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Abstract—In the design of cyber-physical systems (CPS) where
multiple physical systems are coupled via a communication
network, a key aspect is to study how network services are
distributed. To answer this adequately, we consider the coupling
parameters between the control and network layers, and also the
time-sensitive limitations and tolerances of the individual physical
systems and the network. In this article, we first describe a cross-
layer model for CPS wherein multiple stochastic linear processes
are coupled via a shared network that provides a diverse range
of cost-prone and capacity-limited services with distinct latency
characteristics. Service prices are given such that low latency
services incur higher communication cost, and prices remain
fixed over a constant period of time but will be adjusted by
the network for the future time periods. Physical systems decide
to use specific services over each time interval depending on
the service prices and their own time sensitivity requirements.
Considering the service availability, the network coordinates
resource allocation such that physical systems are serviced the
closest to their preferences. Performance of individual systems are
measured by an expected quadratic cost and we formulate a social
optimization problem subject to time-sensitive requirements of
the physical systems and the network constraints. From the
formulated social optimization problem, we derive the joint
optimal time-sensitive control and service allocation policies.

Index Terms—Cyber-physical systems, Latency-varying ser-
vices, Cross-layer optimal design.

I. INTRODUCTION

Many applications of CPS such as industrial automation and

autonomous vehicles include multiple controlled dynamical

systems with the feedback loops closed over a shared network

infrastructure [1]. This poses novel challenges for the commu-

nication and control system design to support such coupled

network of systems with stringent real-time requirements and

tight inter-layer dependencies [2]. Recent evolution of 5G

communication technology has provided a great potential to

revisit the control and networking co-design paradigm in CPS

by facilitating an adaptable communication medium that can

conveniently adjust its service features depending on the user

demands in, e.g., latency, reliability, bandwidth and security

[3]. A strictly separate design of control and network layers
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leads to conservative solutions and results in low quality of

control as well as high cost of communication and computation

usage. Hence, to efficiently fulfill the tight quality of control

requirements and also to exploit the flexibility of the state-

of-the-art communication technology, control and networking

need to be co-designed in a cross-layer fashion [4], [5].

Providing a systematic and applicable joint design frame-

work, however, is proven to be challenging due to, first, the

tight integration of the physical and cyber layers through

multiple coupling sources, and second, complexity of optimal

solutions that make them non-scalable and intractable to apply

on real-time CPS [6], [7]. Despite the noticeable progress

including [8]–[10] to develop the co-design architectures, most

of the results are obtained either under oversimplification of

one of the CPS layers or under the traditional average-type

constraints and stationary interfaces, where the former often

results in eccentric design frameworks suitable for specific

CPS models [11], and the latter leads to only asymptotic

averaged performance guarantees [12]. From the communi-

cation perspective, control systems are typically abstracted as

identical nodes that send/receive data to/from the network with

QoC often defined as stationary requirements on data-rate,

delay and packet loss [13], [14]. From the control perspective,

the network capabilities are often simplified to single-hop

channels with maximum data-rate, end-to-end constant or

negligible delay and i.i.d. packet loss properties [15], [16].

In this paper, we describe a novel cross-layer interactive

ecosystem for real-time CPS wherein heterogeneous physical

systems are aware of the diverse network services while their

time sensitivity requirements are shared with the network for

an efficient service allocation. The major novelties are, first,

the model of communication network and serviceability, and

second, the sampling strategy which can schedule data packets

to be delivered to the controller in future time-steps. Motivated

by the state of the art communication technology, we assume

network services provide multiple latency-varying transmis-

sion links, through which systems can close their sensor-to-

controller loops subject to a given price. In a future-contract

model, each system decides to pay the price for a certain

network service for a known future time period. The system

may change its service preference for the next future time

period depending on the service price and its possibly changed

communication requirements. This decision is made locally

within each physical system by a separate controller that

predicts the control cost over a finite horizon and selects the
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most efficient service which minimizes the combined control

and communication cost. Requests of all systems are processed

by the network where some requests might be differently

serviced due to service limitations. Service prices are updated

for the next time periods to avoid high traffic for certain

services and also to incentivize the users to select expensive

services only when necessary. Performance of each physical

system is measured by quadratic control cost functions plus the

communication service price. This urges the physical systems

not always request the fastest transmission links because of

higher communication prices. Service allocation is coordinated

by the network such that the average sum of local performance

discrepancies, resulting from network service limitations, is

minimized across the physical layer over a finite time horizon.

Given the described cross-layer interaction model, the joint

optimal control and networking policies are derived.

Notations: In this article, E[·], E[·|·] and tr(·) denote, re-

spectively, the expectation, conditional expectation and trace

operators. We denote [x]
b

a , max{min{x, b}, a}. A matrix

A ≻ 0 (� 0) is positive definite (positive semi-definite). For

time varying variables, vectors, matrices and sets, superscripts

denote the corresponding system and subscripts denote the

time instance, e.g., X i
t belongs to system i and its content

corresponds to time instance t. We also use X i
[t1,t2]

,

{X i
t1
, . . . , X i

t2
} and X i , {X i

0, , X
i
1, . . .}. For time-invariant

matrices, we use subscript to show the belonging system.

Moreover, for a general vector Y and a weight matrix Q of

appropriate dimensions, we define ‖Y ‖2Q , Y ⊤QY .

II. PROBLEM STATEMENT

We consider a class of CPS consisting of N dynamical

systems coupled via a common communication network. Each

physical system i ∈ {1, . . . , N} consists of a linear time-

invariant (LTI) stochastic process Pi, a time-sensitivity con-

troller1 Si, and a feedback controller Ci. Let xi
k∈R

ni , ui
k∈R

oi

and wi
k∈R

ni denote, respectively, the physical system’s state,

control signal and exogenous disturbance for the ith system at

time-step k. Dynamics of the plant Pi is modeled as

xi
k+1 = Aix

i
k +Biu

i
k + wi

k, (1)

where Ai ∈ R
ni×ni , Bi ∈ R

ni×oi , and the process noise wi
k

is zero-mean Gaussian distributed with variance Σwi ≻0, and

wi
k is assumed to be independent of wj

ℓ for all i 6= j or k 6= ℓ.
Initial states xi

0’s are assumed to be randomly chosen from

arbitrary i.i.d. zero-mean distributions with variance Σxi
0
, and

are independent of wj
k, ∀j and k. The control cost of each

physical system follows the finite horizon LQG function, i.e.,

J i = E

[

‖xi
tf
‖2Q2

i
+
∑tf−1

k=0
‖xi

k‖
2
Q1

i
+‖ui

k‖
2
Ri

]

, (2)

where, tf represents the final time of the time horizon [0, tf ],
Q1

i � 0, Q2
i � 0 represent constant weights for the state, and

Ri ≻ 0 is the control input weight matrix. Assume that the

communication network has multiple capacity-limited service

opportunities, each with a distinct latency and price, that

1Time sensitivity controller indeed determines the time-varying value of a
state information n terms of its influence in reducing a cost function.
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Fig. 1: Multiple LTI stochastic control systems close their loop over a shared service-

limited network with a variety of latency-varying cost-prone transmission services over

finite time periods of length Tp, p = 1, . . . ,m. (Z−d denotes the delay operator.)

can be used by the physical systems. Let the network be

comprised of D+1 transmission links, together providing a

spectrum of network services with different latencies, denoted

by L={sd|d∈D,{0, . . . , D}} where d represents the link’s

corresponding latency. This means, if xi
k is forwarded through

the link sd to the controller Ci at a time-step k, then it will be

received at Ci at time-step k+d. Let the time horizon [0, tf−1]
be divided into m sub-intervals. We denote the pth sub-interval

by Tp, p ∈ {1, . . . ,m}, and Tp consists of ηp(ηp ∈ N) time-

steps. We intuitively assume ηp>1. Hence, the final time-step

becomes tf =
∑m

p=1 ηp. For the ease of the exposition, we

assume that all sub-intervals have equal lengths, i.e., ηp = η,

∀p, and thus, the time-interval becomes Tp=[(p−1)η, pη−1].

Let us denote the initial and the final time-steps of the sub-

interval Tp by ťpi = (p − 1)η and ťpf = pη − 1, respectively.

At the beginning of a sub-interval Tp, i.e., at time-step ťpi ,

each physical system decides on its preferred service sd ∈L
to be its sensor-to-controller communication link. The service

preference remains unchanged for the entire sub-interval Tp

(i.e., until ťpf ), and physical systems can select a different

communication service only at the beginning of the next sub-

interval Tp+1, i.e., at the time-step ťp+1
i .

During each sub-interval Tp, the service price for each

transmission link sd is denoted by λd
p, and is assumed to

be fixed over the entire pth sub-interval. They may, however,

change from Tp to Tp+1. Prices are set such that links with

lower latency are more expensive, i.e., λ0
p ≥ . . . ≥ λD

p , ∀p,

and Λp, [λ0
p, . . . , λ

D
p ]⊤ represents the service price vector for

the sub-interval Tp. In general, using a higher latency service

results in an increase in the average control cost (2).

Let θit(d)∈ {0, 1} denote whether system i is selected the

transmission service sd at time-step t, i.e., if θit(d) = 1, then

xi
t is sent through the link sd at time-step t to the controller

Ci and will be delivered at time t+ d. Since the systems may

change their service preferences only at time instances ťpi ’s,

p ∈ {1, . . . ,m}, θi
ť
p
i

(d) = θi
ť
p
i
+1

(d) = . . . = θi
ť
p

f

(d), ∀d ∈ D.

Hence, the decision outcome of the time-sensitivity controller

Si, generated only at time instances ťpi , is represented as

θiťp
i
(d)=

{

1, sd is selected to transmit xi
t, ∀t ∈ Tp

0, sd is not selected, ∀t ∈ Tp

(3)
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We assume that each Si selects one and only one of the

transmission services during each sub-interval Tp, i.e.,

∑D

d=0
θi
ť
p
i
(d) = 1, ∀p={1, . . . ,m}, ∀i∈{1, . . . , N}. (4)

Since the decision outcome θi
ť
p
i

(d), ∀d, is fixed for the entire

sub-interval Tp, with a slight abuse of notation, we define

the binary-valued θiTp
(d) as the representative for all θit(d),

t ∈ Tp, and θiTp
, [θiTp

(0), . . . , θiTp
(D)]⊤. The total service

cost for the physical system i over the entire horizon [0, tf ] is
∑m

p=1 η θi
⊤

Tp
Λp, and the local cumulative cost for that system,

that is a function of ith system’s local policies, becomes

J i(ui, θi) = E

[

‖xi
tf
‖2Q2

i
+
∑tf−1

k=0
‖xi

k‖
2
Q1

i
+‖ui

k‖
2
Ri

(5)

+
∑m

p=1
η θi

⊤

Tp
Λp

]

.

Since simultaneously minimizing the network and the con-

trol cost are conflicting objectives, the optimization problem

becomes a trade-off between the two urging decision-makers

(Ci,Si) to search for the best combined strategy to minimize

the accumulated cost of control and communication.

Network services are assumed to have capacity limitations

such that not all systems can simultaneously be serviced

through one specific link. To satisfy the service capacity

constraints, allocated services to the physical systems may

differ from the proffered ones (θiTp
). The ultimate allocation

of services is decided by a resource allocation unit in the

network layer. Let ϑi
t , [ϑi

t(0), . . . , ϑ
i
t(D)]⊤ denote the

resource allocation outcome for system i at time-step t such

that ϑi
t(d) = 1 ensures that xi

t will be forwarded to the

controller Ci via the service link sd and will be received by Ci
at time-step t+ d. Denoting the average capacity of a certain

service sd by 0<cd<N , the capacity constraint is

1

tf

∑tf−1

k=0

∑N

i=1
ϑi
k(d) ≤ cd, ∀d ∈ D. (6)

The main objective of this paper is to study how each physical

system optimally selects θi and ui and how the network

optimally reacts to the service selection θi’s to construct

appropriate ϑi’s to satisfy the service constraints.

III. CROSS-LAYER OPTIMAL DESIGN

A. Cross-layer policy makers

As depicted in Fig. 1, each system in the physical layer

is steered by two local policy makers; a feedback controller

Ci and a time-sensitivity controller Si. We define Ii
k and Īi

ť
p
i

as the sets of available information for decision making for

Ci and Si, respectively. We note that Ci generates the control

input ui
k at every time-step k, while Si generates θiTp

only

at time instances ťpi , p ∈ {1, . . . ,m}, hence, as suggested

by the subscripts, Ii
k is updated at every k, while Īi

ť
p
i

is

updated at every ťpi . Having the information sets defined,

we now introduce the causal policies γi
k : Ii

k 7→ R
oi and

ξi
ť
p
i

: Īi
ť
p
i

7→ {0, 1}D+1 of the system i that generate the control

input at time-step k and service preferences for the sub-interval

Tp, respectively, given the information sets Ii
k and Īi

ť
p
i

. That

is ui
k = γi

k(I
i
k) and θiTp

= ξi
ť
p
i

(Īi
ť
p
i

).

We assume that a dedicated error-free acknowledgement

channel exists to inform the controllers at every time-step k
about the binary decision of the resource manager w.r.t. the

preferred services of that system (θiTp
), i.e., ϑi

k are known at

Ci at time-step k (see Fig. 1). Note that each controller uses

a collocated estimator to estimate the current system state if

it is not communicated. The decision on ϑi
k is made at every

time-step k, unlike θiTp
that is decided once for the entire sub-

interval Tp. Ideally, network desires to service the dynamical

systems exactly according to their preferences, i.e., ∀k ∈ Tp,

ϑi
k=θiTp

. If service limitations do not allow this, the allocated

services are not necessarily the ones requested by some of the

systems during some of the sub-intervals.

Similarly, we define Ĩk as the set of available information

for the network to allocate resources at time-step k. We

introduce πk : Ĩk 7→ {0, 1}(D+1)N as the causal policy for

computing ϑi
k, i.e., [ϑ1

k, . . . , ϑ
N
k ] = πk(Ĩk)

2.

B. Information structures of the policy makers

To characterize the information sets Ii
k, Ī

i
ť
p
i

, Ĩk, we first

assume that the local decision makers Si and Ci have the

knowledge of their own constant model parameters Ii
cp ,

{Ai, Bi,Σwi , Q1
i , Q

2
i , Ri}. The resource allocation unit has

access to Ii
cp, ∀i. Before introducing the information interac-

tion model, we state the following assumption:

Assumption 1: Resource allocation in the network layer is

rendered independent of the local plant control inputs, i.e.,

none of the ui
t, t < k, is incorporated in determining ϑi

k.

This assumption declares a unidirectional interaction model

between the plant control and the resource allocation policies,

i.e., the control inputs ui
[0,k−1], ∀i, are not incorporated in

computing ϑi
k, however, ui

ks can be functions of ϑi
[k−D,k].

Considering the arbitrary time-step k belongs to an arbitrary

sub-interval Tp, and noting the order of generating variables

in one sampling cycle, (θiTp
→ ϑi

k → ui
k → xi

k+1), the

information sets Ii
k, Īi

ť
p
i

and Ĩk of the three decision makers

Ci, Si and the resource allocation, are as follows:

Ii
k = Ii

cp ∪ {Zi
[0,k], θ

i
[0,k], ϑ

i
[0,k], u

i
[0,k−1],Λ[1,p]} (7)

Īi
ť
p
i
= Ii

cp ∪ {θi
[0,ťp−1

f
]
, ϑi

[0,ťp−1
f

]
, ui

[0,ťp−1
f

]
,Λ[1,p]} (8)

Ĩk = ∪N
i=1{I

i
cp ∪ {θi[0,k], ϑ

i
[0,k−1]}} (9)

and, Zi
t = {ϑi

t(0)x
i
t, ϑ

i
t−1(1)x

i
t−1, . . . , ϑ

i
t−D(D)xi

t−D}. We

also use Ii={Ii
k}

tf−1
k=0 , Īi={Īi

ť
p
i

}mp=1, and Ĩ={Ĩk}
tf−1
k=0 .

Remark 1: According to (7)-(9), ui
k=γi

k(I
i
k) is a function

of ϑi
[0,k], but πk does not incorporate ui

[0,k], ∀i, in computing

ϑi
k = πk(Ĩk). The ultimate allocated resources to system i

at a time k ∈ Tp, however, depend on θi[0,k]. Since πk is a

function of θi[0,k] for k ∈ Tp (Ĩk includes θi[0,k], ∀i), control

performance is indirectly considered in resource allocation as

θi[0,k] are chosen by the physical systems in order to minimize

the cumulative cost (5). This intuitively specifies that the

Assumption 1 is not too conservative in sense of separating

resource allocation from control performance. Moreover, it

2With slight abuse of notation, to point the resource allocation outcome for

a specific system i, we will sometimes write ϑ
i

k
= πk(Ĩk).
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leads to a considerable complexity reduction in computing the

optimal policies π∗
k and γi,∗

k (Section III-C), since the network

does not need to have access to the entire control input history

of all control systems, i.e., ui
[0,k−1], i ∈ {1, . . . , N}.

C. Cross-layer joint optimization problem

Given the information sets (7) and (8), the cumulative cost

function (5), for a system i∈{1, . . . , N}, is expressed as

J i(ui, θi|Ii, Īi) = E

[

‖xi
tf
‖2Q2

i
+ (10)

∑tf−1

k=0
‖xi

k‖
2
Q1

i
+‖ui

k‖
2
Ri

+
∑m

p=1
ηθi

⊤

Tp
Λp

∣

∣Ii
k, Ī

i
ť
p
i

]

.

Note that, (10) represents the local cumulative cost function

without considering the resource constraint (6), thus, no re-

source allocation decision ϑi is present. The overall objective

is to optimize the average performance of all systems under

the constraint (6). If some of the service requests are handled

differently in the network due to the constraint (6), i.e. when

ϑi
k is applied, the corresponding control input will be changed

and the cumulative control cost J i then becomes

J i(ui, ϑi|Ii, Ĩ) = E

[

‖xi
tf
‖2Q2

i
+ (11)

∑tf−1

k=0
‖xi

k‖
2
Q1

i
+‖ui

k‖
2
Ri

+
∑m

p=1

∑

k∈Tp

ϑi⊤

k Λp

∣

∣

∣
Ii
k, Ĩk

]

.

We formulate a social cost J as the average difference between

the sum of J i’s from the perspectives of the network (after

resource allocation) and the physical systems, i.e.,

J=
1

N

N
∑

i=1

E

[

J i(ui, ϑi|Ii, Ĩ)− min
ui,θi

J i(ui, θi|Ii, Īi)

]

. (12)

The aim is to derive the optimal policies γi,∗
k (Ii

k), ξ
i,∗
ť
p
i

(Īi
ť
p
i

)

and π∗
k(Ĩk) that jointly minimize J over the horizon [0, tf−1]

min
γi,ξi,π

J (13a)

s. t. ui
k=γi

k(I
i
k), θ

i
Tp

=ξi,∗
ť
p
i

(Īi
ť
p
i
), ϑk=πk(Ĩk) (13b)

∑

k∈Tp

ϑi⊤

k Λp ≤ η θi
⊤

Tp
Λp, ∀i, p ∈ {1, . . . ,m} (13c)

1

tf

∑tf−1

k=0

∑N

i=1
ϑi
k(d) ≤ cd, ∀d ∈ D. (13d)

The constraint (13b) ensures γi, ξi and π are admissible

policies and measurable functions of the σ-algebras generated

by their corresponding information sets, (13c) guarantees that

re-allocated services impose no higher cost on the systems

over the intervals Tp, and (13d) is the capacity constraint (6).

We propose a heuristic adaptive law to update the service

prices for each sub-interval Tp to incentivize the systems to

more evenly distribute their service requests, as follows:

λd
p+1 =

[

λd
p + αd

(

∑N

i=1
θiTp

(d)− cd

)]λd
max

λd
min

, (14)

where, αd ∈ R≥0 is a network parameter to properly adjust

the prices. The update law (14) ensures that λd
p∈ [λd

min, λ
d
max],

where, λd
min and λd

max are known to all systems a priori3. The

3Search for the αd’s to find the optimal pricing mechanism is an interesting
yet challenging problem, and beyond the scope of this work.

adaptive law (14) does not lead to an average degradation of

(12) since, first, service prices are part of the local costs, and

second, the prices for less-used services are decreased.

Theorem 1, for which we omit the proof due to space

limitation, shows the structure of the optimal control law.

Theorem 1: Given the information sets Ii
k, Īi

ť
p
i

and Ĩk in

(7)-(9) and the problem (13a)-(13d), the optimal plant control

law γi,∗
k , ∀i, is of certainty equivalence form and control inputs

are obtained from linear state feedback law as

ui,∗
k = γi,∗

k (Ii
k) = −Li,∗

k E[xi
k|I

i
k], i ∈ {1, . . . , N} (15)

Li,∗
k =

(

Ri +B⊤
i P i

k+1Bi

)−1
B⊤

i P i
k+1Ai, (16)

where, P i
T =Q2

i , and P i
k solves the Riccati equation

P i
k=Q1

i+A⊤
i

[

P i
k+1−P i

k+1Bi

(

Ri+B⊤
i P

i
k+1Bi

)−1
B⊤

i P
i
k+1

]

Ai

Theorem 2: Consider the problem (13a)-(13d) and let

γi,∗, i ∈ {1, . . . , N} follow the certainty equivalence law

(15)-(16). Given Īi
ť
p
i

and Ĩk in (8) and (9), the optimal

time sensitivity control law is computed from the following

constrained mixed-integer linear-programming (MILP)

θi,∗[k,tf−1]= arg min
ξi
[ť
p
i
,ťm

i
]

J i(γi,∗, ξi[ťp
i
,ťm

i
](Ī

i
[ťp

i
,ťm

i
])) = (17)

arg min
ξi
[ť
p
i
,ťm

i
]

tf−1
∑

t=k





τ i
t

∑

l=1

τ i
t

∑

j=l

b̄ij,tTr(P̃ i
tA

l−1T

i ΣwiAl−1
i )+θi

⊤

t Λµ(k)





s. t. ∀i, t∈Tp, θ
i
ť
p
i
= . . . = θit = . . . = θi

ť
p

f
= θiTp

= ξi
ť
p
i
(Īi

ť
p
i
)

b̄i0,t = θit(0), b̄ij,t ≤
∑j

l=0
θit−j(l), j∈{1, . . . , τ it},

∑D

l=0
θit(l)=1,

∑τ i
t

j=0
b̄ij,t=1,

∑D

j=t+2
b̄ij,t=0, t≥k,

θis = ϑi
s, ∀s < k.

where, µ(k) = p for k ∈ Tp, τ it ,min{D, t + 1}, and P̃ i
t =

Q1
i +A⊤

i P
i
t+1Ai − P i

t , and b̄ij,t=[[1− θit(0)]
∏j−1

d=1

∏d

l=0[1−

θit−d(l)]][
∑j

d=0θ
i
t−j(d)]. For notational correctness, we use

the convention
∏d2

d=d1
ad , 1 and

∑d2

d=d1
ad , 0, ∀d1 > d2.

Subsequently, the optimal resource allocation law is computed

from the following constrained MILP

ϑ∗
[k,tf−1]= arg min

π[k,tf−1]

∑N

i=1

∑tf−1

t=k

[

ϑi⊤

t Λµ(k) (18)

+
∑τ i

t

l=1

∑τ i
t

j=l
b̃ij,tTr(P̃ i

tA
l−1T

i ΣwiAl−1
i )

]

s. t.
1

tf

∑tf−1

t=0

∑N

i=1
ϑi
t(d) ≤ cd, ∀d ∈ D,

∑

t∈Tp

ϑi⊤

t Λp ≤ ηθi
⊤

Tp
Λp, ∀i, p ∈ {1, . . . ,m}

where, b̃ij,t is similarly defined as b̄ij,t with the exception that

θit is replaced by ϑi
t for all i and t (see expression (21)).

Proof 1: Using the optimal control law (15)-(16), the cost-

to-go V i
k = ‖xi

tf
‖2
Q2

i

+
∑tf−1

t=k ‖xi
t‖

2
Q1

i

+ ‖ui
t‖

2
Ri

is optimally

computed as (see Theorem 1 and Proposition 1 in [17]):

V i,∗
k = ‖E

[

xi
k|I

i
k

]

‖2P i
k

(19)

+ E

[

‖eik‖
2
P i

k
+
∑tf−1

t=k
‖eit‖

2
P̃ i

t

∣

∣

∣
Ii
k

]

+
∑tf

t=k+1
tr(P i

tΣ
i
w),
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where, eik , xi
k−E

[

xi
k|I

i
k

]

, and P̃ i
t = Q1

i +A⊤
i P

i
t+1Ai−P i

t .

Moreover, the state estimate, at time-step k, is given as

E
[

xi
k|I

i
k

]

=
∑min{D,k+1}

j=0
b̃ij,k E

[

xi
k|x

i
k−j , u

i
0, ..., u

i
k−1

]

, (20)

and, for all j ∈ D, and k ≥ j, we have

b̃ij,k =
∏j−1

d=0

∏d

l=0
[1− ϑi

k−d(l)][
∑j

d=0
ϑi
k−j(d)]. (21)

For, k < j, bi0,k, ..., b
i
k,k’s are defined as in (21), bik+1,k =

∏k

d=0

∏d

l=0[1−ϑi
k−d(l)], and bik+2,k= ...=biD,k=0.

Having (19), with k∈Tp, the optimal time sensitivity control

law ξi,∗
[ťp

i
,ťm

i
]

is obtained by minimizing the cumulative cost

J i(ui,∗, θi|Ii, Īi), i.e., ∀k∈ [0, tf − 1] and k∈Tp

θi,∗[k,tf−1]= arg min
ξi
[ť
p
i
,ťm

i
]

E

[

V i,∗
k (γi,∗, ξi)+

∑tf−1

t=k
θi

⊤

t Λµ(k)

∣

∣Īi
ť
p
i

]

.

Since Īi
ť
p
i

⊆ Ii
k, ∀k∈Tp, and employing (20), one can compute

E[E[eike
i⊤

k |Ii
k]|Ī

i
ť
p
i

]=E[eike
i⊤

k |Īi
ť
p
i

], at Si side, to be:

E[eike
i⊤

k

∣

∣Īi
ť
p
i
] =

∑τ i
k

l=1

∑τ i
k

j=l
b̄ij,k E[A

l−1
i wi

k−lw
i⊤

k−lA
l−1⊤

i ]

=
∑τ i

k

l=1

∑τ i
k

j=l
b̄ij,kA

l−1
i Σi

k−lA
l−1⊤

i ,

where, Σi
k−l =Σxi

0
, k < l, and Σi

k−l = Σwi , k ≥ l. Having

this with Īi
ť0
i

=Ii
cp, we rewrite E[V i,∗

0 (γi,∗, ξi)|Īi
ť0
i

] as follows

E[V i,∗
0 (γi,∗, ξi)|Īi

ť0
i
] = ‖E

[

xi
0

]

‖2P i
k
+
∑tf

t=k+1
tr(P i

tΣwi)

+ tr(P i
0

∑τ i
0

l=1

∑τ i
0

j=l
b̄ij,0A

l−1⊤

i Σxi
0
Al−1

i )

+
∑tf−1

t=0
tr(P̃ i

t

∑τ i
t

l=1

∑τ i
t

j=l
b̄ij,tA

l−1⊤

i Σi
t−lA

l−1
i ).

As the only term in the last expression that is dependent on

θi[k,tf−1] is the last term, we have for all k ∈ Tp

θi,∗[k,tf−1]=arg min
ξi
[ť
p
i
,ťm

i
]

E

[

V i,∗
k (γi,∗, ξi)+

∑tf−1

t=k
θi

⊤

t Λµ(k)

∣

∣Īi
ť
p
i

]

=

arg min
ξi
[ť
p
i
,ťm

i
]

tf−1
∑

t=k



tr(P̃ i
t

τ i
t

∑

l=1

τ i
t

∑

j=l

b̄ij,tA
l−1⊤

i Σi
t−lA

l−1
i )+θi

⊤

t Λµ(k)





Note that, Λp is known for Si assuming k∈Tp (k is the current

time). The optimization problem is, however, solved from k to

the final time tf over which the prices may change from Tp to

Tp+1 while future price changes are not disclosed for Si’s at

time k ∈ Tp. Hence, the system solves the local optimization

problem considering the current prices, i.e. Λp, for the whole

horizon [k, tf ]. At the beginning of the next sub-interval Tp+1

when Si updates θiTp+1
, the adjusted price Λp+1, is considered

until tf . The constraints of the problem (17) are all linear and

θik is a binary variable, hence the problem is an MILP that is

solved m times over the horizon [0, tf ], once per each sub-

interval Tp, p = {1, . . . ,m}. The constraint
∑D

l=0 θ
i
t(l) = 1

ensures that only one transmission link is selected per-time,

while the last two constraints are essential for correct indexes

in the parameter b̄ij,k for k≥D and k<D.

To find π∗, we take similar steps to compute ϑi,∗
k given

the information set Ĩk. We compute E[V i,∗
k (γi,∗, π)|Ĩk] that

results in a similar expression with the exception being b̄ij,t
is replaced by b̃ij,t in (21). Hence, considering the price

and resource constraints (13c)-(13d), we derive the optimal

resource allocation from the following MILP, with k ∈ Tp

ϑ∗
[k,tf−1]= arg min

π[k,tf−1]

N
∑

i=1

E

[

V i,∗
k (γi,∗, πi)+

tf−1
∑

t=k

ϑi⊤

t Λµ(k)

∣

∣Ĩk

]

=

arg min
π[k,tf−1]

N
∑

i=1

tf−1
∑

t=k

[

ϑi⊤

t Λµ(k)+

τ i
t

∑

l=0

τ i
t

∑

j=l

b̃ij,tTr(P̃ i
tA

l−1T

i ΣwiAl−1
i )

]

.

The Theorems 1 and 2 show that under the assumption that πk

is independent of γi
[0,k−1]’s, we can decompose the problem

(13a)-(13d) and solve it for the plant control policy separately,

while the resource allocation and time-sensitivity control re-

main coupled through the adaptive service prices and capacity

constraints. Note that, the complexity of MILPs (17) and (18)

to compute the mentioned policies are of orders O(NDm2)
and O(NDt2f ), respectively, which suggests computationally

feasible solutions for medium size CPS over finite horizons.

IV. NUMERICAL RESULTS

We consider a set of 20 homogeneous LTI systems

with Ai=

[

1.01 0.2
0.2 1

]

, Bi=

[

0.1 0
0 0.15

]

, wi
k∼N (0, 1.5I2×2),

and Q1
i =Q2

i =Ri= I2×2, ∀i and ∀k. We consider 6 network

services with latencies D={0, . . . , 5}, where for {s0, . . . , s4}
we assume cd = 4 and c5 = 5. The maximum and minimum

prices for {s0, . . . , s5} are Λmax=[31, 19, 12, 9, 5.5, 2.5] and

Λmin = [19, 12, 9, 5.5, 2.5, 0.5]. Each sub-interval Tp consists

of 10 time-steps, and tf = 50, i.e. m=5. The initial service

costs Λ1 for the interval T1=[0, 9], is [25, 13, 11, 7, 4, 1], and

prices are updated according to (14) with αd=1, ∀d∈D. We

compare service request and allocation for the varying service

costs, i.e. αd=1, and constant service costs, i.e. Λp=Λ1, ∀p.

To capture the service usage, we define a network utilization

quotient ρt(d), ∀t∈ [0, tf ] and d ∈ D, as follows

ρt(d) =
1

N(t+ 1)

[

∑t

k=0

∑N

i=1
ϑi
k(d)

]

. (22)

Thus, ρt(d) shows the usage percentage of the service sd upto

time t, and from the constraint (13d), ρ
tf−1

(d) ≤ cd/N .

In Fig. 2 we plot ρt(d) for time varying and constant service

costs. In both cases, the usage for all services are the same

for the first interval [0, 9], as expected. Based on (14), prices

for the services s0, s4, s5 increase whereas the prices for the

rest decrease. These cost changes incentivize the systems to

choose different services (θit), and consequently, the allocation

of the links (ϑi
t) also changes because of (13c).

In particular, during the interval T2 = [10, 19], we observe

a different usage in services s4 and s5 between the two

scenarios. The increments in the service costs, however, do not

necessarily change the utilization, for example, the increased

cost of s0 did not change its usage. An interesting observation

lies in the usage of services s2 and s3 for the final interval

T5 = [40, 49]. Since s3 is not used over T3 = [30, 39], its
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Fig. 2: Usage of different services. The solid lines (—-) correspond to the time varying

service costs and the dotted lines with circles (· · ◦ · ·) correspond to constant costs.

Fig. 3: Average link assignment variation

cost is reduced for T4 = [40, 49], however we still observe

a decrease in its usage, and this is because s2 is still more

efficient for many systems than s3.

From this experiment, we notice that by adaptively changing

the service costs, the utilization can be regulated, and the

adaptive rule and its parameters play a significant role in

regulating the usage. This is particularly a very interesting

line of future research that how to optimally adapt the prices.

If the systems are served exactly as they request, each of

them will incur a control cost of 61.1741 and a service cost of

1300. However, due to the capacity constraints, the systems do

not obtain the desired service and the total control cost for the

group becomes 22566.56 compared to 61.1741×20 = 1223.48
– almost a twenty-fold increase. For the network, it would earn

a total of 1300×20=26000 if it could serve the exact requests.

However, due to the capacity constraints, the network receives

a total of 9916. The total cost due to the capacity limitation

becomes 22566.56+9916=32482.56, compared to the cost of

1223.48 + 26000 = 27223.48 with no capacity limitation.

We also studied the average deviation of the requested

services from the assigned services. Let ϑi,∗ denote the actual

service assignment to the i-th system, and θi,∗ denote its

desired request, then the average deviation is calculated as

∆t =

∑t

k=0

∑N

i=1

∣

∣

∑D

d=0 d(ϑ
i,∗
k (d)− θi,∗k (d))

∣

∣

N(t+ 1)
, (23)

where in (23), |·| represents the absolute value. The results are

plotted in Fig. 3, where we notice that ∆t is slightly higher

with time varying costs as the updated costs persuade the

systems to deviate further to adopt a new service.

V. CONCLUSION

We propose a cross-layer model of CPS wherein multiple

LTI stochastic systems are coupled via a shared network

that provides a range of costly and capacity-limited services

with distinct latencies. Service recipients (physical systems)

select certain network services for a time period for a given

price. Requests are processed by the network and services are

allocated taking into account the users’ demands and network

limitations. Service prices are adjusted for future periods with

the aim of receiving more evenly distributed service requests.

We formulate a social cost minimized by cross-layer decision

makers, where under mild assumptions on the information

structure, we derive the resulting optimal policies taking into

account their limitations, tolerances and constraints.
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