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ABSTRACT

In distributed optimization of multi-agent systems, agents cooperate to minimize a global function which
is a sum of local objective functions. Motivated by applications including power systems, sensor net-
works, smart buildings, and smart manufacturing, various distributed optimization algorithms have been
developed. In these algorithms, each agent performs local computation based on its own information and
information received from its neighboring agents through the underlying communication network, so that
the optimization problem can be solved in a distributed manner. This survey paper aims to offer a de-
tailed overview of existing distributed optimization algorithms and their applications in power systems.
More specifically, we first review discrete-time and continuous-time distributed optimization algorithms

resources for undirected graphs. We then discuss how to extend these algorithms in various directions to handle
more realistic scenarios. Finally, we focus on the application of distributed optimization in the optimal

coordination of distributed energy resources.
© 2019 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, rapid developments in digital systems, com-
munication and sensing technologies have led to the emergence
of networked systems. These networked systems consist of a large
number of interconnected subsystems (agents), which are required
to cooperate in order to achieve a desirable global objective. Ap-
plications for such networked systems include but are not limited
to power systems, sensor networks, smart buildings, and smart
manufacturing (Bullo, 2017; Dong, Hua, Zhou, Ren, & Zhong, 2018;
Dorfler, Simpson-Porco, & Bullo, 2016; Gao, Gao, Ozbay, & Jiang,
2019; Lamnabhi-Lagarrigue et al., 2017; Meng & Moore, 2016; Ren
& Cao, 2011; Yuan, Zhang, Wu, Zhu, & Ding, 2017; Zhu & Martinez,
2015). Many problems in networked systems can be posed in the
framework of convex optimization (Boyd, Parikh, Chu, Peleato, &
Eckstein, 2011). Due to the distributed nature of networked sys-
tems, the traditional centralized strategies are not suitable to solve
these optimization problems. Moreover, the centralized framework
is subject to performance limitations, such as a single point of
failure, high communication requirement, substantial computation
burden, and limited flexibility and scalability. All of these have
made imperative the use of distributed approaches to solve these
optimization problems (Boyd et al, 2011; Nedi¢, 2015; Sayed,
2014a).

1.1. Distributed optimization

In a networked system of N agents, each of which has a local
private convex objective function fi(x), where x € R" is the opti-
mization variable. The objective of distributed optimization is to
minimize a global objective function, which is a sum of the objec-
tive functions of all agents:

N
min 3 fiv), (1)
i=1

XeRM

in a distributed manner by local computation and communication.

The distributed optimization problem has been studied for a
long time and can be traced back to the seminal works (Bertsekas
& Tsitsiklis, 1989; Tsitsiklis, 1984; Tsitsiklis, Bertsekas, & Athans,
1986) in the context of parallel and distributed computation. It has
gained growing renewed interest over the last decade due to its
various applications in power systems, communication networks,
machine learning, and sensor networks, just to name a few (Cao,
Yu, Ren, & Chen, 2013; Nedi¢, 2015; Nedi¢, Olshevsky, & Rabbat,
2018; Sayed, 2014a). Various distributed algorithms have been pro-
posed in the literature. For the recent review and progress, please
refer to the surveys (Boyd et al., 2011; Nedic, 2015; Nedic¢ & Liu,
2018; Nedic et al., 2018; Sayed, 2014a; Yang & Johansson, 2010)
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and the books (Bullo, 2017; Giselsson, 2018; Ren & Cao, 2011; Zhu
& Martinez, 2015).

Most existing distributed algorithms are consensus based and
can be divided into two categories depending on whether an al-
gorithm is in discrete-time or in continuous-time. In these algo-
rithms, each agent holds a dynamic state, which is the estimate
of the optimization variable, and updates its value based on its
own information and the information received from its neighbors
through the underlying communication network.

1.2. Coordination of distributed energy resources

Although distributed optimization finds various applications, in
this paper, we focus on the optimal coordination of distributed en-
ergy resources (DERs) in power systems (see, e.g., Bidram, Lewis,
& Davoudi, 2014; Hadjicostis, Dominguez-Garcia, & Charalambous,
2018; Kraning, Chu, Lavaei, & Boyd, 2014; Molzahn et al., 2017;
Nedi¢ & Liu, 2018; Qin, Ma, Shi, & Wang, 2017).

In the past decades, the power system has been undergoing
a transition from a system with conventional generation power
plants and inflexible loads to a system with a large number of dis-
tributed generators, energy storages, and flexible loads, often re-
ferred to as distributed energy resources (DERs) (Lasseter et al.,
2003; Pedrasa, Spooner, & MacGill, 2010; Rahimi & Ipakchi, 2010).
These resources are small and highly flexible compared with con-
ventional generators and can be aggregated to provide power nec-
essary to meet the regular demand. As the electricity grid contin-
ues to modernize, DERs can facilitate the transition to a smarter
grid.

In order to achieve an effective and efficient deployment among
DERs, one needs to properly design the coordination among them.
The objective of the optimal DER coordination problem is to min-
imize the total production cost while meeting the total demand
and satisfying the individual generator output limits. One ap-
proach is through a completely centralized control strategy, which
suffers from the limitations as pointed out before. To overcome
these limitations, recently, by using the results developed in the
field of distributed optimization, various distributed strategies have
been proposed for solving the optimal DER coordination problem,
see, e.g., Dominguez-Garcia, Cady, and Hadjicostis (2012); Kar and
Hug (2012); Rahbari-Asr, Ojha, Zhang, and Chow (2014); Xing, Mou,
Fu, and Lin (2015); Yang, Tan, and Xu (2013); Yang, Wu, Sun,
and Lian (2016); Zhang and Chow (2012); Zhao, He, Cheng, and
Chen (2017) and Hadjicostis et al. (2018).

1.3. Contributions and outline

Recent survey papers on distributed optimization (Nedic, 2015;
Nedi¢ & Liu, 2018; Nedic et al., 2018) mainly focused on discrete-
time algorithms with diminishing step-sizes. This paper aims to
provide a detailed and comprehensive overview of discrete-time
algorithms with both diminishing step-sizes and fixed step-sizes
as well as continuous-time algorithms. In addition, we also discuss
their applications to the optimal DER coordination problem, and
offer some future research directions.

In Section 2, we provide some background on graph theory,
convex analysis, and convergence analysis.

In Section 3, we review various basic discrete-time optimiza-
tion algorithms as well as continuous-time optimization algorithms
for undirected graphs. Regarding discrete-time algorithms, we fo-
cus on the recently developed algorithms with fixed step-sizes for
the case where the local objective functions are strongly convex
and smooth (have Lispchitz continuous gradients). Compared to al-
gorithms with diminishing step-sizes, these algorithms have faster
convergence, which is desirable in practical time critical applica-
tions, such as the DER coordination (Tang, Hill, & Liu, 2018). More-

over, due to the faster convergence, their computational costs and
communication overheads are much smaller compared to the algo-
rithms with diminishing step-sizes.

With these discrete-time and continuous-time algorithms in
hand, in Section 4, we discuss various extensions of these algo-
rithms to handle more realistic scenarios. These extensions are not
independent but actually may overlap to some extent.

In Section 5, we focus on the application of distributed opti-
mization to DER coordination, which has received substantial at-
tention in both control and power system fields in recent years
(see, e.g..Bidram et al., 2014; Hadjicostis et al., 2018; Kraning et al.,
2014; Molzahn et al., 2017; Nedic¢ & Liu, 2018; Qin et al., 2017). The
specific requirements and structures for power systems application
provide more challenges and opportunities for the development of
distributed optimization algorithms. As such, various general dis-
tributed optimization algorithms reviewed in Sections 3 and 4 have
been applied and/or adapted to solve the DER coordination prob-
lem in power systems.

Finally, Section 6 concludes the paper with some discussion on
future research directions.

Notations: Given a matrix A, AT denotes its transpose and A~!
denotes its inverse. We denote by A®B the Kronecker product be-
tween matrices A and B. I, denotes the identity matrix of dimen-
sion nxn. 1, and 0, denote the column vector with each entry
being 1 and 0, respectively.

2. Preliminaries

This section introduces some background on graph theory, con-
vex analysis, and convergence analysis.

2.1. Graph theory

We first recall some basic concepts in graph theory (Godsi &
Royle, 2001). Let G = (V, €) denote a directed graph (digraph) with
the set of nodes (agents) V ={1,...,N} and the set of edges £ C
V x V. A directed edge from node i to node j is denoted by (i, j) €
£. A digraph is undirected if and only (i, j) € £ implies (j,i) € £.
For notational simplification, we assume that the digraph does not
have any self loop, i.e., (i,i) ¢ £ for all i € V although each node i
has an access to its own information. A directed path from node i,
to node i, is a sequence of nodes {iy, ..., ik} such that (ij,ij,4) € £
for j=1,...,k—1. If there exists a directed path from node i to
node j, then node j is said to be reachable from node i. A digraph
G is strongly connected if every node is reachable from every other
node. Let A = [q;;] € RN*N be adjacency matrix associated with the
digraph G, where g;; > 0 is the weight for edge (j,i) € V and g;; =0
otherwise. A digraph is weigh-balanced if Z?’:l ajj = 2?’21 aj; for all
i € V. A digraph is detailed balanced if there exist some real num-
bers w; >0, i=1,2,...,N, such that the coupling weights of the
graph satisfy w;a;; = wja;; for alli, j=1,2,...,N.

The underlying communication network may also be modeled
as a time-varying directed graph G(k) = (V, £(k)), where the edge
set changes over time due to unexpected loss of communica-
tion links. All nodes which transmit information to node i di-
rectly at time t are said to be its in-neighbors and belong to
the set /\/ii“(k) ={jeV] (i) e &)} All nodes which receive in-
formation from agent i at time k belong to the set of its out-
neighbors, denoted by NP"(k) ={je V| (i j) € £(k)}. The joint
graph of G(k) in the time interval [k, kp) with k; <k, <oo is
defined as G([k1.ky)) = Ukelky k)G (K) = (V. Ureliy k)€ (K)). A time-
varying directed graph G(k) is said to be uniformly jointly strongly
connected if there exists a constant B> 0 such that G([kg, kg + B))
is strongly connected for any kg > 0.
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2.2. Convex analysis

Next, we provide some background on basic convex analysis
(Boyd & Vandenberghe, 2004; Nesterov, 2004). A set X c R" is con-
vex if for all x, y € X, and for all 6 [0, 1], we have Ox+ (1 -0)y ¢
X. A function f:R" — R is convex if f(Ox+ (1—-0)y) <O0f(x) +
(1-0)f(y) for all x,y e R" and for all 8 (0, 1). A function f:
R" — R is strictly convex if f(Ox+ (1-0)y) <O0f(x)+ (1-60)f(y)
for all x #y € R" and for all 8 €(0, 1). A continuously differentiable
function f: R"™ — R is strongly convex with convexity parameter u
if (Vfy)—VFx)T(y—x)> ul|ly—x|? for all x,y € R". A contin-
uously differentiable function f : R" — R is restricted strongly con-
vex with respect to a point x € R" if there exists a constant u >0
such that (V) - Vfx)T(y—x) = ully —x||? for all yeR™. A
continuously differentiable function f :R" — R is smooth if it has
a globally Lipschitz continuous gradient, i.e., there exists a constant
L>0 such that ||Vf(y) - Vf(x)| <L|ly —x|| for all x,y € R™.

2.3. Convergence analysis

Finally, we recall the definition of linear (exponential in the lan-
guage of control theory) convergence of a sequence from Nedic, Ol-
shevsky, and Shi (2017a). Suppose that a sequence {x(k)} converges
to x* in some norm | - ||. Then the convergence is (i) Q-linear if
there exists a constant 0 < p <1 such that W < p for all k;
(ii) R-linear if there exist some constants C>0 and 0 < p <1 such
that ||x(k) — x*|| < Cpk for all k. Both of these rates are exponential
or geometric. The difference is that Q-linear implies a monotonic
decrease of ||x(k) — x*||, while the R-linear does not.

3. Basic distributed optimization algorithms

In this section, we provide an overview of some existing
discrete-time and continuous-time distributed algorithms for solv-
ing the distributed unconstrained optimization problem over undi-
rected and fixed communication networks. Various extensions of
these algorithms will be discussed in Section 4.

3.1. Discrete-time Algorithm

Most existing distributed algorithms are in the discrete-time
setting (see Nedi¢, 2015; Nedi¢ and Liu, 2018; Nedic et al., 2018;
Sayed, 2014a, and references therein). Among these algorithms,
the first-order algorithms based on the consensus theory and the
(sub)gradient method have received much attention since they are
simple, amenable to implementation and easily generalizable. The
existing distributed first-order discrete-time algorithms can be cat-
egorized into two classes depending on whether the step-sizes are
diminishing or fixed.

3.1.1. Algorithms with diminishing step-sizes

We begin by reviewing discrete-time algorithms with dimin-
ishing step-sizes. A seminal work in this direction is Nedi¢ and
Ozdaglar (2009), where the authors proposed a simple distributed
first-order (sub)gradient descent algorithm. In the proposed algo-
rithm, each agent performs a consensus step and then a descent
step along the local (sub)gradient direction of its own convex ob-
jective function. In particular, at time instant (step) k, each agent i
runs the following update:

N
xi(k+1) = Zwﬁ(k)xj(k) —a(k)s;(k), (2)

j=1

where x;(k) € R" is agent i's estimate of the optimal solution at
time instant k, w(k) is the edge weight of communication link

(. 1) at time instant k such that W (k) = [w;;(k)] € RNN is dou-
bly stochastic for all k, s;(k) is the (sub)gradient of the local objec-
tive function f;(x) which is convex and possibly non-differentiable
at x = x;(k), and (k) > 0 is the diminishing step-size satisfying the
following conditions:

ia(k) = oo, iaz(k) < 00,
k=0

k=0
(k) <a(s) forall k>s>0. (3)

Under the assumption that subgradients are bounded, it
is shown in Nedic and Ozdaglar (2009) that the distributed
(sub)gradient descent (DGD) algorithm with diminishing step-sizes
asymptotically converges to one of the optimal solutions, if the
fixed undirected graph is connected or the time-varying undirected
graph is uniformly jointly connected. The authors of Johansson, Ke-
viczky, Johansson, and Johansson (2008) modified of the DGD algo-
rithm (2) by changing the order in which the consensus-step and
the subgradient descent step are executed.

Although the simple DGD algorithm (2) is applicable to nons-
mooth convex functions and has been extended in several direc-
tions to handle more realistic scenarios, which will be reviewed
in details in the next section, the convergence is rather slow due
to the diminishing step-sizes. For the case where local objec-
tive functions are smooth, the authors of Jakoveti¢, Xavier, and
Moura (2014b) developed a fast distributed algorithm based on the
centralized Nesterov gradient method. They showed that the pro-
posed algorithm with diminishing step-sizes has a faster conver-
gence rate compared to the DGD algorithm and the dual averaging
algorithm (Duchi, Agarwal, & Wainwright, 2012), but is still slower
than the centralized gradient descent algorithm. With a fixed step-
size, it is shown in Matei and Baras (2011) and Yuan, Ling, and
Yin (2015) that the DGD algorithm only converges to a point in
the neighborhood of an optimal solution.

In order to achieve the convergence rate that matches the cen-
tralized gradient descent algorithm and to reduce communication
overheads, recent studies focused on developing distributed accel-
erated algorithms with fixed step-sizes for the case where local
objective functions are strongly convex and smooth. Both discrete-
time and continuous-time distributed algorithms have been pro-
posed and will be reviewed in Section 3.1.2 and Section 3.2, re-
spectively.

3.1.2. Algorithms with a fixed step-size

In this subsection, we present several recently developed
discrete-time distributed algorithms with fixed step-sizes which
linearly (exponentially in the language of control theory) converge
to an optimal solution. A common strategy of these proposed algo-
rithms is to use some sort of historical information.

EXTRA. The earliest work is perhaps (Shi, Ling, Wu, & Yin,
2015a), where the authors developed an exact first-order algorithm
(abbreviated as EXTRA). More specifically, the EXTRA contains two
steps. In the first step, agent i performs the following update:

N

x(1) = ZWinj(O) —aV fi(x(0)), (4)
j=1

where « >0 is a fixed step-size, the weight mixing matrix W =

[w;j] € RN*N is doubly stochastic and Vfi(-) is the gradient of the

local objective function f;(-). In the second step, agent i performs

the following update:

N N
X,(k+2) = Xi(k-i— 1) + ZWUXJ(k-i— l) . ZWUX](k)
j=1 Jj=1
—a(Vfixi(k+1)) = Vfi(x;(k))), k=0,1,..., (5)



282 T. Yang, X. Yi and J. Wu et al./Annual Reviews in Control 47 (2019) 278-305

where the weight mixing matrix W = [W;;] € RN*N is also doubly
stochastic. Compared to the DGD algorithm (2), which only uses
the estimate of the optimal solution and the gradient at the pre-
vious iteration, the EXTRA uses the estimates of the optimal solu-
tion and the gradients at the previous two iterations. It is shown in
Shi et al. (2015a) that the EXTRA can be viewed as the DGD with a
cumulative correction term to correct the error caused by the DGD
with a fixed step-size.

For an undirected connected network, under certain conditions
on the doubly stochastic weight mixing matrices, the linear con-
vergence of the EXTRA with the step-size less than a certain crit-
ical value has been established if the global objective function is
restricted strongly convex with respect to the global minimizer
and local convex objective functions are smooth. The primal-dual
interpretation of the EXTRA has been offered in Mokhtari and
Ribeiro (2016) and Mokhtari, Shi, Ling, and Ribeiro (2016) based
on the augmented Lagrangian function. The EXTRA has also been
extended to composite convex problems where the local objective
functions have the smooth and nonsmooth composite convex form.
In particular, the authors of Shi, Ling, Wu, and Yin (2015b) devel-
oped a proximal gradient exact first-order algorithm (PG-EXTRA)
by using proximal operations (Parikh & Boyd, 2014).

Other proximal algorithms for composite optimization are also
available in the literature, see, e.g., Aybat, Wang, and Iyen-
gar (2015); Aybat, Wang, Lin, and Ma (2018); Dhingra, Khong, and
Jovanovic¢ (2019) and Xu, Zhu, Sohy, and Xie (2018b). In particu-
lar, the authors of Aybat et al. (2015) developed a distributed aug-
mented Lagrangian algorithm with a double-loop structure. The
authors of Aybat et al. (2018) proposed a distributed proximal gra-
dient algorithm and its stochastic variant with noisy gradients. The
proposed algorithms only contain a single-loop and therefore they
are easy to be implemented.

The authors of Dhingra et al. (2019) developed a distributed
proximal augmented Lagrangian method for the distributed com-
posite convex optimization. The authors of Xu et al. (2018b) de-
veloped a distributed algorithm based on the Bregman method
and operator splitting, referred to as Distributed Forward-Backward
Bregman Splitting (D-FBBS). The proposed distributed algorithm
provides a unified framework which recovers most existing dis-
tributed algorithms for fixed graphs, such as EXTRA (Shi et al.,
2015a) and P-EXTRA (Shi et al., 2015b). Moreover, the proposed al-
gorithm allows agents to communicate asynchronously, and thus is
applicable to stochastic networks.

DIGing. Next, we review another class of distributed algo-
rithms with fixed step-sizes, based on the combination of the
distributed inexact gradient method and the gradient tracking
technique (abbreviated as DIGing), developed independently in
Nedic et al. (2017a); Qu and Li (2018); Xu, Zhu, Soh, and Xie (2015,
2018a) and Nedic, Olshevsky, Shi, and Uribe (2017b). In these al-
gorithms, in addition to x;(k), which is agent i's estimate of the
optimal solution at time step k, each agent i also holds another
state y;(k), which is the estimate of the average gradient at time
step k. In algorithms proposed in Qu and Li (2018) and Nedic
et al. (2017a), these states are updated as follows:

N
Xi(k+1) ="y wyx;(k) — ay;(k), (6a)
=

N
yitk+1) =Y wiy; (k) + V fi(xi(k + 1)) = V fi(xi(k)), (6b)

j=1

where the weight mixing matrix W =[w;j] e RNV is doubly
stochastic and « >0 is a fixed step-size. The algorithm is initial-
ized with any x;(0) and y;(0) = V f;(x;(0)). The algorithm is based
on the combination of the distributed inexact gradient method

and the gradient tracking technique. More specifically, the update
(6a) is a distributed inexact gradient method, where the variable
yi(k) is used instead of the average gradient, and in the update
(6b), y;(k) tracks the average gradient by employing dynamic av-
erage consensus (Zhu & Martinez, 2010).

Under the assumption that local objective functions are strongly
convex and smooth, the linear convergence of the DIGing algo-
rithm has been established for undirected connected networks if
the fixed step-size is chosen properly (Nedi¢ et al, 2017a; Qu
& Li, 2018). For fixed undirected networks, it is shown in Nedic
et al. (2017a) that the DIGing algorithm is equivalent to the EXTRA
by properly choosing the two mixing matrices in the EXTRA. More-
over, Nedic et al. (2017a) also provided a primal-dual interpretation
for the DIGing algorithm based on the augmented Lagrangian func-
tion.

Note that the algorithms proposed in Qu and Li (2018) and
Nedic et al. (2017a) require an identical step-size for all agents.
A few algorithms with different (uncoordinated) step-sizes have
been proposed, see, e.g., Aug-DGM (augmented distributed gradi-
ent methods) (Xu et al., 2015), AsynDGM (asynchronous distributed
gradient method) (Xu, Zhu, Soh, & Xie, 2018a), and ATC-DIGing
(adapt-then-combine distributed inexact gradient tracking) (Nedic
et al., 2017b). More specifically, each agent i performs the following
update rule’:

N
xi(k+1) = wy(x;(k) — ay;(k)), (7a)

j=1

N
yitk+1) =" wi(y;(k) + Vfix;(k+ 1)) = Vfix;(k))), (7b)

j=1

where o; >0 is the step-size of agent j.

Compared with the DIGing algorithm (6), which employs a
combine-then-adapt (CTA) structure (Sayed, 2014b), where the
states are combined with neighboring agents’ states and then
adapted, algorithm (7) utilizes an adapt-then-combine (ATC) struc-
ture (Sayed, 2014b), in which the states are first adapted and then
combined with the adapted states of neighboring agents. As shown
in Nedic et al. (2017b); Xu et al. (2015, 2018a), the ATC structure is
capable of employing uncoordinated step-sizes. Another nice fea-
ture of the ATC structure is that the algorithms with ATC sturcture
enjoy faster convergence (Nedic et al., 2017a; Nedic et al., 2017b).

Recently, the authors of Jakovetic (2019) provided a unified
primal-dual analysis for both the EXTRA (Shi et al., 2015a) and
the DIGing (Nedic et al., 2017a; Qu & Li, 2018) and revealed
that a major difference between these two methods is on the
effect of the primal error on the dual error. They then general-
ized these methods by deriving a new method which reduces the
negative effect of primal error on the dual error. The authors of
Sundararajan, Hu, and Lessard (2017) and Sundararajan, Scoy, and
Lessard (2018) proposed a unified framework for analyzing the EX-
TRA, the DIGing, the algorithms proposed in Jakovetic¢ (2019), and
other existing first-order distributed algorithms for strongly con-
vex and smooth objective functions by formulating a semidefinite
program (SDP) which can be efficiently solved to provide a numeri-
cal certificate of the linear convergence. These works (Sundararajan
et al., 2017; Sundararajan et al., 2018) can be viewed as an ex-
tension of their earlier work (Lessard, Recht, & Packard, 2016) for
optimization, where the authors developed a framework to ana-
lyze and design iterative optimization algorithms by using integral
quadratic constraints (IQC) from robust control theory (Megretski

T Note that the update for the variable y; in AsynDGM proposed in
Xu et al. (2018a) is slighly different, ie., (7b) is replaced by y;(k+1)=
T wiy(k) + Vfitkitk+ 1)) = V fi(xi(k)).
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& Rantzer, 1997), to distributed multi-agent optimization. By using
the IQC and dissipativity theory, the author of Han (2019) provided
a computational proof for the convergence analysis of the dis-
tributed algorithm for undirected fixed graphs proposed in Qu and
Li (2018) when local objective functions are smooth and convex
but not strongly convex.

Distributed PI algorithm. To correct the error caused by the
distributed gradient based algorithms with fixed step-sizes, dis-
tributed algorithms based on the proportional-integral (PI) con-
trol strategy have been developed in Lei, Chen, and Fang (2016);
Yao, Yuan, Sundaram, and Yang (2018) and Yang, Wan, Wang,
and Lin (2018). These algorithms are discrete-time counterparts
of the continuous-time distributed PI algorithms proposed in
Gharesifard and Cortés (2014); Kia, Cortés, and Martinez (2015a);
Wang and Elia (2010) and Xie and Lin (2017), which will be re-
viewed in Section 3.2. In particular, in these algorithms, each agent
performs the following update:

Xij(k+1) = x;(k) —vi(k) — oV fi(x;(k))

=B aj(xi(k) = x;(k)). (8a)
JeN;
vi(l<+1)=v,-(k)+oz,BZa,-j(x,-(k)—xj(k)), (Sb)
JeN;

where x;(k) € R" is the local estimate of the global minimizer x*
of agent i at time step k, o, 8 >0 are gain parameters, and N =
{jeV|(j,i) e&} is the set of neighbors for agent i. The algorithm
is initialized with any x;(0) and v;(0) such that Zf’zl v;(0) = 0,.

It is shown in Yao et al. (2018) that the distributed PI algorithm
(8) is equivalent to the EXTRA by properly choosing the two mix-
ing matrices in the EXTRA. Therefore, the convergence analysis fol-
lows from the proof in Shi et al. (2015a). For the case where local
objective functions are quadratic, a less conservative convergence
condition was also established in Yao et al. (2018) via the Lyapunov
stability analysis.

Distributed Newton-Raphson algorithm. Although we focus
on first-order gradient-based algorithms, it is worthy to men-
tion that a few second-order distributed algorithms based on the
Newton method have been proposed, see, e.g., Varagnolo, Zanella,
Cenedese, Pillonetto, and Schenato (2016); Wei, Ozdaglar, and
Jadbabaie (2013a,b); Zanella, Varagnolo, Cenedese, Pillonetto,
and Schenato (2011). In particular, the distributed Newton-
Raphson algorithm proposed in Zanella et al. (2011) and
Varagnolo et al. (2016) is based on the average consensus algo-
rithm and the separation of time-scale idea. Intuitively, each agent
computes and sequentially updates an approximated Newton-
Raphson direction by means of suitable average consensus ra-
tios. Although the algorithm proposed in Zanella et al. (2011) and
Varagnolo et al. (2016) is actually a discrete-time algorithm, in or-
der to establish its convergence, the algorithm is considered as a
forward-Euler discretization of a continuous dynamics. The authors
established the exponential stability of the continuous dynamics,
which in turn implies the stability of the Euler discretization pro-
vided that the Euler discretization step-size is sufficiently small.

3.2. Continuous-time algorithms

Although classical distributed optimization algorithms are in
the discrete-time setting, with the development of cyber-physical
systems, much attention has been paid to the continuous-time
setting, mainly because many practical systems such as robots
and unmanned vehicles operate in continuous-time and the
well-developed continuous-time control techniques (in particu-
lar Lyapunov stability theory) may facilitate the analysis. Various
continuous-time distributed algorithms have been developed and

can be categorized into two groups depending on whether an algo-
rithm uses the first-order gradient information or the second-order
Hessian information, which will be reviewed in Section 3.2.1 and
Section 3.2.2, respectively. Similar to the discrete-time case, we fo-
cus on the distributed algorithms for fixed undirected graphs in
this subsection and will review various extensions in Section 4.

3.2.1. First-order gradient-based algorithms

Distributed PI algorithm. By using the PI control strategy, var-
ious continuous-time distributed algorithms have been developed
in the literature. The earliest work is perhaps (Wang & Elia, 2010),
where the authors proposed the following algorithm:

N
xi(t) = Zaij(xj(t) —x;(t))

i
N
+ Zaij(vj(t) —(t)) — Vfi(xi(t)), (9a)
=
N
i’i(t)zzaij(xi(t)_xj(t))v (9b)
=1

where g;; > 0 is the edge weight for edge (j,i) € £ and g;; = 0 oth-
erwise.

The algorithm is motivated by a feedback mechanism and is
a proportional-integral control. More specifically, in (9a), the term
-V fi(x;(t)) ensures that each agent follows its local gradient de-
scent while the term 21}’21 a;j(x;(t) — x;(t)) ensures that consensus
is achieved among agents. However, if the dynamics just contains
these two terms, the agents’ states would not converge since the
local gradients are not the same in general. Thus, to correct the er-
ror, the additional integral feedback term Z?’ﬂ a;j (v (t) —v;(t)) is
included, where the dynamics of v;(t) is governed by (9b).

By defining x(t) =[x (t).x] (t),....xy(©)]" and w(t)=
[v] (®), v (), ....vi (O], algorithm (9) can be rewritten in a
more compact form:

x(t) = —(Lel)x(t) — (L )v(t) — VF(x()), (10a)

U(t) = (L I)x(t),

where L= [Eij] € ]RNXN, with L = Z_I;J:] ajj and gij = —0jj for
j#i, is the Laplacian matrix associated with the underlying
communication graph, f(x(t)) = Zf’zl filx;(t)) and Vf(x(t)) =
[V (1 (0)..... VI Gu ()]

Note that algorithm (10) can also be interpreted as a primal-
dual algorithm as shown in Gharesifard and Cortés (2014);
Wang and Elia (2011) and Dérfler (2019). More specifically, as
shown in Gharesifard and Cortés (2014, Lemma 3.1), the dis-
tributed optimization problem (1) is equivalent to the following
optimization problem:

(10b)

N
min ;fi(xi) (11a)
st. (Lel)x =0y, (11b)

For the above optimization problem (11), consider the aug-
mented Lagrangian function

L&) =fX)+vT(LeL)x+ %XT(L(X)IH)X.

Then algorithm (10) is the associated saddle-point flow, which
is also the continuous-time gradient flow algorithm developed in
Arrow, Huwicz, and Uzawa (1958).
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For undirected connected graphs, it is shown in Wang and
Elia (2010) that algorithm (10) solves the distributed optimization
problem asymptotically, that is, lim;_ . x(t) = 1y ® x*. Moreover,
lim;_, o v(t) = v*, where (L® I))v* = Vf(1y ® x*).

3.2.2. Second-order algorithms

In this subsection, we review the existing second-order dis-
tributed algorithms based on the second-order Hessian informa-
tion. Compared to the first-order distributed algorithms, these al-
gorithms result in a faster convergence rate by exploring the Hes-
sian information.

Zero-Gradient-Sum Algorithm. The authors of Lu and
Tang (2012) developed the following algorithm:
. -1
X(6) =y (V2Ha(®)) Y ay(x;(t) — xi(t)), (12)

JeN;
where y >0 is a gain parameter. The algorithm is initialized with
x;(0) = x;, where x¥ is the minimizer of the local objective func-
tion f(x).

Note that it is shown that Y ;., Vfi(x;(t)) =0 for all t>0 if
the undirected network is connected. For this reason, the dis-
tributed algorithm (12) is called Zero-Gradient-Sum (ZGS) algo-
rithm. For undirected connected graphs, the authors of Lu and
Tang (2012) showed that algorithm (12) exponentially converges to
the global minimizer via Lyapunov stability analysis if local objec-
tive functions are twice continuously differentiable, strongly con-
vex, and have locally Lipschitz Hessians.

4. Extensions

In Section 3, we have reviewed various existing discrete-time
and continuous-time distributed algorithms for solving the un-
constrained optimization problem over undirected graphs. In this
section, we discuss how these algorithms have been extended in
various directions to handle more realistic scenarios. In particu-
lar, Section 4.1 describes how these algorithms can be extended
to directed communication networks, which may be time-varying.
Section 4.2 reviews distributed optimization algorithms for the
case where agent dynamics are more complicated. Section 4.3 dis-
cusses how to handle the distributed optimization problem with
constraints. We then focus on the case where the communication
networks may be subject to communication constraints, such as
time-delays in Section 4.4 and random graphs in Section 4.5. In
Section 4.6, we describe how to design event-triggered communi-
cation strategies for distributed optimization algorithms to avoid
continuous communication and to reduce communication over-
heads. Section 4.7 reviews distributed finite-time optimization al-
gorithms.

In these subsections for various extensions, we first provide an
overview of both discrete-time and continuous-time optimization
algorithms, if both exist in the literature. Although we only focus
on one extension in each of following subsections, these extensions
are not independent but actually may overlap one another to some
extent. We will also briefly discuss the future research directions at
the end of each subsection.

4.1. Directed graphs

In this subsection, we focus on the case where the commu-
nication networks are directed and possibly time-varying, since
in practice, the information exchange may be unidirectional due
to nonuniform communication powers, and the network topology
may vary due to unexpected loss of communication links. Various
discrete-time and continuous-time distributed optimization algo-
rithms have been proposed for directed networks, which will be
discussed in Section 4.1.1 and Section 4.1.2, respectively.

4.1.1. Discrete-time

Existing discrete-time distributed algorithms can be divided
into two classes depending on the method an algorithm uses to
handle directed communication networks.

Distributed Push-Sum Based Algorithms. Most existing
discrete-time distributed algorithms for directed graphs are
based on the push-sum method (Bénézit, Blondel, Thiran,
Tsitsiklis, & Vetterli, 2010; Kempe, Dobra, & Gehrke, 2003;
Nedi¢c & Olshevsky, 2015) or ratio consensus (Charalambous
et al, 2015; Dominguez-Garcia & Hadjicostis, 2011; 2015;
Hadjicostis & Charalambous, 2014), which relaxes the require-
ment of doubly stochastic mixing matrices in the distributed
algorithms reviewed in Section 3.1 for undirected graphs to col-
umn stochastic matrices. In the push-sum method, each agent
runs two linear iterations simultaneously with a column stochastic
matrix, where the initial conditions of these two iterations are the
initial estimations for the optimal solution and the vector of all
ones, respectively, and the ratio of the two states converges to the
initial average for strongly connected directed graphs which are
not necessarily weight-balanced. By using this method together
with the (sub)gradient method, various distributed algorithms
have been developed.

The earlier studies focused on developing distributed algo-
rithms with diminishing step-sizes for the case where the local
convex objective functions are not necessarily differentiable but
with bounded subgradients. The authors of Tsianos, Lawlor, and
Rabbat (2012) developed a distributed algorithm based on the
push-sum method and dual averaging (Duchi et al., 2012) for fixed
directed graphs which are strongly connected. Later, the authors of
Nedic¢ and Olshevsky (2015) studied general directed time-varying
networks which are uniformly jointly strongly connected. The con-
vergences of these proposed algorithms are rather slow due to the
diminishing step-sizes.

To accelerate the convergence process, distributed algorithms
with fixed step-sizes by using the push-sum method have been
proposed in Nedi¢ et al. (2017a, 2017b); Xi and Khan (2017);
Zeng and Yin (2017). In particular, the authors of Zeng and
Yin (2017) developed an algorithm, termed ExtraPush, for the case
where the local objective functions are quasi-strongly convex and
smooth. the authors of Xi and Khan (2017) developed an algo-
rithm, termed DEXTRA (Directed-EXTRA), for the case where the
local objective functions are restricted strongly convex with respect
to the global minimizer and smooth. The step-sizes of both Ex-
traPush and DEXTRA are restrictive in the sense that their lower
bounds are strictly greater than zero. the authors of Xi, Xin, and
Khan (2018) proposed an algorithm, termed ADD-OPT (Accelerated
Distributed Directed Optimization), in which the lower bound of
the step-size is zero, and thus supports a wider range of step-sizes.
The linear convergence was established for the case where the lo-
cal objective functions are strongly convex and smooth. It is shown
in Nedi¢ et al. (2017a) that the ATC variant of the DIGing algo-
rithm with the push-sum method is applicable to time-varying di-
rected graphs which are uniformly jointly strongly connected. This
algorithm was extended with uncoordinated step-sizes in Nedic
et al. (2017b) and the linear convergence was established for con-
nected undirected graphs even if the step-sizes are not identical.

Distributed Push-Pull Based Algorithms. The second class
of algorithms is based on the push-pull method (see, e.g., Du,
Yao et al, 2018; Pu, Shi, Xu, & Nedi¢, 2018; Xin & Khan, 2018;
Yang et al.,, 2013). In Yang et al. (2013), the authors focused on
the case where local objective functions are quadratic and de-
veloped a distributed algorithm based on the surplus idea (Cai
& Ishii, 2012). The asymptotic convergence was established for
strongly connected directed graphs if the learning gain parameter
is sufficiently small. Recently, to extend the DIGing algorithm (6) to
directed networks and general non-quadratic objective functions,
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distributed algorithms developed in Du, Yao et al. (2018); Xin and
Khan (2018) and Pu et al. (2018) use a row stochastic matrix for
the mixing of estimates of the optimal point, while they employ a
column stochastic matrix for tracking the average gradient. From
the viewpoint of an agent, the information about the estimates
of the optimal point is pushed to the neighbors, while the infor-
mation about the gradients is pulled (collected) from the neigh-
bors, hence giving the name push-pull gradient method (Pu et al.,
2018). For the case where local objective functions are strongly
convex and smooth, the linear convergence has been established
for these push-pull based algorithms over strongly connected di-
rected graphs (Du, Yao et al.,, 2018; Pu et al., 2018; Xin & Khan,
2018).

Compared with push-sum based algorithms, distributed push-
pull based algorithms require less computation and communica-
tion, since in push-sum based algorithms, the division operators
are used, which causes additional computation (Pu et al., 2018).
Recently, the authors of Zhang, Vi, George, and Yang (2019) pre-
sented a unified framework based on IQC for analyzing the lin-
ear convergence of various push-pull based algorithms proposed in
Du, Yao et al. (2018); Xin and Khan (2018) and Pu et al. (2018) and
the push-pull variant of the algorithm proposed in (Xu et al.,
2018a) when local objective functions are strongly convex and
smooth. The work can be viewed as an extension of the IQC frame-
work recently proposed in (Sundararajan et al., 2017) for undi-
rected graphs to directed graphs. the authors of Saadatniaki, Xin,
and Khan (2018) developed a push-pull algorithm for time varying
directed graphs which are uniformly jointly strongly connected.

To implement both distributed push-sum based and push-pull
based algorithms, each agent is required to know its out-degree in
order to construct a column stochastic matrix. This may be imprac-
tical when agents use broadcast-based communication (Hendrickx
& Tsitsiklis, 2015). On the other hand, the construction of a row
stochastic matrix is much easier since each agent could assign the
edge weight to its in-neighbors. As shown in Hendrickx and Tsit-
siklis (2015), in order to compute the optimal solution for the dis-
tributed optimization of a sum of local functions in the context
of broadcast-based algorithms, each agent needs to know either
its out-degree or its unique identifier. Recently, by assuming that
each agent knows its unique identifier, the authors of Xi, Mai, Xin,
Abed, and Khan (2018) developed a distributed algorithm which
only uses a row stochastic matrix. To cancel the imbalance caused
by employing only the row-stochastic matrix, each agent holds an
additional variable that converges asymptotically to the left eigen-
vector corresponding to the eigenvalue at 1 of the row-stochastic
matrix. The gradient is then divided by this additional variable to
cancel the imbalance. The linear convergence was established for
strongly connected directed graphs if the step-size is less than a
certain value. This algorithm was later extended to uncoordinated
step-sizes in Xin, Xi, and Khan (2019) and the linear convergence
was established even if the step-sizes are not identical as long as
the largest step-size is sufficiently small.

4.1.2. Continuous-time

In this subsection, we discuss how to extend continuous-time
algorithms reviewed in Section 3.2 for undirected graphs to di-
rected graphs.

Algorithm (10) originally proposed in Wang and Elia (2010) for
undirected graphs was extended to directed graphs in
Gharesifard and Cortés (2014). In particular, the authors developed

the following algorithm:
x(t) = —a(L® I)x(t) — Lv(t) — V f(x(t)), (13a)

v(t) = (Lo L)x(), (13b)

where « > 0 is a design parameter. Under the assumptions that the
directed graph is strongly connected and weight-balanced and the
local convex objective functions are smooth, it is shown that algo-
rithm (13) asymptotically converges to the global minimizer if the
gain parameter « is appropriately chosen.

Note that both algorithm (10) and algorithm (13) require com-
munication for both variables x and v. In order to reduce the over-
all communication, the authors of Kia et al. (2015a) developed the
following algorithm:

X(t) = =L@ I)x(t) —v(t) —aVf(x(1)), (14a)

v(t) = af(L®L)x(t),

where o, >0 are gain parameters.

Compared with algorithms (10) and (13), algorithm (14) only
needs the communication for the variable x, but not for the vari-
able v. On the other hand, in order to remove the communica-
tion among the variable v, it requires a special initialization for
v(0) as given in (14b). Under assumptions that the directed graph
is strongly connected and weight-balanced, and the local objec-
tive functions are strongly convex and smooth, the authors of
Kia et al. (2015a) established the exponential convergence of al-
gorithm (14) with properly chosen gain parameters.

Note that gain parameters in most existing algorithms often
depend on some global information, such as the Lipschitz con-
stant and the network connectivity. To remove such a requirement,
several distributed adaptive algorithms have been developed (see,
e.g., Li, Ding, Sun, & Li, 2018; Lin, Ren, & Farrell, 2017; Zhao, Liu,
Wen, & Chen, 2017). Continuous-time distributed algorithms dis-
cussed so far are based on the PI control strategy and are first-
order algorithms based on the gradient information. On the other
hand, the ZGS algorithm (12) which uses the second-order Hes-
sian information proposed in Lu and Tang (2012) has also been ex-
tended to strongly connected and weight-balanced directed graphs
in Chen and Ren (2016) and Guo and Chen (2018).

In summary, various discrete-time and continuous-time dis-
tributed optimization algorithms have been extended to directed
graphs. In the discrete-time setting, common techniques for the
convergence analysis are linear systems of inequalities and the
small-gain theory. These techniques have been extended in Nedic
et al. (2017a, 2017b) to time-varying directed graphs which are
uniformly jointly strongly connected but not necessarily weight-
balanced. In the continuous-time setting, a common technique
used for the convergence analysis is the Lyapunov stability the-
ory. For fixed directed graphs which are strongly connected and
weight-balanced, various Lyapunov functions have been developed
in the existing studies. However, it is difficult to construct a Lya-
punov function for general unbalanced directed graphs. Moreover,
it is also challenging to construct a common or multiple Lyapunov
function for time-varying graphs (Liberzon & Morse, 1999). There-
fore, the Lyapunov analysis has been only extended to time-varying
directed graphs for certain special cases. For example, for the case
where all local objective functions have a common minimizer, the
common Lyapunov function has been constructed in Shi, Johans-
son, and Hong (2013). An interesting research direction is to extend
the Lyapunov analysis to general unbalanced fixed directed graphs
and time-varying directed graphs.

(15 ® [,)v(0) = 0y, (14b)

4.2. Complex agent dynamics

Most existing distributed optimization algorithms discussed so
far can be viewed as distributed optimal coordination algorithms
for multi-agent systems with single integrator agent dynamics.
However, in many practical applications, the agent dynamics may
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be more complicated, such as those of double integrators, high-
order systems, and Euler-Lagrangian (EL) systems. For example,
EL systems have been used to describe many mechanical sys-
tems, such as mobile robots, rigid bodies, and autonomous vehi-
cles (Lynch & Park, 2017; Spong, Hutchinson, & Vidyasagar, 2006).
Moreover, any EL system with exact knowledge of nonlinearities
can be transformed into a double-integrator system.

Recently, focusing on undirected connected graphs or strongly
connected and weight-balanced directed graphs, distributed op-
timization algorithms for multi-agent systems with more com-
plicated agent dynamics have been developed. Most studies fo-
cused on continuous-time agent dynamics. The research is pro-
gressing with an increasing complexity of agent dynamics. The
double integrator agent dynamics were considered in Liu and
Wang (2015); Yi, Yao, Yang, George, and Johansson (2018);
Zhang and Hong (2014) and Wang, Gupta, and Wang (2018). In
particular, the authors of Zhang and Hong (2014) developed a
distributed algorithm and showed that the proposed algorithm
asymptotically converges to the optimal solution if the local objec-
tive functions are strongly convex and smooth. Note that the pa-
rameters of the algorithm proposed in Zhang and Hong (2014) de-
pend on some global information. To relax such dependence, the
authors of Yi et al. (2018) developed an alternative distributed al-
gorithm where no global information is needed to be known in ad-
vance. Moreover, the exponential convergence was established for
the case where each local objective function is locally smooth and
the global objective function is restricted strongly convex with re-
spect to the global minimizer, which is more general compared to
the strong convexity required in Zhang and Hong (2014).

There are a few works which studied the case where the
agent dynamics are high-order systems. For agents described by
chains of integrators, the authors of Zhang and Hong (2015) de-
veloped a continuous-time distributed algorithm based on the
gradient method and the integral feedback idea. For the case
where agents are general linear-time invariant systems and the
local objective functions are quadratic-like, two distributed adap-
tive algorithms based on dynamic coupling gains have been de-
veloped in Zhao, Liu et al. (2017). For the case where the agent
dynamics are EL systems, continuous-time distributed algorithms
have been developed in Meng et al. (2017); Qiu, Hong, and
Xie (2016) and Zhang, Deng, and Hong (2017). In particular, the
authors of Meng et al. (2017) considered a special case where the
intersection of local optimal convex sets is non-empty, while the
general case was considered in Zhang et al. (2017). the authors
of Zhang et al. (2017) developed two continuous-time distributed
algorithms for the case without parametric uncertainties and the
case with parametric uncertainties, respectively. The exponential
convergence was established for the case without parametric un-
certainties, while the asymptotic convergence was established for
the case with parametric uncertainties.

Apart from more complex agent dynamics, another important
issue is the physical constraints of the actuator since every ac-
tuator is subject to saturation due to its physical limitations. Al-
though various distributed control laws (algorithms) have been de-
veloped, these proposed control laws designed in the absence of
actuator saturation may fail to solve the distributed optimization
problem in the presence of actuator saturation. Note that global
consensus without the optimality concern has been widely studied
(see, e.g., Li, Xiang, & Wei, 2011; Meng, Zhao, & Lin, 2013; Yang,
Meng, Dimarogonas, & Johansson, 2014; Yi, Yang, Wu, & Johans-
son, 2019a; Zhao & Lin, 2016). However only a limited number of
results are available on global optimal consensus (or equivalently
distributed optimization) for multi-agent systems in the presence
of actuator saturation. the authors of Xie and Lin (2017) devel-
oped distributed protocols for single integrator agents and dou-
ble integrator agents, and showed that global optimal consensus

is achieved in the presence of actuator saturation when the under-
lying network is strongly connected and detailed balanced. The de-
sign was later extended to high-order integrator agents in Xie and
Lin (2019). For EL systems, the authors (Qiu, Hong et al., 2016) de-
veloped a distributed protocol to achieve global optimal consensus
under given constraints on velocity with the requirement that the
control input is bounded.

In summary, most studies in this direction assume that the
graph is either undirected and connected or directed strongly con-
nected and weight-balanced. Some of these results have been ex-
tended to the case with local constraints in Liu and Wang (2015);
Qiu, Hong et al. (2016); Qiu, Liu, and Xie (2016) and Qiu, Liu, and
Xie (2018). To avoid the continuous communication and to reduce
the communication overheads, several event-triggered algorithms
for the case where the agent dynamics are second-order have de-
veloped in Yi et al. (2018) and Wang, Gupta et al. (2018). These
two extensions (local constraints and event-triggered communica-
tion schemes) will be discussed in Section 4.3 and Section 4.6, re-
spectively.

There are a few other future research directions: i) extend the
commonly used Lyapunov stability theory in these existing studies
for high-order multi-agent systems to unbalanced directed graphs.
Compared with the Lyapunov analysis for first-order multi-agent
systems, the complex agent dynamic makes such an extension
more challenging; ii) investigate the robustness properties of these
existing distributed algorithms, since various disturbances, arising
from either environment or communication, are ubiquitous in re-
ality. Some preliminary results are available in Mateos-Ntfiez and
Cortés (2016); Wang, Hong, and Ji (2016). In particular, the au-
thors of Mateos-Nufiez and Cortés (2016) studied the distributed
PI algorithms for single integrator agents with persistent Gaus-
sian white noise, and showed that the resulting stochastic dynam-
ics is noise-to-state exponentially stable in the second moment,
while the authors of Wang, Hong et al. (2016) considered the case
where the agent dynamics are heterogeneous nonlinear high-order
systems perturbed by external disturbances, and developed a dis-
tributed protocol based on the internal model principle; iii) study
the multi-agent systems with discrete-time agent dynamics as
such models are relevant for many practical sampled-data systems.
Some studies are available in this direction but mainly focused on
discrete-time single integrator agents. For example, the authors of
Yang et al. (2018) extended the results of Xie and Lin (2017) for the
continuous-time single-integrator agents to the discrete-time set-
ting, while the authors of Qiu et al. (2018) developed a distributed
bounded control protocol with time-varying gain parameters based
on the local subgradient descent and the projection method for
solving the distributed constrained optimization problem.

4.3. Constrained optimization

So far, we have only focused on the distributed unconstrained
optimization problem. However, in physical applications, there may
exist various constraints such as local constraints, global inequality
and equality constraints. Such a constrained optimization problem
can be formulated as follows:

min XN:fi(X) (15a)
i1

st xenl, (15b)

g(x) < Op, (15¢)

h(x) = 0,, (15d)
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where the function f; : R" — R is the local convex objective func-
tion for agent i, and €2; is the local constraint set known to agent
i only and is assumed to be closed and convex. The function
g:R" - R™ with each component g, ¢ € {1,2,..., m}, being con-
vex. The inequality g(x) <0y, is understood to be component-wise,
i.e., g(x)<0 for all ¢€{1,2,...,m}, and represents a global in-
equality constraint. The function h : R" — RP with each component
he, £ € {1,2, ..., p}, being convex, represents a global equality con-
straint.

4.3.1. Local constraint sets

We begin with a simple case where each node is subject to a
local constraint set and there is no global inequality and equality
constraints, that is, constraints (15c) and (15d) in (15) are nonexis-
tent. The constrained optimization problem (15) then reduces to:

N
min i
min 3 fi(x) (16a)
i=1
st. xenl, Q. (16b)
The earlier studies focused on the special case when the con-
straint sets are identical (common), ie., €; for i=1,2,...,N,

are the same. In the discrete-time setting, the authors of Nedic,
Ozdaglar, and Parrilo (2010) developed a distributed projected
(sub)gradient algorithm with diminishing step-sizes, in which each
agent performs distributed algorithm (2) and takes the projection
of this vector on the common constraint set. In the continuous-
time setting, the authors of Qiu, Liu et al. (2016) developed a dis-
tributed protocol containing three terms: local averaging, local pro-
jection, and local subgradient with a diminishing but persistent
gain. Both algorithms were shown to converge to an optimal point
if the undirected graph is uniformly jointly connected.

For the general case when the constraint sets are different, the
convergence of the projected subgradient algorithm was only es-
tablished for fixed fully connected graphs in Nedic et al. (2010).
Such a result was extended to time-varying directed graphs in
Zhu and Martinez (2012) and Lin, Ren, and Song (2016), where the
authors established the convergence results when time-varying di-
rected graph is uniformly jointly strongly connected and weight-
balanced at all times. Recently, the authors of Wang, Lin, Ren, and
Song (2018) established the convergence under the same condition
without the square summable requirement of the step-sizes in (3).
Note that these existing methods require each node to compute
a projection on the local constraint set, which may not be easy.
the authors of Aybat and Hamedani (2016) and Hamedani and Ay-
bat (2017) developed distributed primal-dual algorithms for the
case where the objective functions are composite convex and the
constraint sets are conic.

Although the aforementioned optimization algorithms are ap-
plicable to time-varying graphs, their convergence is rather slow
due to the required diminishing step-sizes. To accelerate the con-
vergence rate, a few distributed algorithms have been developed
for fixed undirected graphs. In the discrete-time setting, the au-
thors of Lei et al. (2016) developed a distributed primal-dual al-
gorithm with a fixed step-size. The proposed algorithm can be
viewed as an extension of the EXTRA (Shi et al., 2015a) and dis-
tributed PI algorithm (Yao et al., 2018) to the constrained case.

In the continuous-time setting, a few distributed algorithms
are also available. the authors of Liu and Wang (2015) extended
the distributed PI algorithm originally proposed in Gharesifard and
Cortés (2014) to the constrained case. Note that the auxiliary vari-
ables of the proposed algorithm may be asymptotically unbounded,
which makes the proposed algorithm hard to implement in prac-
tice. Such an issue was removed later in Zeng, Yi, and Hong (2017),
where the authors developed a distributed algorithm which has

bounded states while seeking the optimal solutions. These pro-
posed algorithms in Lei et al. (2016); Liu and Wang (2015) and
Zeng et al. (2017) are applicable to nonsmooth local convex ob-
jective functions and the asymptotic convergence result was es-
tablished for connected undirected graphs. For the special case
where local objective functions are strongly convex and locally
smooth on the constraint set, the authors of Wang, Wang, Sun, and
Wang (2018) proposed a distributed algorithm based on the inte-
gral control strategy and the projection method, and established its
exponential convergence if the parameters are properly chosen.

4.3.2. Global constraints

In Section 4.3.1, we have discussed the distributed constrained
optimization problem when each agent is subject to a local con-
straint set. In this subsection, we consider the general case when
global inequality and equality constraints are also present in addi-
tion to the local constraints.

We first consider the case where there are only global inequal-
ity constraints, that is, constraints (15d) in (15) are nonexistent.
The constrained optimization problem (15) then reduces to:

N
min ;ﬁ(X) (17a)
st xenV,Q; (17b)
g(x) < O, (17¢)

By assuming that the global inequality constraints are known
to all the agents, a few discrete-time distributed algorithms with
diminishing step-sizes have been proposed. In particular, the au-
thors of Zhu and Martinez (2012) developed a primal-dual pro-
jected subgradient algorithm with diminishing step-sizes based on
the characterization of saddle points of the augmented Lagrangian
function. It is shown that the algorithm asymptotically converges
to an optimal solution for time-varying directed graphs which are
weight-balanced and uniformly jointly strongly connected.

For the case where local constraints set are identical, the au-
thors of Yuan, Xu, and Zhao (2011) proposed a distributed primal-
dual subgradient algorithm with a fixed step-size and multiple up-
dates for each consensus step. For connected undirected graphs, it
is shown that the algorithm converges to the optimal point within
the error level depending on the number of consensus updates.

Note that aforementioned algorithms in this subsection require
each agent projecting its primal-dual estimate onto some convex
sets at every iteration, which results in high computational cost. To
reduce such a cost, a distributed regularized primal-dual subgradi-
ent algorithm with a fixed step-size was developed in Yuan, Ho,
and Xu (2016) for the case without local constraints, whose imple-
mentation requires only one projection at the last iteration. More-
over, the explicit convergence rate for the objective error was also
established for time-varying directed graphs which are uniformly
jointly strongly connected.

Next, we consider the case where there are only global linear
equality constraints, that is, constraints (15c) in (15) are nonexis-
tent. The constrained optimization problem (15) then reduces to:

N
min ;fi(x) (18a)
st xenV, (18b)
h(x) =0, (18¢c)
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where the function h:R" — RP is defined as h(x) = Bx — b with
B € RP*1,

For the case where local constraint sets are identical, the au-
thors of Zhu and Martinez (2012) developed a distributed penalty
primal-dual subgradient algorithm with a diminishing step-size. It
is shown that the algorithm asymptotically converges to an op-
timal solution for time-varying directed graphs which are uni-
formly jointly strongly connected and weight-balanced at all
times.

For the general case where local constraint sets are different,
the authors of Liu, Yang, and Hong (2017) developed discrete-
time distributed algorithm with a fixed step-size. Asymptotic con-
vergence to the global minimizer was established for undirected
connected graphs if the step-size is less than an estimable upper
bound.

In the continuous-time setting, the authors (Yang, Liu, & Wang,
2017b; Zhu, Yu, Wen, Chen, & Ren, 2018) developed distributed
algorithms based on the PI control strategy and the subgradient
method, respectively. By using the nonsmooth analysis and the
Lyapunov stability theory, the asymptotic convergence results were
established for undirected connected graphs.

In summary, most existing discrete-time and continuous-time
distributed algorithms for solving the distributed constrained op-
timization problem are only applicable to undirected graphs or
weight-balanced digraphs. One future research direction is to de-
velop distributed algorithms for unbalanced digraphs. An interest-
ing result in this direction has been obtained by Xie, You, Tempo,
Song, and Wu (2018), where the authors considered a distributed
optimization problem with a local inequality constraint and de-
veloped a discrete-time distributed algorithm with a diminishing
step-size using the epigraph form of the constrained optimization.
It is shown that the proposed algorithm asymptotically converges
to the common optimal point even for time-varying unbalanced di-
graphs which are uniformly jointly strongly connected. It is worthy
to investigate if such a result can be extended to the distributed al-
gorithms with fixed step-sizes.

Another interesting future direction is to consider the opti-
mization problem with a general set of equality and inequal-
ity constraints that couple all the agents’ decision variables. In
the presence of a coupled constraint, the feasible region of one
agent’s decision variable is influenced by some other agents’ de-
cision variables. If such a constraint is known by all agents, var-
ious algorithms have been proposed (see, e.g., primal-dual al-
gorithms proposed in Cherukuri, Mallada, & Cortés, 2016; Fei-
jer & Paganini, 2010; Qu & Li, 2019). However, in practice,
such a coupled constraint may not be known to each agent.
To meet this challenge, a few distributed algorithms have been
developed, among which discrete-time algorithms are given in
Chang, Nedi¢, and Scaglione (2014); Chatzipanagiotis, Dentcheva,
and Zavlanos (2015); Chatzipanagiotis and Zavlanos (2016);
Falsone, Margellos, Garatti, and Prandini (2017); Margellos, Falsone,
Garatti, and Prandini (2018); Nedi¢, Olshevsky, and Shi (2018) and
continuous-time algorithms are presented in Cherukuri and Cortés
(2015, 2016); Deng, Liang, and Yu (2018); Liang, Zeng, and
Hong (2018); Yi, Hong, and Liu (2016) and Deng, Liang, and
Hong (2018).

Also note that most of these existing studies do not con-
sider the communication network imperfections, such as vary-
ing topologies, time-delays, and packet drops. It is worthy to
study the effects of these network imperfections to the exist-
ing algorithms and to develop distributed algorithms for solv-
ing the distributed constrained optimization problem even in the
presence of these communication imperfections. In the next two
subsections, we provide an overview of the existing distributed
optimization algorithms that deal with communication network
imperfections.

4.4. Time delays

In this subsection and the next subsection, we respectively dis-
cuss the effects of two communication imperfections, time-delays
and random graphs, on the existing distributed optimization algo-
rithms.

Time delays are ubiquitous in practical systems especially
multi-agent systems, due to extra time required to get information,
limited communication speed, computation time and execution
time required to implement the control input (Astrom & Kumar,
2014; Cao et al,, 2013; Hespanha, Naghshtabrizi, & Xu, 2007). It is
known that for a single system time delays might degrade the sys-
tem performance or even destroy the stability (Richard, 2003; Zhu,
Qi, Ma, & Chen, 2018). The effects of time delays on various ex-
isting discrete-time and continuous-time distributed optimization
have been investigated, and will be reviewed in Section 4.4.1 and
Section 4.4.2, respectively.

4.4.1. Discrete-time

In the discrete-time setting, the effects of both constant de-
lays and time-varying bounded delays have been studied for ex-
isting distributed optimization algorithms. To model the bounded
communication time delays, a common approach for convergence
analysis is to use the augmented graph idea originated from
Tsitsiklis (1984), which has also been used in the literature on dis-
tributed consensus (Cao, Morse, & Anderson, 2008; Charalambous
et al., 2015; Hadjicostis & Charalambous, 2014; Nedi¢ & Ozdaglar,
2010). More specifically, for each node in the original graph, ex-
tra virtual nodes are introduced to capture the effect of delays on
various communication links. The distributed optimization prob-
lem with time delays in the original communication network is
then reduced to the problem without delays in the augmented
graph.

The earlier studies focused on distributed algorithms with di-
minishing step-sizes. For fixed directed networks, it is shown
in Tsianos et al. (2012); Tsianos and Rabbat (2011) that the
distributed algorithm based on dual averaging proposed in
Duchi et al. (2012) can be extended to case with both fixed con-
stant delays and random bounded delays, for undirected fixed
graphs and strongly connected directed graphs, respectively.

For time-varying directed networks, the weight-balanced
case and the unbalanced case have been considered
in Lin et al. (2016) and Yang, Lu et al. (2017), respectively. In
particular, the authors of Lin et al. (2016) extended the dis-
tributed algorithm based on the subgradient projection originally
proposed in Nedic¢ et al. (2010) for the distributed constrained
optimization problem to handle communication delays and non-
identical constraint sets. It is shown that the proposed subgradient
projection algorithm solves the distributed constrained optimiza-
tion problem if the time-varying directed network is uniformly
jointly strongly connected and weight-balanced at all times,
even in the presence of arbitrarily large bounded time-varying
delays. the authors of Yang, Lu et al. (2017) showed that the
distributed algorithm based on the push-sum method originally
proposed in Nedi¢ and Olshevsky (2015) still converges to the
optimal solution if the time-varying directed network is uniformly
jointly strongly connected but not necessarily weight-balanced,
even in the presence of arbitrarily large bounded time-varying
delays.

Note that the above distributed algorithms use diminishing
step-sizes, which results in slow convergence. Recently, the ef-
fects of constant time delays to the distributed algorithm with a
fixed learning gain (step-size) proposed in Yang et al. (2013) for
fixed directed strongly connected graphs have been investigated
in Yang, Wu, Sun, and Lian (2015); Zhao, Duan, and Shi (2019).
It is shown in Zhao, Duan et al. (2019) that the algorithm still
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converges to the global minimizer even in the presence of nonuni-
form constant time delays provided that the fixed step-size is suf-
ficiently small. The explicit upper bound on the step-size to en-
sure the convergence was also established for uniform constant
delays.

4.4.2. Continuous-time

The effects of communication time delays on the existing
distributed continuous-time optimization algorithms have also
been studied, and the findings are reviewed in this subsection.
the authors of Yang, Liu, and Wang (2017a) investigated the
effects of delays on the distributed PI algorithm proposed in
Kia et al. (2015a) for strongly connected and weight-balanced
directed graphs. By using a Lyapunov-Krasovskii functional for
time-delay systems, the authors established the delay-dependent
and delay-independent sufficient conditions in the form of lin-
ear matrix inequalities (LMIs) for both slow varying delays and
fast varying delays. The results were later extended to the case
where the agent dynamics are double integrators in Tran, Wang,
Liu, and Xiao (2017) and when each agent is subject to a local
bounded constraint set in Wang, Wang, Chen, and Wang (2018).
in Hatanaka, Chopra, Ishizaki, and Li (2018), the authors provided
a passivity-based perspective for the distributed PI algorithm pro-
posed in Wang and Elia (2010). By using the Lyapunov analysis and
passivity, the authors showed that the algorithm is capable of han-
dling arbitrarily large unknown constant time delays.

The authors of Guo and Chen (2018) studied the performance
of the distributed zero-gradient-sum algorithm proposed in Lu and
Tang (2012) in the face of time-varying communication delays. By
constructing a Lyapunov-Krasovskii functionals, they established
explicit sufficient conditions for the maximum admissible time de-
lay to guarantee the convergence for fixed undirected connected
graphs. The extension to time-varying undirected graphs that are
connected at all times was also studied by using a common Lya-
punov function.

For connected undirected graphs, the authors of Doan, Beck,
and Srikant (2017) studied the effects of uniform constant com-
munication time delays on the continuous-time version of the
DGD algorithm proposed in Nedi¢ et al. (2010). By constructing
a Lyapunov-Razumikhin function, the authors provided an explicit
analysis of the convergence rate of the algorithm as a function of
the network size, topology, and time delay.

In summary, various discrete-time and continuous-time algo-
rithms have been extended to solve the distributed optimization
problem in the presence of communication time delays. In the
discrete-time setting, a common approach for the convergence
analysis is to use the augmented graph idea (Tsitsiklis, 1984)
to convert the distributed optimization problem with bounded
time delays in the original graph to the distributed optimiza-
tion problem without time delays in the augmented graph. In
the continuous-time setting, a common technique for the con-
vergence analysis is to use the Lyapunov analysis based on
Lyapunov-Krasovskii functionals or Lyapunov-Razumikhin func-
tions (Fridman, 2014). Most existing studies focused on the case
where the agent dynamics are single-integrator. It is an interest-
ing future research direction to study the effects of communication
time delays on the existing distributed algorithms for multi-agent
systems with high-order agent dynamics. The objective here is to
explicitly characterize the delay margin for high-order multi-agent
systems subject to unknown communication time delays, which
can be reviewed as a non-trivial extension of the recent studies
(Ma & Chen, 2019) for a single agent and (Ma, Tian, Zulfigar, Chen,
& Chai, 2019) for distributed consensus to distributed optimization.
This in turn provides an upper bound on the time delays under
which the convergence of the distributed continuous-time algo-
rithms is still guaranteed albeit slower.

4.5. Random graphs

In addition to communication time delays, there exist other un-
certainties in communication networks, such as packet drops and
link failures. Although time delays can be used to model unreliable
communication networks with these uncertainties, a more realis-
tic approach is to model such communication networks as random
graphs (Schenato, Sinopoli, Franceschetti, Poolla, & Sastry, 2007).
Thus, it is important to investigate the performance of the existing
distributed optimization algorithms in the face of these communi-
cation uncertainties.

The earlier studies focused on discrete-time distributed al-
gorithms for undirected graphs. the authors of Lobel and
Ozdaglar (2011) considered the case where communication links
fail according to a given stochastic process and showed that the
DGD algorithm with a diminishing step-size proposed in Nedic
and Ozdaglar (2009) almost surely converges to an optimal solu-
tion if the link failures are independent and identically distributed
(i.i.d.) over time and the expected graph is connected. With a fixed
step-size, the authors of Matei and Baras (2011) showed that for
twice continuously differentiable strongly convex objective func-
tions with bounded Hessians, the algorithm converges in the mean
square sense to the global minimizer with a guaranteed distance,
which can be made arbitrarily small by an appropriate choice of
the step-size.

Recently, a few algorithms have been developed for solving the
distributed optimization problem over directed random networks
resulting from packet-dropping communication links. the authors
of Carli, Notarstefano, Schenato, and Varagnolo (2015) developed
a distributed algorithm based on the Newton-Raphson consen-
sus algorithm (Varagnolo et al., 2016), the push-sum method
(Bénézit et al., 2010; Charalambous et al., 2015; Hadjicostis & Char-
alambous, 2014; Kempe et al., 2003), and the robustified strat-
egy (Dominguez-Garcia, Hadjicostis, & Vaidya, 2012; Hadjicostis,
Vaidya, & Dominguez-Garcia, 2016). It is shown that the algo-
rithm converges to the global minimizer almost surely if the Eu-
ler discretization step-size is sufficiently small. Note that the above
algorithm uses the second-order Hessian information. When the
Hessian information is not available, the authors of Wu, Yang,
Wu, Kalsi, and Johansson (2017) developed a distributed algo-
rithm by integrating the distributed algorithm based on the push
sum method (Nedi¢c & Olshevsky, 2015; Yang, Lu et al, 2017)
and the robustified strategy proposed in Dominguez-Garcia, Had-
jicostis et al. (2012); Hadjicostis et al. (2016). The almost sure
convergence was established with diminishing step-sizes. Although
the above algorithms are resilient to link failures, the drawback
is that their convergence rates are rather small since (Carli et al.,
2015) requires the Euler discretization step-size to be sufficiently
small and (Wu, Yang, Wu et al, 2017) uses diminishing step-
sizes. In order to accelerate the convergence rate, the authors
of Jakoveti¢, Xavier, and Moura (2014a) modified the two dis-
tributed Nesterov-like gradient methods proposed in their earlier
work (Jakovetic et al., 2014b) for fixed networks to handle random
graphs and established their convergence rates in terms of the ex-
pected optimality gap in the cost function at an arbitrary node.

The aforementioned studies assumed that the subgradient is
perfectly measured. However, in certain cases, the subgradient may
only be measured with noises. Recently, the effects of both random
graphs and noisy stochastic subgradients were studied simultane-
ously by focusing on undirected graphs (see, e.g., Jakovetic, Bajovic,
Sahu, & Kar, 2018; Lei, Chen, & Fang, 2018; Srivastava & Nedic,
2011). In particular, the authors of Srivastava and Nedic (2011) and
Jakovetic et al. (2018) developed distributed algorithms with two
sets of diminishing step-sizes, one for the consensus part and the
other one for the noisy subgradient part. The convergence results
were established if the step-sizes for the subgradeint part decays
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to zero at a faster rate than those for the consensus part. Later, the
authors of Lei et al. (2018) considered the distributed constrained
optimization problem with local constraint sets and developed a
distributed primal-dual algorithm which only uses the same di-
minishing step-sizes for both the consensus part and the subgra-
dient part. The almost sure convergence was established by using
the stochastic approximation theory.

In summary, the existing distributed algorithms for random
graphs either use the gradient information (see, e.g., Jakovetic
et al., 2014a; Lobel & Ozdaglar, 2011; Wu, Yang, Wu et al., 2017)
and diminishing step-sizes or fixed step-sizes and the Hessian in-
formation (see, e.g., Carli et al, 2015; Matei & Baras, 2011). It
is an interesting future research direction to develop accelerated
gradient-based distributed algorithms with fixed step-sizes for ran-
dom networks. It is worthy to mention that some efforts have
been devoted to this direction. the authors of Xu et al. (2018a) de-
veloped a distributed algorithm based on the gradient tracking
method and the dynamic average consensus technique for undi-
rected random graphs. In contrast to most existing studies with di-
minishing step-sizes, the algorithm uses a constant uncoordinated
step-size and allows for asynchronous implementation. Moreover,
the authors showed that the algorithm converges almost surely
to the optimal point if the largest step-size is less than a certain
critical value. We believe that this algorithm can be extended to
directed random graphs by using the push-sum method (Bénézit
et al., 2010; Charalambous et al., 2015; Hadjicostis & Charalambous,
2014; Kempe et al., 2003; Nedi¢ & Olshevsky, 2015) and the push-
pull method (Du, Yao et al., 2018; Pu et al., 2018; Xin & Khan, 2018;
Yang et al., 2013).

Also existing studies that investigated the effects of both ran-
dom graphs and noisy stochastic subgradients are restricted to dis-
tributed algorithms for undirected graphs. It is also worthy to in-
vestigate both of these effects simultaneously on the existing push-
sum based and push-pull based distributed algorithms for directed
graphs.

4.6. Event-triggered communication

Most existing continuous-time distributed optimization algo-
rithms require continuous information exchange among agents,
which may be impractical in physical applications. Moreover, dis-
tributed networks are usually resources constrained and commu-
nication is energy-consuming. In order to avoid continuous com-
munication and to reduce communication overheads, the idea of
event-triggered communication and control has been proposed.
The early works focused on a single system (Astrom & Bern-
hardsson, 2002; Girard, 2015; Tabuada, 2007) and have been ex-
tended to multi-agent systems (Heemels, Johansson, & Tabuada,
2012; Wan & Lemmon, 2009; Wang & Lemmon, 2011; Zhang, Li,
Sun, & He, 2019; Zhang, Sun, Liang, & Li, 2019; Zhong & Cassan-
dras, 2010) and distributed consensus (Dimarogonas, Frazzoli, &
Johansson, 2012; Meng, Xie, Soh, Nowzari, & Pappas, 2015; Sey-
both, Dimarogonas, & Johansson, 2013; Yi et al., 2019a) Zhong and
He (2019). For more details, please refer to Ding, Han, Ge, and
Zhang (2018); Nowzari, Cortés, and Pappas (2018); Nowzari, Gar-
cia, and Cortés (2019); Yi (2017, and references therein).

Recently, the event-triggered communication strategies have
been extended to distributed optimization. Several studies devel-
oped event-triggered communication mechanisms for implement-
ing distributed continuous-time algorithms over connected undi-
rected graphs or strongly connected and weight-balanced directed
graphs. The key challenge is to design the event-trigger commu-
nication strategies, such that the event-triggered algorithm con-
verges to the optimal solution and is free of Zeno behavior, an
infinite number of triggered events in a finite period of time
(Johansson, Egerstedt, Lygeros, & Sastry, 1999).

Most studies focused on the first-order multi-agent systems
with single integrator agent dynamics. in Kia et al. (2015a), the
authors developed a distributed PI algorithm with an event-
triggered communication strategy and established its exponen-
tial convergence to a neighborhood of an optimal point. To
achieve the exact convergence, the distributed ZGS algorithm pro-
posed in Lu and Tang (2012) has been extended with a pe-
riodical time-triggered communication mechanism in Chen and
Ren (2016) and an event-triggered scheme in Liu and Chen (2016).
Inspired by the distributed dynamic event-triggered strategy pro-
posed in Girard (2015); Yi (2017), the authors of Du, Yi, George,
Johansson, and Yang (2018) extended the distributed ZGS algo-
rithm with a dynamic event-triggered communication strategy,
which is more efficient compared to the time-triggered strategy
and the static event-triggered strategy. the authors of Du, Vi,
Zhang, George, and Yang (2019) equipped distributed PI algo-
rithms proposed in Gharesifard and Cortés (2014); Wang and
Elia (2010) and Kia et al. (2015a) with static event-triggered com-
munication schemes.

For the second-order multi-agent systems with double inte-
grator agent dynamics, the authors of Tran, Wang, Liu, Xiao,
and Lei (2019) modified the distributed algorithm proposed in
Zhang and Hong (2014) and equipped it with an event-triggered
communication scheme. Note that the existing distributed opti-
mization algorithms for second-order multi-agent systems are not
fully distributed since the gain parameters of the algorithms de-
pend on some global parameters, such as the eigenvalues of the
graph Laplacian matrix. the authors of Yi et al. (2018) developed
a fully distributed algorithm for second-order multi-agent systems
where no global information is needed and extended it with a dy-
namic event-triggered communication mechanism.

For the high-order multi-agent systems, the authors of
Wang, Wang, and Wang (2016) modified the distributed optimiza-
tion algorithm proposed in Zhang and Hong (2015) and extended
it with an event-triggered communication scheme.

Recently, the design of event-triggered communication strate-
gies has taken communication effects, such as time-varying topolo-
gies, time delays, packet drops, and limited bandwidth, into con-
sideration. in Liu, Chen, and Dai (2019), the authors developed
an event-triggered algorithms based on the ZGS algorithm pro-
posed in Lu and Tang (2012) for undirected time-varying net-
works. For first-order multi-agent systems, the authors of Liu, Xie,
and Quevedo (2018) considered both the event-triggered commu-
nication scheme and the limited communication bandwidth, and
developed a distributed event-triggered optimization algorithm
with dynamic encoder and decoder pairs. The proposed algorithm
is based on the algorithm proposed in Shi et al. (2013) which
uses diminishing step-sizes and is applicable only to a spe-
cial case where all local objective functions have a common
minimizer.

So far most existing studies focused on developing event-
triggered communication schemes for information exchange
among agents. Recently, both the event-triggered communica-
tion strategy and the event-triggered gradient measurement strat-
egy have been developed for distributed gradient based algo-
rithms for first-order multi-agent systems. in Tran, Wang, Liu,
and Xiao (2018), the authors developed identical periodical time-
triggered strategies for both communication and gradient infor-
mation. Based on the internal model principle, the authors of
Deng, Wang, and Hong (2017) proposed a distributed algorithm
with both the event-triggered communication strategy and the
event-triggered gradient measurement strategy and established the
convergence in the presence of the external disturbances. It is in-
teresting to develop both the event-triggered communication strat-
egy and the event-triggered gradient measurement strategy for
high-order multi-agent systems.
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Most existing distributed event-triggered optimization algo-
rithms are in the continuous-time setting. Recently, a limited
number of studies developed distributed event-triggered optimiza-
tion algorithms in the discrete-time setting. An event-triggered
algorithm based on the discretization of the ZGS algorithm (Lu
& Tang, 2012) was proposed in Chen and Ren (2016). The hy-
brid event-time-driven optimization algorithm was developed in
Hu, Guan, Chen, and Shen (2019). In order to ensure the effec-
tiveness of the proposed event-triggered communication strate-
gies, it is desirable to show that the inter event-times are at least
lower bounded by a non-trivial bound, which has been largely ig-
nored in the literature even for distributed consensus. Most event-
triggered schemes for discrete-time distributed consensus and op-
timization algorithms only admitted a trivial lower bound of inter-
event times, that is, the lower bound is one. We are only aware of
one work (Meng, Xie, & Soh, 2016) in the context of the network
utility maximization, which ensures a non-trivial lower bound of
two. In the future, it is worthy to develop event-triggered com-
munication strategies for distributed discrete-time optimization al-
gorithms with fixed step-sizes, which admit a non-trivial lower
bound of inter-event times.

4.7. Finite-time convergence

All the distributed optimization algorithms discussed so far
converge to an optimal solution either asymptotically or exponen-
tially. However, in some time-critical applications, such as DER co-
ordination to be considered in Section 5, it is highly desirable to
develop distributed optimization algorithms which solve the prob-
lem in a finite-time. An added advantage of the finite-time con-
vergence is that the overall computation and communication over-
heads can be greatly reduced.

In the literature, several distributed finite-time optimiza-
tion algorithms have been developed in both discrete-time and
continuous-time settings.

4.7.1. Discrete-time

In the discrete-time setting, only a limited number of results
are available (Mai & Abed, 2018; Yao et al., 2018). Both studies
used the finite-time computation technique for distributed con-
sensus originally proposed in Sundaram and Hadjicostis (2007);
Yuan, Stan, Shi, Barahona, and Goncalves (2013) and Yuan (2012),
which enables an arbitrarily chosen agent to compute the fi-
nal consensus value within a finite number of time steps, by
using its local successive states. In particular, the authors of
Yao et al. (2018) studied the case where the communication graph
is undirected. The authors first proposed a distributed discrete-
time PI algorithm and established its linear convergence to the
global minimizer for quadratic local objective functions. The pro-
posed distributed PI algorithm was then equipped with the finite-
time consensus technique to enable agents to compute the global
minimizer in a finite number of time steps.

Independently, for quadratic local objective functions, a dif-
ferent distributed algorithm based on the finite-time consen-
sus technique (Sundaram & Hadjicostis, 2007; Yuan, 2012;
Yuan et al., 2013) and the ratio consensus algorithm proposed
in Charalambous et al. (2015); Dominguez-Garcia and Hadji-
costis (2011); Hadjicostis and Charalambous (2014) was developed
for directed graphs in Mai and Abed (2018) by exchanging the
parameters of the objective functions. For general local objective
functions, the finite-time consensus technique was used in Mai and
Abed (2018) to periodically reset the distributed subgradient algo-
rithm with a fixed step-size. It is shown that all agents reach con-
sensus on an identical estimate of an optimal solution in a finite-
time if the global objective function is strongly convex. The algo-
rithm then behaves like the centralized subgradient method, i.e.,

all local estimates continue to agree and approach the global min-
imizer together.

4.7.2. Continuous-time

In the continuous-time setting, several distributed finite-time
optimization algorithms have also been developed (see, e.g., Chen
& Li, 2018; Feng & Hu, 2017; Lin et al., 2017; Pilloni, Pisano,
Franceschelli, & Usai, 2016; Song & Chen, 2016). These algo-
rithms are motivated by the discontinuous finite-time consen-
sus protocols. In order to establish the convergence, the finite-
time Lyapunov analysis (Bhat & Bernstein, 2000) is commonly
used. the authors of Lin et al. (2017) developed a distributed
finite-time algorithm based on a distributed tracking algorithm
and a dynamic averaging estimator for the distributed con-
strained optimization problem where the local constraint sets are
identical. For quadratic local objective functions, the authors of
Pilloni et al. (2016) proposed a discontinuous signum-function
based algorithm by modifying the distributed PI algorithms orig-
inally developed in Gharesifard and Cortés (2014); Wang and
Elia (2010) and Kia et al. (2015a). Motivated by the finite-time
consensus protocol (Yu & Long, 2015), the authors of Feng and
Hu (2017) developed a distributed finite-time optimization algo-
rithm to solve the distributed optimization problem with com-
munication and computation uncertainties. Inspired by the finite-
time consensus protocol (Wang & Xiao, 2010) and the distributed
ZGS algorithm (Lu & Tang, 2012), the authors of Song and
Chen (2016) developed a distributed finite-time ZGS algorithm.

The settling time in the existing continuous-time finite-time
optimization algorithms depends on the initial conditions, which
may be hard to preassign off-line. Recently, to overcome this lim-
itation, the authors of Li, Yu, Zhou, and Ren (2017) and Chen and
Li (2018) developed distributed algorithms which converge to the
optimal solution within a fixed time independent of the initial
condition, by using the fixed-time stability theory (Polyakov, 2018;
Polyakov, Efimov, & Perruquetti, 2015a; 2015b).

In summary, distributed finite-time optimization algorithms in
both discrete-time and continuous-time settings have been de-
veloped by using different techniques. In the discrete-time set-
ting, the existing algorithms are based on the decentralized finite-
time computation mechanism. In the continuous-time setting, the
proposed algorithms are based on discontinuous finite-time con-
sensus protocols. Note that the existing distributed finite-time al-
gorithms in the continuous-time setting are only applicable to
undirected networks. However, directed communication networks
are more realistic due to nonuniform communication powers.
Thus, it is worthy to develop distributed finite-time continuous-
time optimization algorithms for directed networks in the
future.

5. Application to coordination of distributed energy resources

In this section, we focus on the application of distributed opti-
mization algorithms to solve the optimal coordination problem of
distributed energy resources (DERs), which has received substan-
tial attention in both control and power system fields in recent
years (see, e.g., Bidram et al., 2014; Hadjicostis et al., 2018; Kran-
ing et al., 2014; Molzahn et al., 2017; Nedi¢ & Liu, 2018; Qin et al.,
2017). In particular, Section 5.1 presents the problem formulation
of DER coordination. In Section 5.2, we review existing works on
distributed DER coordination for undirected graphs. The extension
to directed graphs is discussed in Section 5.3. The communication
constraints, such as time delays and packet drops, on the exist-
ing DER coordination algorithms are discussed in Section 5.4. Dis-
tributed DER coordination algorithms with event-triggered com-
munication mechanisms and the finite-time convergence are re-
viewed in Section 5.5 and Section 5.6, respectively.
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5.1. Problem formulation of DER coordination

The objective of the optimal DER coordination problem is to
minimize the total production cost while meeting the total de-
mand and simultaneously satisfying the individual generator out-
put limits. Mathematically, it is formulated as the following opti-
mization problem:

N

{(Tlel){l ;G(X:’) (19a)
N

s.t. > X% =D, (19b)
i=1

X € X; = [xMn xMaX] i =1,2,...,N, (19¢)

where N is the number of distributed generators (DGs), x; is the
power generation of DG i, D is the total demand, and G(-) : Ry —
R, is the cost function of DG i, R, is the set of positive real num-
bers. Constraint (19b) is the power balance constraint, and con-
straints (19¢) are generators’ capacity constraints, where xl!“i“ and
X" are respectively the lower and upper bounds for DG i. The
cost function Cj(x;) is assumed to be strictly convex and twice con-
tinuously differentiable over X;.

We note that there are various power system applications
where distributed control and optimization play an important
role, such as distributed algorithms for optimal power flow (OPF),
distributed optimal frequency control, distributed optimal volt-
age control, and optimal wide-area control. We refer the read-
ers to the recent survey Molzahn et al. (2017), which provides
a comprehensive review for these problems, Lam, Zhang, and
Tse (2012); Low (2014) and Madani, Sojoudi, and Lavaei (2015) for
the semidefinite program (SDP) relaxation of OPF, Zheng, Wu,
Zhang, Sun, and Liu (2016) and Peng and Low (2018) for the sec-
ond order cone program (SOCP) relaxation of OPF, and Kim and
Baldick (1997); Sun, Phan, and Ghosh (2013) and Guo, Hug, and
Tonguz (2017) for the non-convex OPF.

The problem formulation in (19) though simple, is very repre-
sentative. For example, as pointed out in Nedic¢ and Liu (2018), a
similar problem formulation has been applied to other power sys-
tem applications, including economic dispatch for microgrids (Hug,
Kar, & Wu, 2015; Tang et al.,, 2018; Zhang & Chow, 2012), opti-
mal load control (Mallada, Zhao, & Low, 2017; Zhao, Topcu, & Low,
2013), optimal load sharing (Yi, Hong, & Liu, 2015), and distributed
energy management (Du, Yao et al., 2018; He, Yu, Huang, & Li,
2019; Zhang, Xu, Liu, Zang, & Yu, 2015; Zhao, He, Cheng et al.,
2017). Due to the wide representation of the problem formulation
in (19), a few survey papers on distributed consensus and opti-
mization also briefly discussed the DER coordination problem, see,
e.g., Qin et al. (2017) and Nedic¢ and Liu (2018). The purpose of this
section is to review distributed DER coordination algorithms in de-
tails.

One approach to solving the optimal DER coordination problem
is through a completely centralized control strategy, which requires
a single control center that accesses the entire network’s informa-
tion, computes the optimal generations, and sends the informa-
tion back to generators. This centralized approach may be subject
to performance limitations, such as a single point of failure, high
communication requirement, substantial computation burden, and
limited flexibility and scalability. To overcome these limitations, by
using the results developed in the field of distributed optimiza-
tion, various distributed algorithms have been proposed recently
to solve the optimal DER coordination problem.

Before providing a detailed review for these distributed algo-
rithms, we provide a brief discussion on how to solve the optimal

DER coordination problem in (19) by distributed optimization al-
gorithms developed for the problem of the form (1). Please refer
to Yang, Lu et al. (2017) and Nedic¢ and Liu (2018) for details.

Since i) each cost function G( - ) is convey, ii) constraint (19b) is
affine, and iii) the set X; x --- x Xy is a polyhedral set, if we dualize
problem (19) with respect to constraint (19b), there is zero duality
gap. Moreover, the dual optimal set is nonempty (Bertsekas, Nedic,
& Ozdaglar, 2003). Consequently, solutions of the optimal DER co-
ordination problem can be obtained by solving its equivalent dual
problem.

For convenience, let X = [xq, ..
grangian function

.,xy]T € RY. Then, define the La-

N N
LXA) =) Gx)—Al > x-D]). (20)
i=1
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where A is the dual variable (incremental cost).
The corresponding Lagrangian dual problem can be written as

N
r{lgﬂg(;@(k), (21)
where

®;(A) = f{f_lei)?Ci(Xi) —A(x — D), (22)

and D; is a virtual local demand at each bus such that Z?’:l D; =D.

Therefore, the optimal DER coordination problem (19), which
is a constrained optimization problem, can be solved by solving
its equivalent dual problem (21), which has the same form as the
distributed unconstrained optimization problem (1). The only dif-
ference is that the dual problem (21) is a maximization problem
for concave functions while problem (1) is a minimization problem
for convex functions. Therefore, distributed algorithms reviewed in
Sections 3 and 4 for the distributed optimization problem (1) can
be readily applied.

We are now ready to review existing distributed algorithms for
solving the optimal DER coordination problem.

5.2. Undirected graphs

The earlier studies focused on the case where the communi-
cation network is modeled as an undirected graph and the gen-
eration cost functions are quadratic. the authors of Zhang and
Chow (2012) proposed a leader-follower consensus based algo-
rithm where the leader collects the mismatch between the de-
mand and the total generation, and then leads the updates of the
incremental cost. Through various case studies, it is shown that
this distributed algorithm converges to the optimal generations for
connected undirected graphs if the feedback gain parameter for the
mismatch term is less than a certain critical value.

An alternative distributed algorithm with two sets of dimin-
ishing step-sizes based on the consensus and innovation approach
(Kar & Moura, 2013) was developed in Kar and Hug (2012), where
the consensus part guarantees that consensus is achieved, and the
innovation term ensures the balance between the total generation
and the total demand. The convergence result was established if
the consensus term dominates the innovation term, i.e., if the di-
minishing step-size for the consensus term decays to zero at a
faster rate compared to that of the innovation term. Motivated by
the EXTRA (Shi et al., 2015a) the authors of Tang et al. (2018) de-
veloped a distributed DER coordination algorithm with a fixed
step-size which leads to a fast convergence speed.

In summary, all the aforementioned distributed algorithms are
only applicable to undirected communication networks. In the lit-
erature, various distributed algorithms for DER coordination have
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been developed by taking more realistic scenarios into considera-
tion and will be reviewed in the following subsections.

5.3. Directed graphs

In this subsection, we review the existing discrete-time and
continuous-time distributed algorithms for solving the optimal
DER coordination problem over directed graphs which may be
time-varying.

5.3.1. Discrete-time

In the discrete-time setting, the earlier studies focused on
the case where the digraph is fixed and the cost functions are
quadratic. The authors of Dominguez-Garcia, Cady et al. (2012) de-
veloped a distributed algorithm based on ratio consensus (Bénézit
et al., 2010; Dominguez-Garcia & Hadjicostis, 2011; Kempe et al.,
2003). It is shown that the ratio consensus-based algorithm
asymptotically converges to the optimal generations for strongly
connected digraphs. A distributed algorithm with a fixed learning
gain (step-size) based on the surplus idea (Cai & Ishii, 2012) was
proposed in Yang et al. (2013). The algorithm asymptotically con-
verges to the optimal generations for strongly connected digraphs
if the step-size is sufficiently small.

Recently, several distributed DER coordination algorithms have
been developed for general non-quadratic convex cost functions.
In particular, the authors of Xing et al. (2015) proposed a dis-
tributed bisection method based on a consensus-like iteration. The
asymptotic convergence was established for the case where the
cost functions are strictly convex and twice continuously differen-
tiable and the directed graph is strongly connected. The authors
(Yang, Lu et al., 2017) developed a distributed algorithm based on
the push-sum method (Nedi¢ & Olshevsky, 2015) for time-varying
directed graphs. It is shown that the algorithm converges to the
optimal generations if the time-varying directed graph is uniformly
jointly strongly connected and the step-sizes are diminishing. A
nonnegative surplus-based distributed algorithm was developed in
Xu et al. (2017). The asymptotic convergence was established if
the time-varying directed graph is uniformly jointly strongly con-
nected and the time-varying parameters are chosen appropriately.
Recently, focusing on undirected graphs, the strictly convexity as-
sumption on the cost functions has recently been relaxed to only
convexity in Doan and Beck (2017, 2018). In particular, the au-
thors of Doan and Beck (2017) developed a distributed Lagrangian
algorithm with a diminishing step-size for connected undirected
graphs and established the asymptotic convergence, while the au-
thors of Doan and Beck (2018) focused on time-varying loads and
uniformly jointly connected time-varying undirected graphs and
established the almost sure convergence.

The aforementioned DER coordination algorithms for time-
varying directed graphs require diminishing step-sizes, which
results in rather slow convergence. Recently, the authors of
Du, Yao et al. (2018) developed a distributed push-pull based al-
gorithm with a fixed step-size for solving the DER coordination
problem over both fixed strongly connected directed graphs and
time-varying uniformly jointly strongly connected directed graphs.
The proposed distributed push-pull based algorithm with a fixed
step-size can be viewed as an extension of the distributed algo-
rithm proposed in Yang et al. (2013) for fixed graphs and quadratic
cost functions to time-varying graphs and general non-quadratic
strictly convex cost functions.

5.3.2. Continuous-time

In the continuous-time setting, most studies focused on fixed
graphs. the authors of Cherukuri and Cortés (2015) developed a
distributed algorithm based on the Laplacian nonsmooth gradi-
ent dynamics for solving the DER coordination problem over fixed

directed graphs. It is shown that the algorithm asymptotically
converges to the optimal generations for strongly connected and
weight-balanced directed graphs.

In order to ensure the convergence of the above algorithm,
the initial conditions need to satisfy the load constraints. Such
an initialization requirement was later removed in Cherukuri and
Cortés (2016), where the authors developed a distributed algorithm
based on the Laplacian nonsmooth gradient dynamics and dynamic
average consensus (Freeman, Yang, & Lynch, 2006; Kia, Cortés, &
Martinez, 2015b). In particular, each generator estimates the av-
erage mismatch between the demand and the total generation by
employing the dynamic average consensus algorithm, which was
then fedback to the Laplacian nonsmooth gradient dynamics. It is
shown that the algorithm asymptotically converges to the optimal
generations for any initial condition.

The proposed distributed algorithms in Cherukuri and Cortés
(2015, 2016) require each agent to share its own gradient infor-
mation with its neighboring agents, which may be private infor-
mation that cannot be shared. To overcome this issue, the au-
thors of Yi et al. (2016) developed two distributed initialization-
free algorithms based on either projection or differentiated projec-
tion to solve the DER coordination problem over connected undi-
rected graphs, which can be easily extended to strongly connected
and weight-balanced directed graphs. Moreover, the proposed al-
gorithms are also capable of handling more general local convex
constraints other than box constraints.

By using an augmented Lagrangian function with the generation
capacity constraints, the authors of Bai, Ye, Sun, and Hu (2019) de-
veloped an alternative initialization-free distributed DER coordi-
nation algorithm. The proposed algorithm is based on the saddle
point dynamics, dynamic average consensus and leader-follower
consensus, and is applicable to solve the DER coordination prob-
lem with transmission line constraints.

5.4. Communication imperfections

Since communication imperfections, such as time delays and
packet drops, are ubiquitous in communication networks (Astrom
& Kumar, 2014; Cao et al,, 2013; Hespanha et al.,, 2007), it is de-
sirable to investigate the potential effects of these communication
imperfections on the existing distributed DER coordination algo-
rithms, and to develop distributed algorithms that are robust to
these imperfections.

First, we consider the effects of communication time delays on
both discrete-time and continuous-time distributed DER coordina-
tion algorithms.

In the discrete-time setting, the authors of Zhang, Chow, and
Chakrabortty (2012) and Yang et al. (2015) respectively investi-
gated the performance of the algorithms proposed in Zhang, Ying,
and Chow (2011) and Yang et al. (2013) in the presence of uni-
form constant time delays via numerical simulations. Both stud-
ies found that there exists a critical value for delays, below which
these DER coordination algorithms with given gain parameters still
converge, and above which these algorithms fail to converge. It is
shown in Zhao, Duan et al. (2019) that the algorithm proposed in
Yang et al. (2013) still converges to the optimal generations even
in the presence of nonuniform constant time delays provided that
the learning gain parameter is sufficiently small. The explicit up-
per bound on the learning gain parameter to ensure the conver-
gence was established for uniform constant delays. Note that the
above studies considered constant time delays. In the case of time-
varying delays, the authors of Yang, Lu et al. (2017) developed a
distributed push-sum based algorithm with a diminishing step-size
(Nedic & Olshevsky, 2015) and showed that the proposed algorithm
converges to the optimal generations for time-varying uniformly



294 T. Yang, X. Yi and J. Wu et al./Annual Reviews in Control 47 (2019) 278-305

jointly strongly connected digraphs, even in the presence of arbi-
trarily large bounded time-varying delays.

In the continuous-time setting, the authors of Zhu, Yu, and
Wen (2016) developed a distributed DER coordination algorithm
and studied the effects of uniform constant time delays. It is shown
that the proposed algorithm still converges to the optimal genera-
tions if uniform constant delays are less than some threshold. The
authors of Chen and Zhao (2018) developed a distributed DER co-
ordination algorithm and investigated its performance in the pres-
ence of nonuniform constant time delays. The maximum allow-
able delay bound was obtained by the Generalized Nyquist Crite-
rion. The above studies focused on the case where the communi-
cation graph is fixed. In the case of time-varying graphs, the au-
thors of Somarakis and Baras (2015) and Somarakis, Maity, and
Baras (2016) developed a distributed DER coordination algorithm
and investigated its performance in the presence of time-varying
delays. Sufficient conditions under which the proposed algorithm
still solves the DER coordination problem were established.

Next, we consider another common communication imperfec-
tion in the communication networks - packet drops. Although
time-varying communication networks may be used to model
packet drops, a more realistic modeling approach is based on
the probability framework, i.e., the communication link fails
with a certain probability. In such a probability setting, most
existing DER coordination algorithms are not able to handle
packet drops. the authors of Wu, Yang, Wu et al. (2017) devel-
oped a robustified extension of the distributed algorithm pro-
posed in Yang, Lu et al. (2017) by using the robustified strat-
egy proposed in Dominguez-Garcia, Hadjicostis et al. (2012) and
Hadjicostis et al. (2016). Under the assumption that the underly-
ing communication network is strongly connected with a positive
probability and the packet drops are i.i.d., it is shown that the ro-
bustified distributed algorithm solves the DER coordination prob-
lem almost surely even in the presence of packet drops.

5.5. Event-triggered communication

Most distributed algorithms for solving the optimal DER coor-
dination problem discussed so far require the continuous informa-
tion exchange among DERs. To avoid such continuous communi-
cation and thus to reduce the communication burden, distributed
event-triggered DER coordination algorithms have been developed.

The authors of Li, Yu, Yu, Huang, and Liu (2016) first de-
veloped a distributed DER coordination algorithm based on 6-
logarithmic barrier-based method and then equipped it with
an event-triggered communication scheme. It is shown that the
event-triggered DER coordination algorithm converges to the op-
timal generations if the undirected graph is connected. An event-
triggered algorithm was proposed in Ding, Wang, Yin, Zheng, and
Han (2019) to solve the DER coordination problem including both
distributed generators and demand response. Recently, the authors
of Zhao, Li, and Ding (2019) developed an event-triggered algo-
rithm to solve the DER coordination problem with transmission
losses. It is shown that the event-triggered DER coordination algo-
rithm is free of Zeno behavior and converges to the optimal gen-
erations for undirected connected graphs. For the case where the
communication network is modeled as a directed graph, the au-
thors of Shi, Wang, Song, and Yan (2018) developed a distributed
algorithm with a diminishing step-size and an event-triggered
scheme to solve the DER coordination problem over strongly con-
nected directed graphs.

5.6. Finite-time convergence

All the distributed algorithms discussed so far only solve the
DER coordination problem asymptotically. However, power and en-

ergy systems require time-critical and fast response when new en-
ergy needs are demanded (Yu & Xue, 2016). Thus, it is highly de-
sirable to develop distributed algorithms which solve the DER co-
ordination problem in a finite-time. In the literature, a few dis-
tributed finite-time algorithms have been developed in both the
continuous-time setting and the discrete-time setting. Most exist-
ing studies focused on quadratic generator cost functions.

In the discrete-time setting, motivated by the decentralized
finite-time computation technique proposed in Sundaram and Had-
jicostis (2007) and Yuan et al. (2013), the authors of Yang, Wu,
Sun et al. (2016) developed a decentralized algorithm which en-
ables each distributed generator to compute its optimal generation
in a minimum number of time steps, by using its local successive
states obtained from the underlying DER coordination algorithm
proposed in Yang et al. (2013) for the case where the generation
cost functions are quadratic and the directed graph is strongly con-
nected.

In the continuous-time setting, based on distributed finite-
time consensus protocols, several distributed DER coordina-
tion algorithms with finite-time convergence have been pro-
posed. Motivated by discontinuous consensus protocol proposed
in Chen, Lewis, and Xie (2011), the authors of Chen, Ren, and
Feng (2017) developed a distributed DER coordination algorithm
and established its finite-time convergence to the optimal gener-
ations for connected undirected graphs. Note that uncertain infor-
mation commonly exists in the communication network and the
computation process. the authors of Feng and Hu (2017) developed
a distributed finite-time DER coordination algorithm and estab-
lished its finite-time convergence for connected undirected graphs
and general convex cost functions, even in the presence of com-
munication and computation uncertainties.

Although these continuous-time DER coordination algorithms
converge to the optimal generations in a finite-time, the set-
tling time depends on the initial condition, which may be diffi-
cult to preassign off-line. To overcome this limitation, the authors
of Li et al. (2017) and Chen and Li (2018) have recently devel-
oped distributed algorithms for solving the DER coordination prob-
lem over connected undirected graphs, without generation capacity
constraints and with generation capacity constraints, respectively.
It is shown that these algorithms converge to the optimal genera-
tions within a fixed time independent of the initial conditions.

6. Summary

In this paper, we have provided a comprehensive survey of ex-
isting discrete-time and continuous-time distributed optimization
algorithms. Moreover, we have discussed how these distributed al-
gorithms are applied/or adapted to solve the optimal DER coordi-
nation problem in power systems.

6.1. Current state

Tables 1-3 show comprehensive lists of existing distributed al-
gorithms reviewed in Sections 3 and 4. In particular, Table 1 and
Table 2 compare the existing discrete-time algorithms with dimin-
ishing step-sizes and fixed step-sizes, respectively, while the exist-
ing continuous-time algorithms are summarized in Table 3. Table 4
provides a list of existing distributed algorithms for solving the op-
timal DER coordination problem.

6.2. Future research directions

Although we have pointed out some future research directions
for distributed optimization in each subsections of Section 4, there
are still other important and yet challenging future research direc-



Table 1

Discrete-time distributed algorithms with diminishing step-sizes.

Study Approach Constraints type Cost function Communication graph Convergence
(Nedi¢ & Ozdaglar, 2009) distributed (sub)graident unconstrained convex but nonsmooth uniformly jointly connected 0(Ink/vk)
method
(Duchi et al., 2012) distributed dual averaging common convex constraint set convex but nonsmooth connected undirected 0(Ink/k)
(Jakovetic et al., 2014b) distributed augmented unconstrained convex and smooth with connected undirected 0(1/k?)
Lagrangian with multiple bounded gradient
consensus step in the inner
loop
(Nedic et al., 2010) distributed projected common convex constraint set convex but nonsmooth uniformly jointly connected asymptotic
(sub)gradient method
different convex constraint sets fully connected undirected
(Tsianos & Rabbat, 2011) dual averaging method common convex constraint set convex but nonsmooth connected undirected graphs 0(1/vk)
(Duchi et al., 2012) with with fixed and random
delays bounded delays
(Tsianos et al., 2012) a combination of dual common convex constraint set convex but nonsmooth strongly connected digraphs 0(1/vk)
averaging and the push-sum with fixed and random
method bounded delays
(Nedi¢ & Olshevsky, 2015) a combination of the unconstrained convex but nonsmooth uniformly jointly strongly 0(Ink/+k)
distributed subgradient connected
method and the push-sum
method
(Zhu & Martinez, 2012) primal-dual projected different local constraint sets convex but nonsmooth weight-balanced and uniformly asymptotic
subgradient method and global inequality jointly strongly connected
constraint
identical local constraint sets
and global equality constraint
(Lin et al., 2016) projected subgradient method different local constraint sets convex but nonsmooth weight-balanced and uniformly asymptotic
jointly strongly connected
digraphs without/with
arbitrarily bounded delays
(Wang, Lin et al., 2018) projected subgradient method unconstrained convex but nonsmooth weight-balanced and uniformly 0(1/vk)

(Lobel & Ozdaglar, 2011)
(Srivastava & Nedic, 2011)

(Jakovetic et al., 2018)

(Lei et al., 2018)

with step-sizes which are not
square summable

distributed subgradient method

distributed stochastic gradient
method

distributed stochastic
subgradient method

stochastic approximation-based
distributed primal-dual
algorithm

different convex constraint sets
unconstrained

different local constraint sets

unconstrained

different local constraint sets

convex but nonsmooth
convex but nonsmooth

strongly convex and bounded
Hessians

convex and smooth

jointly strongly connected

undirected graphs with random
link failures
undirected random graphs

undirected random graphs with
noisy communications

undirected random graphs with
noisy communications

almost sure
almost sure

0(1/k) in
mean
square

almost sure
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Table 2

Discrete-time distributed algorithms with fixed step-sizes.

Study Approach Step-size Constraints type Cost function Communication graph Convergence
(Shi et al.,, 2015a) distributed PI identical unconstrained convex and smooth connected undirected 0(1/k)
restricted strongly convex and linear
smooth

(Qu & Li, 2018) a combination of the distributed identical unconstrained convex and smooth connected undirected 0(1/k)
inexact method and the gradient
tracking

strongly convex and smooth linear

(Jakovetic, 2019) a unified framework for (Qu & Li, 2018; identical unconstrained strongly convex and smooth connected undirected linear
Shi et al., 2015a)

(Yao et al., 2018) distributed PI and finite-time identical unconstrained quadratic connected undirected finite-time
consensus (Sundaram & Hadjicostis, computation
2007; Yuan et al., 2013)

(Mai & Abed, 2018) diffusion the coefficients of objective identical unconstrained quadratic strongly connected finite-time
functions and finite-time consensus computation
computation (Sundaram &

Hadjicostis, 2007; Yuan et al., 2013)

(Zeng & Yin, 2017) identical unconstrained quasi-strong convex and strongly connected linear

smooth

(Xi & Khan, 2017) EXTRA and push-sum based method restricted strongly convex and

smooth
(Xi, Xin et al., 2018) strongly convex and smooth
(Pu et al., 2018; Xin & Khan, push-pull based method identical unconstrained strongly convex and smooth strongly connected linear
2018)
(Nedic et al., 2017a) DIGing identical unconstrained strong convex and smooth uniformly jointly connected linear
DIGing and push-sum method uniformly jointly strongly
connected

(Xu et al., 2018b) Bregman splitting method identical unconstrained strongly convex and smooth undirected stochastic 0(1/k)

(Aybat et al., 2018) distributed proximal method adaptive unconstrained composite convex connected undirected 0O(1/k)

(Lei et al., 2016) a primal-dual algorithm with the identical different constraint sets convex and locally smooth connected undirected asymptotic
projection method

(Yuan et al., 2011) a primal-dual subgradient algorithm identical global inequality constraint convex but nonsmooth connected undirected -
with a fixed step-size

(Yuan et al., 2016) o(k=1/%)

(Liu et al., 2017) a projection algorithm with a fixed identical global equality constraint convex but nonsmooth connected undirected asymptotic
step-size

(Xu et al., 2015) augmented distributed gradient uncoordinated unconstrained convex and smooth connected undirected asymptotic
method

(Xu et al., 2018a) asynchronous distributed gradient uncoordinated unconstrained convex and smooth undirected stochastic graphs almost sure
method with random failures

strongly convex and smooth linear
(Nedi et al., 2017b) DIGing-ATC uncoordinated unconstrained strongly convex and smooth connected undirected linear
(Saadatniaki et al., 2018) push-pull based method uncoordinated unconstrained strongly convex and smooth uniformly jointly strongly linear

connected
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Table 3

Continuous-time distributed algorithms.

Study Approach Arbitrary Constraints type Cost function Communication graph Triggering Convergence
initialization
(Wang & Elia, 2010) distributed PI yes unconstrained convex but nonsmooth connected undirected - asymptotic
(Gharesifard & distributed PI yes unconstrained convex but nonsmooth connected undirected - asymptotic
Cortés, 2014)
convex and smooth strongly connected and
weight-balanced
(Kia et al., 2015a) distributed PI partial unconstrained convex local functions connected undirected - asymptotic
and a strictly convex
global function
strongly convex and - exponential
smooth
strongly convex and static event-triggered exponential
smooth to a neigh-
borhood
strongly convex and strongly connected and - exponential
smooth weight-balanced
strongly convex and strongly connected and - exponential
smooth weight-balanced at all
times
(Du et al., 2019) distributed PI (Gharesifard & yes unconstrained convex and continuously connected undirected asymptotic
Cortés, 2014; Wang & Elia, differentiable
2010)
restricted strongly convex static event-triggered exponential
and locally smooth
distributed PI (Kia et al., partial convex and continuously asymptotic
2015a) differentiable
restricted strongly convex exponential
and locally smooth
(Lu & Tang, 2012) zero gradient sum method no unconstrained strongly convex with connected and unidrected - exponential
locally Lipschitz
Hessian
(Liu & Wang, 2015) two-layer projection neural yes different local constraint convex but nonsmooth connected and unidrected - asymptotic
network sets
(Qiu, Liu et al., 2016) consensus, subgraient, and yes identical local constraint convex uniformly jointly - asymptotic
projection set connected
(Yang et al., 2017b) distributed PI yes different local constraint convex on locally connected and unidrected - asymptotic
sets and global equality bounded feasible
and inequality region
constraints
(Zhu, Yu et al., 2018) distributed subgradient yes different local constraint convex and nonsmooth connected and unidrected - asymptotic
method sets and global equality local functions and a
and inequality strictly convex global
constraints functions
(Yang et al., 2017a) (Kia et al., 2015a) in the partial unconstrained strongly convex and strongly connected and - asymptotic
presence of delays smooth weight-balanced
digraphs with
time-varying delays
(Hatanaka et al., 2018) distributed PI and passivity yes unconstrained strongly convex and connected undirected - asymptotic

smooth

graphs with constant
delays

(continued on next page)
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Table 3 (continued)

86¢

Study Approach Arbitrary Constraints type Cost function Communication graph Triggering Convergence
initialization
(Guo & Chen, 2018) (Lu & Tang, 2012) under no unconstrained strongly convex with undirected connected - asymptotic ;
delays locally Lipschitz graphs/strongly ®
Hessians connected and >
weight-balanced =<
digraphs at all times 2
with time-varying f_-
delays s
(Doan et al., 2017) distributed gradient method yes different local constraint convex and differentiable undirected connected - 0(Ink/vk) N
under delays sets graphs with uniform §
constant delays Ry
(Chen & Ren, 2016) (Lu & Tang, 2012) with ETM no unconstrained strongly connected and periodic triggered exponential =
(Liu & Chen, 2016) strongly convex with weight-balanced static event-triggered é
locally Lipschitz =
Hessians 2
(Du, Yi et al., 2018) connected undirected dynamic 'g“
event-triggered 2
(Lin et al., 2017) a distributed algorithm with no identical local constraint convex and differentiable connected undirected at - asymptotic (:;
nonuniform sets all times %
state-dependent gradient =
gains N
a combination of a no convex and twice - finite-time ~
distributed tracking differentiable %
algorithm and a dynamic N
averaging estimator >
(Pilloni et al., 2016) distributed PI-like no unconstrained quadratic connected undirected - finite-time dc"
(Feng & Hu, 2017) finite-time consensus yes unconstrained quadratic connected undirected - finite-time o

protocol in Yu and
Long (2015)

graphs with
communication
uncertainties




Table 4

Distributed algorithms for the optimal DER coordination problem.

Study Algorithm Type Approach Cost function Communication graph Communication Triggering Convergence
imperfection
(Zhang & Chow, 2012) discrete-time fixed step-size leader-follower quadratic connected undirected - - asymptotic
consensus-based
(Kar & Hug, 2012) discrete-time diminishing consensus and innovation quadratic connected undirected - - asymptotic
step-size approach (Kar &
Moura, 2013)
(Tang et al., 2018) discrete-time fixed step-size EXTRA (Shi et al., 2015a) quadratic connected undirected - - asymptotic
(Dominguez-Garcia, Cady et al., discrete-time fixed step-size ratio consensus quadratic strongly connected - - asymptotic
2012) (Dominguez-Garcia &
Hadjicostis, 2011)
(Yang et al., 2013) discrete-time fixed step-size surplus (Cai & Ishii, 2012) quadratic strongly connected - - asymptotic
(Xing et al., 2015) discrete-time fixed step-size bisection method and strictly convex strongly connected - - asymptotic
consensus-like
(Yang, Lu et al., 2017) discrete-time diminishing push-sum based strictly convex uniformly jointly strongly  bounded - asymptotic
step-size algorithm (Nedic¢ & connected time-varying
Olshevsky, 2015) delays
(Du, Yao et al., 2018) discrete-time fixed step-size push-pull method strictly convex strongly connected - - asymptotic
uniformly jointly strongly
connected
(Doan & Beck, 2017) discrete-time diminishing distributed Lagrangian method  convex but nonsmooth connected undirected - - asymptotic
step-size
Doan and Beck (2018) uniformly jointly
connected
(Cherukuri & Cortés, 2015; 2016)  continuous-time Laplacian nonsmooth gradient convex, continuous, and strongly connected and - - asymptotic
dynamics locally Lipschitz weight-balanced
(Yi et al., 2016) continuous-time projected dynamics strictly convex and smooth connected undirected - - asymptotic
strongly convex exponential
(Bai et al., 2019) continuous-time saddle point dynamics quadratic connected undirected - - finite-time to a
neighborhood
Zhao, Duan et al. (2019) discrete-time fixed step-size the algorithm proposed in quadratic strongly connected uniform constant - asymptotic
Yang et al. (2013) delays
(Zhu et al., 2016) continuous-time consensus-based quadratic connected undirected uniform constant - asymptotic
delays
(Chen & Zhao, 2018) continuous-time consensus-based quadratic connected undirected nonuniform - asymptotic
constant delays
(Somarakis & Baras, 2015; continuous-time consensus-based quadratic uniformly jointly time-varying - asymptotic
Somarakis et al., 2016) connected bounded delays
(Wu, Yang, Wu et al., 2017) discrete-time diminishing push sum method (Nedi¢ & quadratic strongly connected with packet-drops - almost sure
step-size Olshevsky, 2015) and running a positive probability
sum method
(Dominguez-Garcia,
Hadjicostis et al., 2012;
Hadjicostis et al., 2016)
(Li et al., 2016) discrete-time 6-logarithmic barrier-based quadratic connected undirected - yes asymptotic
(Zhao, Li et al., 2019) continuous-time saddle-point dynamics strongly convex connected undirected - yes asymptotic
(Yang, Wu, Sun et al., 2016) discrete-time finite-time consensus quadratic strongly connected - - finite-time
computation (Sundaram &
Hadjicostis, 2007; Yuan et al.,
2013)
(Chen et al., 2017) continuous-time distributed finite-time quadratic connected undirected - - asymptotic
algorithm based on
(Chen et al., 2011)
(Chen & Li, 2018; Li et al., 2017) continuous-time sliding mode control quadratic connected undirected - - fixed-time
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tions which have received much attention recently. Some of them
are briefly summarized as follows:

- Distributed non-convex optimization. Most existing studies fo-
cused on the distributed convex optimization problem. How-
ever, in many physical applications, the optimization problem
is non-convex. Thus, it is important to develop distributed al-
gorithms to solve the non-convex optimization problem. This
challenging yet important problem has drawn attention re-
cently from various communities, such as control, signal pro-
cessing, and machine learning (see, e.g., Chatzipanagiotis & Za-
vlanos, 2017; Hong, Hajinezhad, & Zhao, 2017; Lorenzo & Scu-
tari, 2016; Matei & Baras, 2017; Tatarenko & Touri, 2017; Tian,
Sun, Du, & Scutari, 2018; Wai, Lafond, Scaglione, & Moulines,
2017; Zeng & Yin, 2018; Zhu & Martinez, 2013). In these stud-
ies, distributed algorithms have been developed to solve un-
constrained and constrained non-convex optimization problems
over either fixed or time-varying graphs, either undirected or
directed. However, this direction is far from being complete.
For example, it is interesting to investigate the performance of
these existing algorithms in case of noisy gradients. Another in-
teresting direction is to develop event-trigger communication
schemes for these existing algorithms to reduce the commu-
nication overheads. It is also worthy to apply these existing
distributed algorithms to the non-convex optimization problem
with theoretical guarantees to solve the non-convex optimal
power flow problem.

Distributed resilient optimization. The common assumption in
the existing distributed optimization literature is that all agents
cooperate to learn the optimal soultion in a collaborative
manner. However, in networked cyber-physical systems, some
agents may become adversarial due to failures or malicious at-
tacks. Therefore, it is important to investigate the performance
of the existing distributed optimization algorithms in the pres-
ence of adversarial agents. Although distributed resilient con-
sensus has been well studied (see, e.g., LeBlanc, Zhang, Kout-
soukos, & Sundaram, 2013; Pasqualetti, Bicchi, & Bullo, 2012;
Sundaram & Hadjicostis, 2011), distributed resilient optimiza-
tion with adversarial agents is less studied and there are only
a limited number of studies (see, e.g., Su & Vaidya, 2016; Sun-
daram & Gharesifard, 2019; Zhao, He, & Wang, 2017). These re-
sults established sufficient and/or necessary conditions under
which the proposed distributed algorithms ensure that the non-
adversarial agents converge to the convex hull of the local min-
imizers even in the presence of adversarial agents. However,
the results focused on distributed algorithms with diminishing
step-sizes. It is interesting to develop distributed resilient opti-
mization algorithms with fixed step-sizes.

Distributed online convex optimization. Another common as-
sumption in the existing distributed optimization literature is
that every agent knows its local private convex objective func-
tion in advance. However, in many applications, there is no
prior knowledge of the objective functions since the informa-
tion is highly uncertain and unpredictable. For example, in a
microgrid with a high penetration of DERs such as wind gen-
erators and solar panels, there is high uncertainty of power
generation. Thus, the uncertain and unpredictable features of
DERs need to be taken into account to design a more ac-
curate energy management system for microgrids (Ma, Wang,
Gupta, & Chen, 2018). This issue can be addressed within the
framework of distributed online convex optimization (DOCO).
Discrete-time DOCO with the time-invariant constraint set and
inequality constraints has been studied in Koppel, Jakubiec, and
Ribeiro (2015); Lee and Zavlanos (2016); Li, Yi, and Xie (2018);
Tsianos and Rabbat (2012) and Yi, Yang, Wu, and Johans-
son (2019b) and continuous-time DOCO without constraints has

been considered in Zhang et al. (2017). It is an important future
research direction to consider DOCO with time-varying con-
straint sets, which is more challenging and practical.

Coordination of multi-type of DERs. Most existing studies for
DER coordination only considered coordination of distributed
generators. It is desirable to consider other types of resources,
such as energy storages and demand response. In fact, some re-
sults are available in this direction. For example, the authors of
Cherukuri and Cortés (2018); Hug et al. (2015); Wu, Yang, Stoor-
vogel, and Stoustrup (2017); Yang, Wu, Stoorvogel, and Stous-
trup (2016) and He et al. (2019) studied the coordination be-
tween distributed generators and energy storages, while the au-
thors of Li, Chen, and Low (2011); Wu, Lian, Sun, Yang, and
Hansen (2017) and Qin, Wan, Yu, Li, and Li (2019) studied the
coordination between distributed generators and demand re-
sponse. Most of these existing studies assumed reliable com-
munication networks. However, the communication network in
the distribution network is still under-deployed and has lim-
ited capabilities compared to that for the bulk power trans-
mission network (Magnusson, Fischione, & Li, 2017; Zhang, Shi,
Zhu, Dall’Anese, & Basar, 2018). Such a communication net-
work could suffer from communication imperfections, such as
switching topologies, time delays, and packet drops. An inter-
esting future research direction is to develop distributed algo-
rithms to optimally coordinate various distributed energy re-
sources in the presence of these communication imperfections.
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