P ))

JP (Γ
Δ(P ))

JP (K∗(P ))

]

≥ sup
P∈P

JP (Γ(P ))

JP (ΓΔ(P ))

≥ lim
r→∞

√
r4(s+ ε(dΓ)i1j1(s))

2/(ε2 + 1)

(s2r2 + r2)/ε2 + n− nj + njr2
.

(12)

since JP (Γ
Δ(P )) ≥ JP (K

∗(P )) for all plants P ∈ P . The
competitive ratio rP(Γ) is bounded only if s+ε(dΓ)i1j1(s) =
0. Therefore, there is no loss of generality in assuming that
(dΓ)i1j1(s) = −s/ε because otherwise the rP (Γ) is infinity
and the inequality rP(Γ) ≥ rP (ΓΘ) is trivially satisfied.
Now, let us redefine A(s) = sei1e

T
j1

, H = I and B = εI .
Since the parameters of the subsystem i is not changed, we
have (dΓ)i1j1(s) = −s/ε. Therefore, for the same impulse
exogenous input w(k) = δ(k)ej1 , we have

JP (Γ(P ))2 ≥ ui1(1)
2 = (dΓ)i1j1(s)

2 = s2/ε2,

and

rP(Γ) ≥ lim
s→∞

√
s2/ε2

s2/(1 + ε2) + n
=

√
1 + 1/ε2, (13)

since similar to Case a.1 in the proof of Lemma 3.2, we have
JP (K

∗(P )) =
√
s2/(1 + ε2) + n.

Case 2: Node i is a sink. We have (sP)ii �= 0 since all the
self-loops are present. Let us pick i1 ∈ Ii and j1 ∈ Ij . Let
A(r, s) = rei1e

T
i1
+ sei1e

T
j1

, B = εI , and H = I . According
to the proof of the “only if” part of Theorem 3.6 in [10], for
this particular family of plants, ΓΘ(P ) is the globally optimal
H2 state-feedback controller. Now using Case a.2 in the proof
of Lemma 3.2, it is easy to see that rP (Γ) ≥

√
1 + 1/ε2.

To prove that the control design strategy ΓΘ is undom-
inated by set of limited model information control design
strategies Γ ∈ C, we construct plants P = (A,B,H) ∈ P
that satisfy JP (Γ(P )) > JP (Γ

Θ(P )) for any control design
method Γ ∈ C\{ΓΘ}. The detailed proof of this part is given
in [12].

As an example, consider the limited model information
design problem given by the plant graph G ′

P in Figure 1(a′),



the control graph G′
K in Figure 1(b′), and the design graph

G′
C in Figure 1(c′). Theorem 4.1 shows that the control

design strategy ΓΘ is the best control design strategy that one
can propose based on the local model of subsystems since it
is an undominated minimizer of the competitive ratio.

V. CONTROL GRAPH INFLUENCE ON ACHIEVABLE

PERFORMANCE

In this section, we study the structured controllers and
their influence on the achievable closed-loop performance of
the limited model information control design strategies. Note
that finding the optimal control design strategy K ∗(P ) is
numerically intractable for general plant and control graphs.
We use the results in [6], [7] which give an explicit solution
to the problem of designing optimal decentralized controller
for some special classes of subsystems interconnection and
controller structures. Therefore, we assume that the plant
graph GP is an acyclic directed graph and the control graph
GK is a supergraph of the plant graph GP . Note that the
control design strategy ΓΘ is still applicable in this scenario.

THEOREM 5.1: Let the acyclic plant graph GP contain no
isolated node, the design graph GC be a totally disconnected
graph, and GK ⊇ GP . Then, the competitive ratio of any
control design strategy Γ ∈ C satisfies rP(Γ) ≥ rP (ΓΘ).
Furthermore, the control design strategy ΓΘ is undominated
by set of limited model information control design strategies
with design graph GC .

Proof: Any acyclic directed graph has at least one sink.
Let i denote a sink in plant graph GP . Since there is no
isolated node in the plant graph, there exists an index j �=
i such that (sP)ij �= 0. Pick i1 ∈ Ii and j1 ∈ Ij . Let
A(r, s) = rei1e

T
i1 + sei1e

T
j1 , B = εI , and H = I . According

to the proof of the “only if” part of Theorem 3.6 in [10], for
this particular family of plants, ΓΘ(P ) is the globally optimal
H2 state-feedback controller. Now using Part b of the proof
of Lemma 3.2, it is easy to see that rP (Γ) ≥

√
1 + 1/ε2.

The detailed proof of the part that control design strategy
ΓΘ is undominated is given in [12].

For instance, consider the limited model information de-
sign problem given by the plant graph GP in Figure 1(a),
the control graph GK in Figure 1(b), and the design graph
G′

C in Figure 1(c′). Theorem 5.1 illustrates that the control
design strategy ΓΘ is again the best control design strategy
that one can propose based on the local model of subsystems,
because it is an undominated minimizer of the competitive
ratio.

VI. DESIGN GRAPH INFLUENCE ON ACHIEVABLE

PERFORMANCE

In this section, we try to determine the amount of the
model information that we need in each subsystem to be
able to setup a control design strategy Γ with a smaller
competitive ratio than the control design strategy ΓΘ.

THEOREM 6.1: Let the plant graph GP and the design
graph GC be given and GK ⊇ GP . If the plant graph GP
contains the path j → i → � with distinct vertices i, j, and
� while (�, i) /∈ EC , then rP(Γ) ≥ rP (ΓΘ) for all Γ ∈ C.

Proof: Because of the path j → i → � with distinct
vertices i, j, and k, we have (sP)ij �= 0 and (sP )�i �= 0. Pick
indices �1 ∈ I�, i1 ∈ Ii and j1 ∈ Ij and define A(r, s) =
sei1e

T
j1 + re�1e

T
i1 , B = εI , and H = I . Similar to the proof

of Theorem 4.1, using the exogenous impulse input w(k) =
δ(k)ej1 and the time-steps given in Figure 3, we get

JP (Γ(P ))2 ≥ r2(s+ ε(dΓ)i1j1(s))
2/(ε2 + 1),

Again, it should be noted that (dΓ)i1j1(s) is only a function
of the scalar s, and it is independent of the scalar r because
r has appeared in model matrices of the subsystem � �= i,
and (�, i) /∈ EC . We claim that for the competitive ratio to
be bounded there should exist a positive constant θ ∈ R

independent of scalars s such that |s + ε(dΓ)i1j1(s)| ≤ θ.
Assume this claim is not true, thus, there exist a sequence
of scalars {sz}∞z=1 ⊂ R such that

lim
z→∞ |sz + ε(dΓ)i1j1(sz)| = +∞.

Clearly, using (12) we get

rP (Γ) ≥ lim
z→∞, r

sz
→∞

√
r2|sz + ε(dΓ)i1j1(sz)|2/(ε2 + 1)

(s2z + r2)/ε2 + n

= +∞.

since JP (Γ
Δ(P )) =

√
(s2z + r2)/ε2 + n. Now, lets redefine

A(s) = sei1e
T
j1

. Since the model parameters of the subsys-
tem i is not changed, and its controller is not a function
of the model parameters of subsystem �, the design entry
(dΓ)i1j1(s) stays the same. Therefore, |s+ ε(dΓ)i1j1(s)| ≤ θ
for all s ∈ R, and as a result, for large enough |s|, we get
|(dΓ)i1j1(s)| ≥ (|s| − θ)/ε. Therefore, using the exogenous
impulse input w(k) = δ(k)ej1 , we get

JP (Γ(P ))2 ≥ ui1(1)
2 = (dΓ)i1j1(s)

2 ≥ (|s| − θ)2/ε2,

and

rP(Γ) ≥ lim
s→∞

√
(|s| − θ)2/ε2

s2/(1 + ε2) + n
=

√
1 + 1/ε2.

For this special plant, we know K ∗
C(P ) = −ε/(1 + ε2)A

belongs to the set K(SK) since the control graph GK ⊇
GP , and consequently JP (K

∗(P )) ≤ JP (K
∗
C(P )) because

K∗(P ) has a lower cost than any other controller is K(SK).
On the other hand, clearly, for any plant JP (K

∗
C(P )) ≤

JP (K
∗(P )). Therefore, for this special plant

JP (K
∗(P )) = JP (K

∗
C(P )) =

√
s2/(1 + ε2) + n.

This concludes the proof.

Consider the limited model information design problem
given by the plant graph G′

P in Figure 1(a′), the control
graph G′

K in Figure 1(b′), and the design graph GC in
Figure 1(c). Note that there is a path 3 → 2 → 1 in the
plant graph GP but the edge 1 → 2 is not present in the
design graph GC . Therefore, using Theorem 6.1, it is easy
see that rP(Γ) ≥ rP (ΓΘ) for any Γ ∈ C.



VII. EXTENSIONS

In this section, we relax the assumption that all the sub-
systems are required to be fully-actuated, that is, B ∈ B(ε)
is square invertible. To do so, we assume that plant graph
GP is an acyclic directed graph with c ≥ 1 sinks since any
acyclic graph has at least one sink. Accordingly, its adjacency
matrix SP is of the form

SP =

[
(SP )11 0(q−c)×(c)

(SP )21 (SP)22

]
, (14)

where

(SP)11 =

⎡
⎢⎣

(sP)11 · · · (sP)1,q−c

...
. . .

...
(sP )q−c,1 · · · (sP)q−c,q−c

⎤
⎥⎦ ,

(SP)21 =

⎡
⎢⎣

(sP )q−c+1,1 · · · (sP)q−c+1,q−c

...
. . .

...
(sP)q,1 · · · (sP)q,q−c

⎤
⎥⎦ ,

and (SP)22 = diag((sP)q−c+1,q−c+1, . . . , (sP )qq), where
we assume, without loss of generality, that the vertices are
numbered such that the sinks are labeled q − c + 1, . . . , q.
We define the set P ′ of plants of interest as the set of all
triples (A,B,H) ∈ A(SP)× B′(ε)×H where

B′(ε) = {B̄ ∈ R
n×m | σ(B̄) ≥ ε, B̄ij = 0 ∈ R

ni×mj

for all 1 ≤ i �= j ≤ q}.
Each mi ∈ N is the number of control inputs in subsystem i,
and consequently

∑q
i=1 mi = m. Let relax mi ≤ ni for all

q − c+ 1 ≤ i ≤ q but force mi = ni otherwise. In addition,
all matrices A and B must satisfy
(a) (Aii, Bii) is controllable,
(b) span(Aij) ⊆ span(Bii) for all j �= i or equivalently
there should exist a matrix Wi ∈ Rmi×(n−ni) such that
[Ai1 · · · Ai,i−1 Ai,i+1 · · · Aiq] = BiiWi,

for all q − c + 1 ≤ i ≤ q. For this new set of plants, the
control design strategy ΓΘ is still applicable since it does
not require Bii to be invertible for q − c+ 1 ≤ i ≤ q.

Now we are ready to solve the problem (5) for this set of
underactuated plants P ′.

THEOREM 7.1: Let the acyclic plant graph GP contain
no isolated node, the control graph GK be equal to the plant
graph GP , and the design graph GC be a totally disconnected
graph. Then, the competitive ratio of any control design
strategy Γ ∈ C satisfies rP(Γ) ≥ rP(ΓΘ) =

√
1 + 1/ε2

if (SP)11 is not diagonal. Furthermore, the control design
strategy ΓΘ is undominated by set of limited model infor-
mation control design strategies with design graph GC .

Proof: Similar to (14), we can write any A ∈ A(SP) as

A =

[
Ã11 0

Ã21 Ã22

]
,

where

Ã11 =

⎡
⎢⎣

A11 · · · A1,q−c

...
. . .

...
Aq−c,1 · · · Aq−c,q−c

⎤
⎥⎦ ,

Ã21 =

⎡
⎢⎣

Aq−c+1,1 · · · Aq−c+1,q−c

...
. . .

...
Aq1 · · · Aq,q−c

⎤
⎥⎦ ,

and Ã22 = diag(Aq−c+1,q−c+1, . . . , Aqq). Clearly, if we
apply deadbeat to all subsystems that are not sinks, the other
subsystems (i.e., sinks) become decoupled (see Theorem 3.6
in [10]), and as a result

JP (Γ
Θ(P ))2 = J (1)(Ã11, B̃11, H̃11)

+ J (2)(Ã21, Ã22, B̃22, H̃22)

where H = diag(H̃11, H̃22), B = diag(B̃11, B̃22),
J (1)(Ã11, B̃11, H̃11) is the cost of applying deadbeat
control design to the nodes that are not sinks, and
J (2)(Ã21, Ã22, B̃22, H̃22) is the cost of applying the same
optimal control law as if the sinks were decoupled from the
rest of the graph. Thus, we get

J (1)(Ã11, B̃11, H̃11) = tr(H̃T
11Ã

T
11B̃

−T
11 B̃−1

11 Ã11H̃11)

and

J (2)(Ã21, Ã22, B̃22,H̃22) ≤ tr(H̃T
22Y H̃22)

+ tr(H̃T
11Ã

T
21B̃

†T
22 B̃

†
22Ã21H̃11)

(15)

where B̃†
22 = (BT

22B22)
−1BT

22. The inequality in (15) is
true since J (2)(Ã21, Ã22, B̃22, H̃22) is the cost of the optimal
control law as if the sinks were decoupled from the rest of
the graph (see Theorem 3.6 in [10]), and it certainly has a
lower cost than any other controller particularly

K2 = −[B̃†
22Ã21 (I + B̃T

22Y B̃22)
−1B̃T

22Y Ã22],

where Y is the unique positive definite solution of discrete
algebraic Riccati equation

ÃT
22Y Ã22 − ÃT

22Y B̃22(I + B̃T
22Y B̃22)

−1B̃T
22Y Ã22

− Y + I = 0.

Note that since Ã22 is block diagonal, the positive definite
matrix Y is also block diagonal, and each block is only a
function the corresponding subsystem. Thus, we get

JP (Γ
Θ(P ))2 ≤ tr(H̃T

22Y H̃22)+

tr(H̃T
11(Ã

T
11B̃

−T
11 B̃−1

11 Ã11 + ÃT
21B̃

†T
22 B̃

†
22Ã21)H̃11).

(16)

The optimal closed-loop performance is JP (K
∗(P ))2 =

tr(HTUH) where U = [In×n 0]V [In×n 0]T and V is
the unique positive definite solution of discrete algebraic
Lyapunov equation in (17). The entries A∗(P ), B∗(P ),
C∗(P ), and D∗(P ) are state-space realization matrices of
the optimal control design strategy K ∗(P ) for a given plant
P ∈ P ′. Clearly, we have

JP (K
∗(P ))2 =

n∑
t=1

eTt H
TUHet =

n∑
t=1

∞∑
k=0

y(t)(k)T y(t)(k),

where for each t the vector y (t)(k) is the output of the system
to the exogenous impulse input w (t)(k) = δ(k)et. This is
true because for each t the summation

∑∞
k=0 y

(t)(k)T y(t)(k)
gives the diagonal element eTt H

TUHet. For any P =



[
A+BD∗(P ) BC∗(P )

B∗(P ) A∗(P )

]T

V

[
A+BD∗(P ) BC∗(P )

B∗(P ) A∗(P )

]
−V +

[
I 0
0 0

]
+

[
D∗(P )TD∗(P ) D∗(P )TC∗(P )
C∗(P )TD∗(P ) C∗(P )TC∗(P )

]
= 0 (17)

(A,B,H) ∈ P ′, we know that HTUH ≥ HTXH since
centralized controller has the least performance cost over
all other controllers either dynamic or static. Thus, for each
t ∈ N =

⋃q−c
z=1 Iz , we get eTt H

TUHet ≥ eTt H
TXHet

which shows∑
t∈N

∞∑
k=0

y(t)(k)T y(t)(k) ≥
∑
t∈N

eTt (H
TXH)et.

According to [13], we have X ≥ AT (I+BBT )−1A+ I for
any P ∈ P ′, and consequently

∑
t∈N

∞∑
k=0

y(t)(k)T y(t)(k) ≥ tr(H̃T
11(Ã

T
11(I + B̃11B̃

T
11)

−1Ã11

+ ÃT
21(I + B̃22B̃

T
22)

−1Ã21)H̃11).

On the other hand, for each t ∈ S =
⋃q

z=q−c+1 Iz , we
know there exists a sink i such that t ∈ Ii. For each
w(t)(k), we get xj = 0 for any j �= i (since i is a sink in
GP ). The other subsystems cannot use state-measurements
of subsystem i because GK is equal to GP (and consequently
i is a sink in GK). Therefore, at best case scenario, the
cost of controlling subsystem i is equal to the cost of
optimal controller designed locally (independent of other
subsystems). Thus, we get

∑
t∈S

∞∑
k=0

y(t)(k)T y(t)(k) ≥ tr(H̃T
22Y H̃22).

Therefore, we get

JP (K
∗(P ))2 ≥ tr(H̃T

11(Ã
T
11(I + B̃11B̃

T
11)

−1Ã11

+ ÃT
21(I + B̃22B̃

T
22)

−1Ã21)H̃11) + tr(H̃T
22Y H̃22).

(18)

Now, lets define the set

M = {β̄ ∈ R | β̄JP (K∗(P ))− JP (Γ
Θ(P )) ≥ 0 ∀P ∈ P ′}.

Using the inequalities in (16) and in (18), it is evident if

tr
(
H̃T

11(Ã
T
11

[
β2(I + B̃11B̃

T
11)

−1 − B̃−T
11 B̃−1

11

]
Ã11

+ÃT
21

[
β2(I + B̃22B̃

T
22)

−1 − B̃†T
22 B̃

†
22

]
Ã21)H̃11

)
≥ 0.

(19)

for some β ∈ R, then β would belong to M. Thus, { β̄ ∈
R | β̄ ≥ √

1 + 1/ε2} ⊆ M. This shows that rP(ΓΘ) ≤√
1 + 1/ε2. Now if (SP)11 is not diagonal, with the same

argument as in the proof of Case 1 in Theorem 5.1, we get
rP(Γ) ≥ rP(ΓΘ) =

√
1 + 1/ε2 for any Γ ∈ C. This can be

done because there are at least two fully-actuated subsystems
and we can forget about the underactuated subsystems.

The proof of the part that the control design strategy ΓΘ

is undominated is similar to the one given in [12] for fully-
actuated subsystems.

VIII. CONCLUSIONS

We considered optimal H2 dynamic control design for
interconnected linear systems under limited plant model
information. We introduced control design strategies as func-
tions from the set of plants to the set of structured dynamic
controller and compared these control design strategies us-
ing the competitive ratio as a performance metric. For a
large class of system interconnections, controller structure,
and design information, we found an explicit undominated
minimizer of the competitive ratio.
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