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a b s t r a c t

In this paper we study the distributed average consensus problem in multi-agent systems with
dynamically-changing directed communication links that are subject to quantized information flow.
We present and analyze a distributed averaging algorithm which operates exclusively with quantized
values (i.e., the information stored, processed and exchanged between neighboring agents is subject
to deterministic uniform quantization) and relies on event-driven updates (e.g., to reduce energy con-
sumption, communication bandwidth, network congestion, and/or processor usage). We characterize
the properties of the proposed distributed algorithm over dynamic directed communication topologies
subject to some connectivity conditions and we show that its execution allows each agent to reach, in
finite time, a fixed state that is equal (within one quantization level) to the average of the initial states.
The main idea of the proposed algorithm is that each agent (i) models its initial state as two quantized
fractions which have numerators equal to the agent’s initial state and denominators equal to one, and
(ii) transmits one fraction randomly while it keeps the other stored. Then, every time an agent receives
one or more fractions, it averages their numerators with the numerator of the fraction it stored, and
then transmits them to randomly selected out-neighbors. Finally, we provide examples to illustrate
the operation, performance, and potential advantages of the proposed algorithm. We compare against
various quantized average consensus algorithms and show that our algorithm’s convergence speed is
among the fastest in the current literature.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In recent years, there has been a growing interest for control
nd coordination of networks consisting of multiple agents, like

✩ The material in this paper was presented at the 21st IFAC World Congress
(IFAC 2020), July 12–17, 2020, Berlin, Germany. This paper was recommended
for publication in revised form by Associate Editor Claudio De Persis under the
direction of Editor Christos G. Cassandras. An early version of the algorithm
in this paper appears in the conference paper (Rikos and Hadjicostis, 2020).
The main differences of this paper with Rikos and Hadjicostis (2020) are: (i) the
current version of the proposed algorithm operates over a dynamically changing
directed communication topology, (ii) the proposed algorithm avoids oscillating
behavior regarding the nodes’ states while maintaining fast convergence speed
(similar to Rikos and Hadjicostis (2020)), (iii) detailed proofs for convergence
and for the results on avoiding oscillatory behavior are provided (not given in
Rikos and Hadjicostis (2020)).
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groups of sensors (Xiao, Boyd, & Lall, 2005) or mobile autonomous
agents (Olfati-Saber & Murray, 2004). A problem of particular
interest in distributed control is the consensus problem where the
objective is to develop distributed algorithms that can be used by
a group of agents in order to reach agreement to a common deci-
sion. The agents start with different initial states/information and
are allowed to communicate locally via inter-agent information
exchange under some constraints on connectivity. Consensus pro-
cesses play an important role in many problems, such as leader
election (Lynch, 1996), motion coordination (Blondel, Hendrickx,
Olshevsky, & Tsitsiklis, 2005; Olfati-Saber & Murray, 2004), and
clock synchronization (Schenato & Gamba, 2007).

One special case of the consensus problem is the distributed
averaging problem, where each agent (initially endowed with
a numerical state) can send/receive information to/from other
agents in its neighborhood and update its state iteratively, so that
eventually, all agents compute the average of the initial states.
Average consensus is an important problem and has been studied
extensively, primarily in settings where each agent processes
and transmits real-valued states with infinite precision (Blondel
et al., 2005; Charalambous et al., 2013; Hadjicostis, Domínguez-
García, & Charalambous, 2018; Liu, Mou, Morse, Anderson & Yu,
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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011; Sundaram & Hadjicostis, 2008). However, most existing
verage consensus algorithms are only able to guarantee asymp-
otic convergence, implying that they cannot be readily applied
o real-world distributed control and coordination applications.
urthermore, constraints on the bandwidth of communication
inks and the capacity of physical memories require both com-
unication and computation to be performed assuming finite
recision. For these reasons, researchers have studied the case
here network links can only allow messages of limited length
o be transmitted between agents, effectively extending tech-
iques for average consensus towards the direction of quantized
verage consensus (Aysal, Coates, & Rabbat, 2007; Cai & Ishii,
011; Carli, Fagnani, Speranzon, & Zampieri, 2008; Chamie, Liu, &
asar, 2016; Garcia, Cao, Yu, Antsaklis & Casbeer, 2013; Kashyap,
asar, & Srikant, 2007; Lavaei & Murray, 2012). In addition, the
emand for more efficient usage of network resources, has led
o an increasing interest for novel event-triggered algorithms for
istributed control (Liu, Chen, & Yuan, 2012; Nowzari & Cortés,
016; Seyboth, Dimarogonas, & Johansson, 2013).
Distributed algorithms that achieve quantized average consen-

us in an event-driven fashion have a wide variety of applications.
hey can be used as the basis for various encoding schemes, such
s quantized privacy protocols for guaranteeing additional levels
f security without significantly increasing communication over-
ead (Rikos, Charalambous, Johansson, & Hadjicostis, 2020; Ruan,
ao, & Wang, 2019). Furthermore, in recent years there has been
tremendous growth in distributed optimization (Grammenos,
haralambous, & Kalyvianaki, 2020; Khatana & Salapaka, 2020;
edic, Olshevsky, Ozdaglar, & Tsitsiklis, 2008; Rabbat & Nowak,
005) and machine learning algorithms (Jiang & Agrawal, 2018;
un, Chen, Giannakis, & Yang, 2019). The distributed operation
f these algorithms over directed graphs requires exchange of
he agents’ states without any error in order to guarantee con-
ergence to a desired solution. However, as the network size
ecomes larger, e.g., to speed up the training of deep learning al-
orithms, the communication overhead of each iteration becomes
major bottleneck. Quantization and event-driven communica-

ion are effective approaches to tackle this issue, since reduction
f communication and processing costs leads to bandwidth and
nergy efficient algorithms.
The emerging importance of the aforementioned approaches

an be further seen in various recent works. In Nylof, Rikos,
racy, and Johansson (2022), Rikos et al. (2021) and Taheri,
okhtari, Hassani, and Pedarsani (2020) researchers present dis-

ributed optimization algorithms where quantized communica-
ion (i) reduces the communication overhead between nodes
n the network, (ii) leads to fast finite time convergence, and
iii) facilitates the usage of privacy protocols for guaranteeing
dditional levels of security. Furthermore, in Elgabli et al. (2021),
hlezinger, Chen, Eldar, Poor and Cui (2020), Sun, Chen, Gian-
akis, Yang and Yang (2020) and Reisizadeh, Mokhtari, Has-
ani, Jadbabaie and Pedarsani (2020) researchers present ma-
hine learning algorithms that employ quantization strategies to
ackle the large communication overhead and reduce communi-
ation payload size, while maintaining fast convergence rates and
ossible privacy preserving guarantees.

.1. Literature review

In recent years, quite a few probabilistic distributed algo-
ithms for averaging under quantized communication, have been
roposed. Specifically, the probabilistic quantizer in Aysal et al.
2007) converges to a common state with a random quantization
evel for the case where the topology forms a directed graph.
n Kar and Moura (2010) the authors present a distributed algo-
ithm which adds a dither to the agents’ measurements (before
2

the quantization process) and show that the mean square error
can be made arbitrarily small. In Benezit, Thiran, and Vetterli
(2011) the authors present a distributed algorithm that guaran-
tees that all agents reach consensus to a value on the interval
in which the average lies after a finite number of time steps.
In Lavaei and Murray (2012) the authors present a quantized gos-
sip algorithm which deals with the distributed averaging problem
over a connected weighted graph, and calculate lower and upper
bounds on the expected value of the convergence time, which
depend on the principal submatrices of the Laplacian matrix of
the weighted graph.

The available literature concerning deterministic distributed
algorithms for averaging under quantized communication com-
prises less publications. In Li, Fu, Xie, and Zhang (2011), the
authors present a distributed averaging algorithm with dynamic
encoding and decoding schemes. They show that for a connected
undirected dynamic graph, average consensus is achieved asymp-
totically with as few as one bit of information exchange between
each pair of adjacent agents at each time step, and that the
convergence rate depends on the number of network nodes,
the number of quantization levels and the synchronizability of
the network. In Thanou, Kokiopoulou, Pu, and Frossard (2013)
the authors present a novel quantization scheme for solving the
average consensus problem when sensors exchange quantized
state information. The proposed scheme is based on progressive
reduction of the range of a uniform quantizer and leads to pro-
gressive refinement of the information exchanged by the sensors.
In Carli et al. (2008) the authors derive bounds on the rate of
convergence to average consensus for a team of mobile agents
exchanging information over time-invariant or randomly time-
varying communication networks with symmetries. Furthermore,
they study the control performance when agents also exchange
logarithmically quantized data over static communication topolo-
gies with symmetries. In Nedic, Olshevsky, Ozdaglar, and Tsitsiklis
(2009) the authors study distributed algorithms for the averaging
problem over dynamic topologies, with a focus on tight bounds
on the convergence time of a general class of averaging algo-
rithms. They consider algorithms for the case where agents can
exchange and store continuous or quantized states, establish a
tight convergence rate, and show that these algorithms guarantee
convergence to the average of the initial states, within some error
that depends on the number of quantization levels.

Recent papers have studied the quantized average consen-
sus problem with the additional constraint that the state of
each node is an integer value. In Kashyap et al. (2007) the au-
thors present a probabilistic algorithm which allows every agent
to reach quantized consensus almost surely over a static and
undirected communication topology, while in Etesami and Basar
(2016) and Basar, Etesami, and Olshevsky (2016) the authors an-
alyze and further improve its convergence rate. In Aysal, Coates,
and Rabbat (2008) the authors present a deterministic algorithm
for calculating the quantized average of the initial values. The
algorithm utilizes probabilistic quantization and operates over an
undirected connected communication topology. In Frasca, Carli,
Fagnani, and Zampieri (2009) the authors present a distributed
algorithm in which the exact average is calculated asymptotically.
The algorithm operates over a directed graph and each node
stores real values but transmits quantized values and refines, if
necessary, the quantization step. In Carli, Fagnani, Frasca, and
Zampieri (2010) the authors present a gossip algorithm for cal-
culating the average of the initial states. Each node stores real
values, transmits quantized values and either converges to the
quantized average, or performs oscillations around the average.
In Cai and Ishii (2011) a probabilistic algorithm was proposed
to solve the quantized consensus problem over static directed
graphs for the case where the agents exchange quantized infor-
mation and store the changes of their states in an additional (also
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uantized) variable called ‘‘surplus’’. The authors of Chamie et al.
2016) present a deterministic distributed averaging algorithm
ubject to quantization on the links and show that, depending on
nitial conditions, the system either converges in finite time to
uantized consensus, or the agents (nodes) enter into a periodic
ehavior with their states oscillating around the average. In Mou,
arcia, and Casbeer (2017), the authors present two distributed
lgorithms; one for fixed tree graphs with finite time conver-
ence, and one for a dynamic directed graph with exponential
onvergence. The algorithms proposed in this work calculate
he initial average as the ratio of two scaled sums obtained by
unning in parallel two iterations. In Dibaji, Ishii, and Tempo
2017) the authors present a distributed algorithm in which the
odes reach consensus (but not necessarily to the average). The
lgorithm operates over a directed graph and quantization is
erformed in a probabilistic manner. In Rikos and Hadjicostis
2018) and Rikos and Hadjicostis (2021) the authors present two
istributed algorithms, one probabilistic and one deterministic,
hich calculate the exact quantized average of the initial states
i.e., there is no quantization error) in a finite number of time
teps, which is explicitly calculated. In Rikos and Hadjicostis
2020) the authors present a distributed randomized algorithm
hich calculates the quantized average of the initial states with
igh probability. The algorithm is shown to outperform other
lgorithms but the states of the nodes exhibit oscillating behavior
between the ceiling and the floor of the real-valued average of
he initial states).

.2. Main contributions

In this paper, we present a novel distributed average con-
ensus algorithm in which processing, storing, and exchange of
nformation between neighboring agents is event-driven and sub-
ect to uniform quantization. The main contribution of this paper
s threefold.

A. We introduce a novel distributed algorithm that allows all
gents to almost surely reach quantized average consensus in
inite time under a dynamic directed communication topology
see Algorithm 1 in Section 4).

B. We show that, unlike existing algorithms in the literature,
he proposed algorithm allows each agent to calculate, in finite
ime and with no oscillations, either the ceiling or the floor of
he real average of the initial states (see Theorem 1 in Section 4).

C. We present experimental results in which we compare the
roposed algorithm against existing schemes. In static networks
e observe that its convergence speed significantly outperforms
ost finite-time distributed algorithms for average consensus
nder quantized communication (see Section 5).
The main idea behind the proposed algorithm is the following.

nitially each node stores two fractions. Each fraction has numer-
tor equal to the node’s initial quantized state and denominator
qual to one. Then, the node transmits one fraction randomly
hile it keeps the other stored. Every time a node receives one
r more fractions, it averages their numerators with the numer-
tor of the fraction it keeps stored, and then transmits them to
andomly selected out-neighbors.

We show that our proposed algorithm converges almost surely
n a finite number of time steps. Furthermore, we present a
robabilistic upper bound on the number of time steps each
ode requires to converge to the average of the initial quan-
ized states. Finally, we elaborate on our claim regarding the
ast convergence of the proposed algorithm by presenting sim-
lation results over static and dynamic directed communication
opologies. In these simulations, we observe that the convergence
peed of our presented algorithm is among the fastest finite-time
istributed algorithms for average consensus under quantized
ommunication in the current literature.
3

Most work dealing with quantization has concentrated on
the scenario where the agents have real-valued states but can
only transmit quantized values through limited rate channels
(e.g., Carli et al., 2008; Chamie et al., 2016). By contrast, our setup
covers the case where the states are stored in digital memories of
finite capacity (as in Cai & Ishii, 2011; Kashyap et al., 2007; Nedic
et al., 2009). Specifically, we assume that states are integer-valued
(which comprises a class of quantization effects such as uniform
quantization) and the control actuation of each node is event-
based, which enables more efficient use of available resources.
Furthermore, many papers in the literature (e.g., Chamie et al.,
2016; Frasca et al., 2009; Rikos & Hadjicostis, 2020), do not sup-
press small oscillations around the average consensus value. On
the contrary, our algorithm allows each node state to stabilize to a
specific value rather than perform oscillations around the average
consensus value. This characteristic is important for distributed
optimization schemes (e.g., Nylof et al., 2022; Rikos et al., 2021),
since it facilitates convergence to a specific state rather than
leading to oscillations between two different states/decisions.

1.3. Outline

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce the notation used throughout the paper,
while in Section 3 we formulate the quantized average consen-
sus problem. In Section 4, we present a probabilistic distributed
algorithm which operates over a dynamic digraph and allows
the agents to reach consensus to the quantized average of the
initial states, in finite time, almost surely. We demonstrate its
performance with an illustrative example, analyze its operation,
and establish its finite time termination. In Section 5, we present
simulation results and comparisons against various other quan-
tized average consensus algorithms. We conclude in Section 6
with a brief summary and remarks about future work.

2. Preliminaries

2.1. Notation

The sets of real, rational, integer and natural numbers are
denoted by R,Q,Z and N, respectively. The symbol Z+ denotes
the set of nonnegative integers and the symbol N0 denotes the
set of natural numbers that includes zero. For any a ∈ R, the floor
a⌋ denotes the greatest integer less than or equal to a while the
eiling ⌈a⌉ denotes the least integer greater than or equal to a.
The multi-agent system consists of n (n ≥ 2) agents commu-

nicating only with their immediate neighbors at a given time. The
communication topology is directed and dynamic (i.e., it changes
over time). The dynamically changing directed topology can be
captured by a sequence of directed graphs (digraphs)1. In the
remainder of this paper, we will call a sequence of directed
graphs as a dynamic digraph. In a dynamic digraph we assume
that the set of nodes is fixed while the set of edges among them
might change at various points in time. Specifically, a dynamic
digraph is defined as a sequence of digraphs Gd[k] = (V, E[k]),
k = 0, 1, 2, . . ., where V = {v1, v2, . . . , vn} is the set of nodes
(representing the agents of the multi-agent system) and E[k] ⊆

V × V − {(vj, vj) | vj ∈ V} is the set of edges at time step
k (self-edges excluded). A directed edge from node vi to node
vj is denoted by mji ≜ (vj, vi) ∈ E[k], and captures the fact
that node vj can receive information from node vi (but not the

1 From Rikos and Hadjicostis (2021), a directed graph (digraph) is defined
s Gd = (V, E), where V = {v1, v2, . . . , vn} is the set of nodes (representing

the agents) and E ⊆ V × V − {(vj, vj) | vj ∈ V} is the set of edges (self-edges
excluded).
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ther way around) at time step k. This means that at each time
nstant k, each node vj has possibly different sets of in- and out-
eighbors, denoted respectively by N−

j [k] and N+

j [k] and defined
as N−

j [k] = {vi ∈ V | (vj, vi) ∈ E[k]} and N+

j [k] = {vl ∈ V |

(vl, vj) ∈ E[k]}. The cardinality of N−

j [k], at time step k, is called
the in-degree of vj and is denoted by D−

j [k] = |N−

j [k]|, while the
cardinality of N+

j [k], at time step k, is called the out-degree of vj

and is denoted by D+

j [k] = |N+

j [k]|. Given a dynamic digraph
Gd[k] = (V, E[k]) for k = 1, 2, . . . ,m, where m ∈ N, its union
graph is defined as G1,2,...,m

d = (V, ∪m
k=1E[k]). A dynamic digraph

ver k = 1, 2, . . . ,m is said to be jointly strongly connected, if its
orresponding union graph G1,2,...,m

d forms a strongly connected
igraph (i.e., for each pair of nodes vj, vi ∈ V , vj ̸= vi, there exists

a directed path from vi to vj).

2.2. Agent operation

With respect to quantization of information flow, each node
vj ∈ V maintains, at time step k, 5 + 2D+

j variables, as follows:
(i) The mass variables yj[k], zj[k], where yj[k] ∈ Z and zj[k] ∈

N0, are used for processing and calculating the average of the
initial states.

(ii) The state variables ysj [k], z
s
j [k], q

s
j [k], where ysj [k] ∈ Z,

zsj [k] ∈ N and qsj [k] ∈ Z (with qsj [k] = ⌊
ysj [k]

zsj [k]
⌋ or qsj [k] = ⌈

ysj [k]

zsj [k]
⌉),

re used for storing the values of the received mass variables and
or calculating the state variable qsj , which is the variable that
becomes equal to the quantized average of the initial states.

(iii) The transmission variables cylj[k] and czlj[k] for each vl ∈

N+

j [k], where cylj[k] ∈ Z and czlj[k] ∈ N0, are used for transmitting
j’s mass variables towards its out-neighbors.

.3. Transmission strategy

Under the dynamic communication topology case, each node
j assigns a nonzero probability blj[k] to each of its outgoing edges
lj[k] (including a virtual self-edge) at each time step k, where

vl ∈ N+

j [k]∪{vj}. This probability assignment for all nodes can be
captured, at each time step k, by an n×n column stochastic matrix
[k] = [blj[k]]. A simple choice would be to set these probabilities
o be equal, i.e.,

lj[k] =

{
1

1+D+

j [k]
, if vl ∈ N+

j [k] ∪ {vj},

0, otherwise.

Each nonzero entry blj[k] of matrix B[k] represents the probability
of node vj transmitting towards out-neighbor vl ∈ N+

j [k] through
the edge mlj[k] at time step k, or transmitting to itself (i.e., per-
forming no transmission with probability bjj[k]). Let us note here
that the dynamic nature of the underlying communication topol-
ogy implies that the matrix B[k] is not necessarily primitive
at each time step k (whereas for a static strongly connected
topology, the corresponding B will necessarily be primitive).

3. Problem formulation

Consider a digraph Gd = (V, E), where each node vj ∈ V has
an initial quantized state yj[0] (for simplicity, we take yj[0] ∈ Z)
and q is the real average of the initial states:

q =

∑n
l=1 yl[0]
n

. (1)

In this paper, we aim to develop distributed algorithms that
address the following problem P1.

P1. Given a dynamic digraph Gd[k] which is jointly strongly
connected (e.g., for some finite l we have that the union graph
4

Gml,ml+1,ml+2,...,ml+l−1
d is strongly connected for allm = 0, 1, 2, . . .),

design an algorithm which allows the nodes to obtain, after a
finite number of steps, a quantized state qs which is equal to the
ceiling or the floor of the actual average q of the initial states in
(1). Specifically, we require that there exists k0 so that for every
vj ∈ V we have

(qsj [k] = ⌊q⌋ for k ≥ k0) or (qsj [k] = ⌈q⌉ for k ≥ k0). (2)

The quantized average qs is defined as the ceiling ⌈q⌉ or the
loor ⌊q⌋ of the true average q of the initial states in (1). Let
≜ 1Ty[0], where 1 = [1 ... 1]T is the vector of all ones, and

let y[0] = [y1[0] ... yn[0]]T be the vector of the quantized initial
states. We can write S uniquely as

S = nL + R (3)

where L and R are both integers and 0 ≤ R < n. Thus, we have
hat either L or L+1 may be viewed as an integer approximation
f the average of the initial states q = S/n (which may not be
nteger in general).

emark 1. Note here that our definition of quantized average
onsensus is different than in some literature (Cai & Ishii, 2011;
hamie et al., 2016; Kashyap et al., 2007; Rikos & Hadjicostis,
020, 2021). More specifically, we require that all agents states
onverge to a specific integer, either ⌊q⌋ or ⌈q⌉ where q satisfies
1). Apart from Cai and Ishii (2011), this is not achieved by
xisting finite-time algorithms since they either exhibit oscil-
ating behavior of the agent states between the values ⌊q⌋ or
q⌉ (Chamie et al., 2016; Kashyap et al., 2007; Rikos & Hadji-
ostis, 2020), or calculate the average in the form of a quantized
raction (Rikos & Hadjicostis, 2021).

. Quantized averaging over dynamic digraphs

In this section,we present a distributed algorithm (detailed as
lgorithm 1) which addresses problem (P1) presented in Sec-
ion 3. We assume that, at each time step k, the interconnections
etween components in the multi-component system are cap-
ured by a digraph Gd[k] = (V, E[k]) in which the set of nodes
s fixed but the communication links may change.

ssumption 1.

A1. At each time step k, each node vj has knowledge of the set of
its out-neighbors N+

j [k] and the number of its out-neighbors
D+

j [k].
A2. Given an infinite sequence of Gd[1], Gd[2], . . . , Gd[k], . . . , de-

scribing a dynamic digraph there is a finite window length
l ∈ N and an infinite sequence of time instants t0, t1, . . . ,
tm, . . . , where t0 = 0, such that for any m ∈ Z+, we have
0 < tm+1 − tm < l < ∞ and the union graph Gtm,...,tm+1−1

d ,
is equal to the nominal digraph Gd which is assumed to be
strongly connected. The diameter of the strongly connected
union graph Gtm,...,tm+1−1

d is denoted as Dun and is the longest
shortest path between any two nodes vj, vi ∈ V (note that Dun

is also the diameter of the nominal digraph Gd).
A2. Each Gd[k], k = 0, 1, 2, . . ., of a dynamic digraph takes a

value among a finite set of instances, {Gd1 , Gd2 , . . . , GdM }.
The union graph (V, ∪M

i=1Edi ), is strongly connected and at
each time step k one such topology Gdi = (V, Edi ) is selected
independently in an i.i.d. manner. Specifically, at time step
k, we have Gd[k] = Gdθ

for some θ ∈ {1, 2, . . . ,M} with
probability p > 0 where

∑M p = 1.
θ θ=1 θ
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Assumption A1 implies that the transmitting node knows the
number of nodes it transmits messages to at each time instant. In
an undirected graph setting, this is not difficult and can be done
straightforwardly; in a directed graph setting, this is challenging
but there are ways in which knowledge of the out-degree might
be possible. For example, there can be an acknowledgment sig-
nal via a distress signal (special tone in a control slot or some
separate control channel) sent at higher power than normal so
that it is received by transmitters in its vicinity (Bambos, Chen, &
Pottie, 2000). Knowledge of the out-degree is also possible if the
nodes periodically perform checks to determine the number of
their out-neighbors (e.g., by periodically transmitting the distress
signals mentioned above).

Assumption A2 (or A2) is sufficient for the existence of at least
ne directed path between any pair of nodes infinitely often.
Under the above assumptions, during the operation of Al-

orithm 1, each node vj is required to calculate the nonzero
probabilities blj[k] for each of its outgoing edges mlj[k] (where
l ∈ N+

j [k]∪{vj}) at each time step k. This calculation is due to the
ynamic nature of the communication topology Gd[k]. Note that

since each transmitting node vj has instant knowledge of its out-
degree, it can set the weights blj[k] to be equal to blj[k] =

1
1+D+

j [k]

for vl ∈ N+

j [k] ∪ {vj}. This choice satisfies
∑n

l=1 blj[k] = 1 for all
vj ∈ V which means that the transition matrix B[k] = [blj[k]] is
column-stochastic at every time step k. Furthermore, unspecified
weights in B[k] are set to zero and correspond to pairs of nodes
(vl, vj) that are not connected at time step k, i.e., blj[k] = 0 for
vl /∈ N+

j [k] ∪ {vj}.
The intuition behind Algorithm 1 is the following. Initially,

each node vj doubles its mass variables (i.e., it sets yj[0] := 2yj[0]
and zj[0] := 2). At each time step k, each node vj assigns nonzero
probabilities to its outgoing edges. Then, each vj checks if zj[k] >

1 in which case (i) it updates its state variables to be equal to the
mass variables, and (ii) it splits yj[k] into zj[k] equal integer pieces
(with the exception of some pieces whose value might be greater
than others by one). It chooses one piece with minimum y-value
and transmits it to itself, and it transmits each of the remaining
zj[k] − 1 pieces to randomly selected out-neighbors or to itself.
Finally, it receives the values yi[k] and zi[k] from its in-neighbors,
sums them with its stored yj[k] and zj[k] values and repeats the
operation. Note here that the local state update of each node vj
is equal to the fraction of its mass variables yj divided by zj at
time step k for which the condition zj[k] > 1 holds in Iteration
Step 2.1.

Remark 2. Note that Algorithm 1 solves the quantized average
consensus problem (i.e., the state of each node satisfies (2)) in
finite time, also for the special case where the network is a static
strongly connected directed graph. In that case, the operation of
Algorithm 1 resembles the one in Rikos and Hadjicostis (2020).
However, the proposed Algorithm 1 also guarantees convergence
in finite time and avoids oscillating behavior of the node states.
This means that for a static directed graph, Algorithm 1 exhibits
the same performance and convergence rate as Rikos and Hadji-
costis (2020), while the state of each node stabilizes to be equal
either to the ceiling or the floor of the real average q of the initial
states in (1).

Example 1. Consider the dynamic strongly connected digraph
Gd[k] = (V, E[k]) in Fig. 1 (borrowed from Rikos & Hadjicostis,
2018), where there are four nodes with initial quantized states
y [0] = 5, y [0] = 3, y [0] = 7, and y [0] = 2, respectively.
1 2 3 4

5

Algorithm 1 Quantized Average Consensus Over Dynamic
Digraphs
Input A dynamic digraph Gd[k] = (V, E[k]) with n = |V| nodes
nd m[k] = |E[k]| edges, for each k = 0, 1, 2, . . . . Each node

vj ∈ V has an initial state yj[0] ∈ Z.
Initialization: Each node vj ∈ Vp sets yj[0] := 2yj[0], zj[0] = 2.
teration: For k = 0, 1, 2, . . . , each node vj ∈ Vp does the
following:
) assigns a nonzero probability blj[k] to each of its outgoing

edges mlj[k], where vl ∈ N+

j [k] ∪ {vj}, as follows

blj[k] =

{
1

1+D+

j [k]
, if l = j or vl ∈ N+

j [k],

0, if l ̸= j and vl /∈ N+

j [k].

) if zj[k] > 1, then

2.1) sets zsj [k] = zj[k], ysj [k] = yj[k], qsj [k] =

⌊ ysj [k]

zsj [k]

⌋
;

2.2) sets (i) masy[k] = yj[k], masz[k] = zj[k]; (ii) cylj[k] =

0, czlj[k] = 0, for every vl ∈ N+

j [k] ∪ {vj}; (iii) δ =

⌊masy[k]/masz[k]⌋, masrem[k] = yj[k] − δ masz[k];
2.3) while masz[k] > 1, then

2.3a) chooses vl ∈ N+

j [k] ∪ {vj} randomly according to blj;

2.3b) sets (i) czlj[k] := czlj[k] + 1, cylj[k] := cylj[k] + δ; (ii)
masz[k] := masz[k] − 1, masy[k] := masy[k] − δ;

2.3c) if masrem[k] > 0, then sets cylj[k] := cylj[k] + 1,
masrem[k] := masrem[k] − 1.

2.4) sets cyjj[k] := cyjj[k] + masy[k], czjj[k] := czjj[k] + masz[k];

2.5) if czlj[k] > 0, then transmits cylj[k], c
z
lj[k] to out-neighbor

vl, for every vl ∈ N+

j [k];

• else if zj[k] ≤ 1, then sets cyjj[k] = y[k], czjj[k] = z[k]:

) receives cyji[k], c
z
ji[k] from vi ∈ N−

j [k] and updates yj[k + 1],
zj[k + 1] as

yj[k + 1] = cyjj[k] +

∑
vi∈N

−

j [k]

wji[k] c
y
ji[k], (4)

zj[k + 1] = czjj[k] +

∑
vi∈N

−

j [k]

wji[k] czji[k], (5)

where wji[k] = 1 if node vj receives cyji[k], c
z
ji[k] from vi ∈

N−

j [k] at iteration k (otherwise wji[k] = 0).
utput: (2) holds for every vj ∈ V .

There are three different instances Gd1 , Gd2 , Gd3 of the dynamic
digraph Gd[k] as presented at the bottom of Fig. 1. The nominal
digraph (i.e., the union of Gd1 , Gd2 , Gd3 ) has V = {v1, v2, v3, v4}

and E = {m21,m31,m42,m13,m23,m34}, and is shown at the top
of Fig. 1. Notice that the nominal digraph is strongly connected.
The actual average q of the initial states of the nodes, is equal to
q = 4.25, which means that the quantized state qs is equal to
qs = 4 or qs = 5 (see Section 3).

Each node vj ∈ V follows the Initialization in Algorithm 1.
This means that nodes v1, v2, v3, v4, set y1[0] = 10, z1[0] = 2,
y2[0] = 6, z2[0] = 2, y3[0] = 14, z3[0] = 2, and y4[0] = 4,
z4[0] = 2, respectively.

For the execution of Algorithm 1, at time step k = 0, let us
assume that the dynamic digraph is equal to (a) at the bottom
of Fig. 1. Each node vj assigns to each of its outgoing edges vl ∈

N+

j [0]∪{vj} a nonzero probability value blj equal to blj =
1
+ .
1+Dj [0]
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Fig. 1. Example of a dynamic digraph for quantized averaging: the nominal
strongly connected digraph is shown at the top figure, and the 3 different
instances of the dynamic digraph are shown at the bottom figure.

The assigned values can be seen in the following matrix

B[0] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

0
1
2

0

1
2

1 0 0

0 0
1
2

1
2

0 0 0
1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, each node vj calculates its state variables ysj [0], z
s
j [0] and

s
j [0] as shown in Table 1. Subsequently, every node vj calculates
ts transmission variables cylj[0] and czlj[0] for every vl ∈ N+

j [0] ∪

vj}. Specifically, each node vj splits yj[0] in 2 equal pieces (since
j[0] = 2), and keeps one piece (which has the minimum value)
or itself and transmits the other piece to a randomly chosen out-
eighbor or itself according to the matrix B[0]. For this reason, in

the analysis below we have czjj[0] > 0 for every node vj. Suppose
hat, following the random choices, nodes v1, v2, v3, v4 set

v1 : cy11[0] = 5, cy21[0] = 5, cy31[0] = 0,
cz11[0] = 1, cz21[0] = 1, cz31[0] = 0,

v2 : cy22[0] = 6, cy42[0] = 0,
cz22[0] = 2, cz42[0] = 0,

v3 : cy13[0] = 7, cy23[0] = 0, cy33[0] = 7,
cz13[0] = 1, cz23[0] = 0, cz33[0] = 1,

v4 : cy34[0] = 2, cy44[0] = 2,
cz34[0] = 1, cz44[0] = 1.

We have that nodes v1, v3 and v4 perform transmissions to nodes
v2, v1 and v3, respectively, whereas node v2, transmits to itself.
Then, each node vj receives from its in-neighbors vi ∈ N−

j [0]∪{vj}

the transmission variables cyji[0] and czji[0] and, at time step k = 1,
it calculates its state variables ysj [1], z

s
j [1] and qsj [1]. The mass and

state variables are shown in Table 1 for k = 1.
Assume that, at time step k = 1, the dynamic digraph is equal

to (b) at the bottom of Fig. 1. We have that each node vj assigns to
each of its outgoing edges vl ∈ N+

j [1]∪{vj} a nonzero probability
value blj equal to blj =

1
1+D+

j [1]
. Also, it calculates and transmits its

ransmission variables cylj[1] and czlj[1] for every vl ∈ N+

j [1]∪{vj}.
In Fig. 2, following a random choice among one of the topolo-

ies in Fig. 1 at each time step, we plot the resulting state variable
s
j [k] of each node vj ∈ V , from which it can be seen that for k ≥ 9
e have
s
[k] = ⌊q⌋ or qs[k] = ⌈q⌉,
j j

6

Table 1
Mass and State Variables for Fig. 1.
Nodes Mass and State Variables for k = 0
vj yj[0] zj[0] ysj [0] zsj [0] qsj [0]

v1 10 2 10 2 5
v2 6 2 6 2 3
v3 14 2 14 2 7
v4 4 2 4 2 2

Nodes Mass and State Variables for k = 1
vj yj[1] zj[1] ysj [1] zsj [1] qsj [1]

v1 12 2 12 2 6
v2 11 3 11 3 3
v3 9 2 9 2 4
v4 2 1 2 1 2

Fig. 2. Node state variables plotted against the number of iterations for
Algorithm 1 for the dynamic digraph shown in Fig. 1.

for every vj ∈ V . This means that every node vj obtains, after a
finite number of iterations, a quantized state qsj , which is equal
either to the ceiling or to the floor of the real average q of the
initial states of the nodes.

4.1. Convergence of Algorithm 1

We now show that, during the operation of Algorithm 1, each
agent vj reaches a consensus state which is equal either to the
eiling or the floor of the actual average q of the initial states of
he nodes (i.e., we address problem P1 presented in Section 3).
e analyze the operation of Algorithm 1 considering the set of

ssumptions A1, A2 (the set of assumptions A1, A2 can be proven
similarly). We first consider Lemma 1, which is necessary for
our subsequent development. The intuition behind the proof of
Lemma 1 is identical to Lemma 1 in Rikos and Hadjicostis (2020)
and is omitted due to space considerations.

Lemma 1. Consider a sequence of digraphs Gd[k] = (V, E[k]),
k = 0, 1, 2, . . ., with n = |V| nodes, m[k] = |E[k]| edges, so that
assumptions A1, A2 hold for Gd[k] over all k. At each time step k,
suppose that each node vj assigns a nonzero probability blj[k] to each
of its outgoing edges mlj[k], where vl ∈ N+

j [k] ∪ {vj}, as follows

blj =

{
1

1+D+

j [k]
, if l = j or vl ∈ N+

j [k],

0, if l ̸= j and vl /∈ N+

j [k].

At time step k = 0, node vj holds a ‘‘token" while the other nodes
v ∈ V −{v } do not. At each time step k, each node v transmits the
l j j
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‘token’’ (if it has the token, otherwise it performs no transmission)
ccording to the nonzero probability blj[k] it assigned to its outgoing

edges mlj[k]. The probability PDun

DTi
that the token is at node vi after

Dun time steps satisfies
lDun

DTi ≥ (1 + D+

max)
−(lDun) > 0,

here l is the time window defined in Assumption A2 (for which the
nion graph Gtm,...,tm+1−1

d is equal to the nominal digraph Gd which is
trongly connected), and D+

max is the maximum out-degree of every
ode in the nominal digraph Gd.

We now present the following theorem in which we calculate
he number of time steps required by Algorithm 1 in order to
uarantee convergence according to a given probability p0.

heorem 1. Consider a sequence of digraphs Gd[k] = (V, E[k]),
= 0, 1, 2, . . ., with n = |V| nodes, m[k] = |E[k]| edges so that
ssumptions A1, A2 hold for Gd[k] over all k. Every node vj ∈ V

has the variables zj[0] = 1 and yj[0] ∈ Z at time step k = 0,
and it follows the Initialization and Iteration steps as described in
Algorithm 1. For any probability p0, where 0 < p0 < 1, there exists
k0 ∈ Z+ (or more precisely k0(p0)), so that with probability at least
p0 we have

(qsj [k] = ⌊q⌋ for k ≥ k0) or (qsj [k] = ⌈q⌉ for k ≥ k0),

for every vj ∈ V , where q fulfills (1). The number of required time
steps for convergence k0 depends on the network size and structure,
and the nodes initial states, and is equal to (yinit + n)τ lDun, where

yinit =

∑
{vj∈V:yj[0]>⌈q⌉}

(yj[0] − ⌈q⌉) +

∑
{vj∈V:yj[0]<⌊q⌋}

(⌊q⌋ − yj[0]), (6)

and τ , l,Dun are parameters of the network structure.

Proof. In this proof we compute a bound on the required time
steps as a function of the probability of achieving the consen-
sus state. The calculated bound on the required time steps and
the probability of achieving the consensus state depend on the
network structure and the initial state of every node.

The operation of Algorithm 1 can be interpreted as the ‘‘ran-
dom walk’’ of n ‘‘tokens’’ in a dynamic (inhomogeneous) Markov
chain (i.e., interconnections change over time) with n = |V|

states. Each node vj at time step k = 0 holds two ‘‘tokens", T ins
j

(which is stationary) and T out
j (which performs a random walk),

and they each contain a pair of values yinsj [k], z insj [k], and youtj [k],
zoutj [k], respectively, for which it holds that yinsj [0] = youtj [0] =

yj[0] ∈ Z and z insj [0] = zoutj [0] = z[0] = 1. At each time
step k, each node vj keeps the token T ins

j (i.e., it never transmits
it) while it transmits the token T out

j , according to the nonzero
probability blj[k] it assigned to its outgoing edges mlj[k] during
time step k. If vj receives one or more tokens T out

i from its in-
neighbors the values youti [k] and yinsj [k] become equal (or with
maximum difference equal to 1); then vj transmits each received
token T out

i to a randomly selected out-neighbor according to the
nonzero probability blj[k]. Note here that during the operation of
Algorithm 1 we have

n∑
j=1

youtj [k] +

n∑
j=1

yinsj [k] = 2
n∑

j=1

yj[0], ∀k ∈ Z+, (7)

(i.e., the sum of the yj[k] values of the tokens at any given k is
equal to twice the initial sum).

Let us now define

Y [k] = Y [k] + Y [k], (8)
1 2

7

where

Y1[k] =

∑
{vj∈V:⌈yj[k]/zj[k]⌉>⌈q⌉}

(⌈yj[k]/zj[k]⌉ − ⌈q⌉), (9)

and

Y2[k] =

∑
{vj∈V:⌊yj[k]/zj[k]⌋<⌊q⌋}

(⌊q⌋ − ⌊yj[k]/zj[k]⌋), (10)

where q satisfies (1). We have that Y1[k], Y2[k] denote the sum of
the differences between the values y[k] and ⌈q⌉ of the tokens that
have a y value higher than the ceiling of the real average ⌈q⌉, and
the sum of the differences between the values y[k] and ⌊q⌋ of the
tokens that have y value less than the floor of the real average
⌊q⌋, respectively. From Iteration Steps 2.3 and 2.4, we have that
if two (or more) ‘‘tokens’’ T out

i , T out
l (where vi, vl ∈ V) meet at the

same node vj with token T ins
j during time step k, then their values

y[k] become equal (or with maximum difference equal to 1). For
the scenario ⌈q⌉ > ⌊q⌋, we have at time step k (note that similar
arguments hold also for ⌈q⌉ = ⌊q⌋):

Case (i): If Y1[k] > 0 and a token which has y[k] > ⌈q⌉ meets
with a token that has y[k] ≤ ⌊q⌋ then we have Y1[k + 1] ≤

Y1[k] − 1.
Case (ii): If Y2[k] > 0 and a token which has y[k] < ⌊q⌋ meets

with a token that has y[k] ≥ ⌈q⌉ then we have Y2[k + 1] ≤

Y2[k] − 1.
Case (iii): If Y1[k] > 0 and Y2[k] > 0 and a token which has

y[k] > ⌈q⌉ meets with a token that has y[k] < ⌊q⌋ then we have
Y1[k + 1] ≤ Y1[k] − 1 and Y2[k + 1] ≤ Y2[k] − 1.

Note that for the scenario ⌈q⌉ = ⌊q⌋ we have that only
Case (iii) above holds. Case (i) and Case (ii) do not hold since the
difference between the values y[k] of the tokens that meet might
be equal to unity, which means that the values of Y1[k] and Y2[k]
will not decrease.

Clearly, we have

0 ≤ Y [k + 1] ≤ Y [k] ≤ yinit ,

for all time steps k, where yinit fulfills (6) (i.e., yinit is the total
initial state error). This means that if cases (i), (ii), (iii) hold yinit
times, the value of Y becomes equal to zero (where Y is defined
in (8)). As a result, for every token the values y become equal or
have difference equal to one (recall that, during the operation of
Algorithm 1, we also have that (7) holds for every k).

In this proof, we consider and analyze the probability that a
specific token, with value youti , visits a specific node vj, with token
value yinsj , in the network after a finite number of time steps and
obtains equal values (or with maximum difference between them
equal to 1) with the token yinsj , where for tokens T out

i and T ins
j it

holds (i) youtλ ≥ ⌈q⌉, yinsi < ⌊q⌋, or (ii) youtλ > ⌈q⌉, yinsi ≤ ⌊q⌋, or (iii)
youtλ < ⌊q⌋, yinsi ≥ ⌈q⌉, or (iv) youtλ ≤ ⌊q⌋, yinsi > ⌈q⌉. We show that
(i) ∃k′

0 ∈ Z+ for which with probability at least p0, it holds that
Y1[k] = 0 and Y2[k] = 0 for every k ≥ k′

0, and (ii) ∃k0 ∈ Z+ for
which (2) holds with probability at least p0, for every k ≥ k0. This
means that after a finite number of time steps k0 the value y[k]
of every token is equal either to ⌊q⌋ or to ⌈q⌉, and for the state
variable qsj [k] of every node vj we have qsj [k] = ⌊q⌋ or qsj [k] = ⌈q⌉,
respectively.

Let us consider tokens T out
λ and T ins

i for which it holds
|youtλ − yinsi | > 1. During the operation of Algorithm 1, n ‘‘tokens’’
perform independent random walks over a dynamic digraph Gd[k].
Since blj[k] ≥ (1 + D+

max)
−1 (where D+

max is defined in Lemma 1)
and assumptions A1, A2 hold for Gd[k] during all k, we have that
the probability P lDun

DTout that ‘‘the specific token T out
λ is at node vi

after lDun time steps’’ is

P lDun
≥ (1 + D+ )−(lDun) > 0. (11)
DTout max
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his is mainly due to the fact that every l time steps, each edge is
ctive for at least one time step. Since the nominal digraph Gd is
trongly connected, it has a path of length at most Dun from each
ode vℓ to each node vi. Thus, at the first l steps, we can select
he first edge in this path (at the instant when it is active) and use
elf loops at the remaining instants; during the next l time steps,
e can select the second edge on this path and use self loops at
he remaining instants; and so forth.

From (11) we have that the probability P lDun

N_DTout that ‘‘the
pecific token T out

λ is not at node vi after lDun time steps’’ is
lDun

N_DTout ≤ 1 − (1 + D+

max)
−(lDun). (12)

y extending this analysis, we choose ε (where 0 < ε < 1) for
hich it holds that

≤ 1 − 2
log2 p0
yinit+n . (13)

e can state that for ε which fulfills (13) and after τ lDun time
steps where

τ ≥

⌈ log ε

log (1 − (1 + D+
max)−(lDun))

⌉
, (14)

he probability Pτ
N_DTout that ‘‘the specific token T out

λ has not visited
ode vi after τ lDun time steps’’ is
τ
N_DTout ≤ [P lDun

N_Tout ]
τ

≤ ε. (15)

his means that after τ lDun time steps, where τ fulfills (14), the
robability that ‘‘the specific token T out

λ has visited node vi after
lDun time steps’’ is equal to 1 − ε.
As a result, after τ lDun time steps, where τ fulfills (14), we

ave that if Y1[k] > 0 and/or Y2[k] > 0 at time step k, then it
olds that Y1[k+τ lDun

] ≤ Y1[k]−1 and/or Y2[k+τ lDun
] ≤ Y2[k]−1

with probability 1 − ε. By extending this analysis, we have that
for k ≥ yinitτ lDun time steps, where yinit is given by (6), we have
Y [k] = 0 with probability (1− ε)y

init
. Since ε fulfills (13), we have

that it holds (1 − ε)y
init

≥ p0. Therefore, for k ≥ yinitτ lDun, we
ave that the value y[k] of every token is equal to either ⌊q⌋ or
q⌉ with probability at least p0. Since (7) holds, for k ≥ yinitτ lDun

e have

youtj [k]/zoutj [k]⌋ = ⌊q⌋ or ⌈youtj [k]/zoutj [k]⌉ = ⌈q⌉, (16)

nd

yinsj [k]/z insj [k]⌋ = ⌊q⌋ or ⌈yinsj [k]/z insj [k]⌉ = ⌈q⌉, (17)

or every vj ∈ V with probability at least p0. Furthermore, we
ave that for k ≥ yinitτ lDun it holds

|{T ins
j , vj ∈ V|yinsj [k] = ⌊q⌋}| +

{T out
j , vj ∈ V|youtj [k] = ⌊q⌋}| = 2n − 2R (18)

ith probability at least p0, where |{T ins
j , vj ∈ V|yinsj [k] = ⌊q⌋}| is

he cardinality of the set of tokens T ins
j which have yinsj value equal

o ⌊q⌋, |{T out
j , vj ∈ V|youtj [k] = ⌊q⌋}| is the cardinality of the set of

okens T out
j which have youtj value equal to ⌊q⌋ and R is defined in

3). This means that the number of tokens with yj value equal to
q⌋ is 2n − 2R.
Let us consider now the following two cases

(1) 2n − 2R ≥ n (or R < n/2),
(2) 2n − 2R < n (or R > n/2),

here n is the number of nodes and R is defined in (3).
For the first case, we have that the number of tokens which

ave value equal to ⌊q⌋ is greater than (or equal to) the number of
odes. This means that by executing Algorithm 1 for an additional
umber of nτ lDun time steps, where τ fulfills (14), we have that
8

very node will receive at least one token with value ⌊q⌋ with
robability (1−ε)n, where ε fulfills (13). [The reason is that during

the first τ lDun steps, one of the tokens with value ⌊q⌋ will reach
node v1 with probability 1−ε; during the second τ lDun steps, one
f the tokens with value ⌊q⌋ will reach node v2 with probability
− ε, and so on. During the last τ lDun steps, one of the tokens
ith value ⌊q⌋ will reach node vn with probability 1 − ε.] From

teration Steps 2.3 and 2.4 of Algorithm 1 we have that if node vj
eceives a token with value ⌊q⌋, then the value of its yinsj token
ecomes equal to ⌊q⌋ which means that also the value of its state
ariable qsj becomes equal to ⌊q⌋. As a result, since 2n − 2R ≥ n,
or k ≥ (yinit + n)τ lDun, where yinit fulfills (6) and τ fulfills (14),
e have
ins
j [k] = ⌊q⌋, for every vj ∈ V,

nd
s
j [k] = ⌊q⌋, for every vj ∈ V,

ith probability (1 − ε)(y
init

+n). Since ε fulfills (13), we have that
t holds (1 − ε)(y

init
+n)

≥ p0.
For the second case, the number of tokens which have value

qual to ⌊q⌋ is less than the number of nodes. Identically to the
irst case, by executing Algorithm 1 for an additional number of
τ lDun time steps, where τ fulfills (14), for k ≥ (yinit +n)τ lDun we
ave with probability (1 − ε)(y

init
+n) (where (1 − ε)(y

init
+n)

≥ p0)
hat
ins
j [k] = ⌊q⌋ and qsj [k] = ⌊q⌋, for every vj ∈ V ′,

here V ′
⊂ V and |V ′

| = 2n − 2R, and
ins
j [k] = ⌈q⌉ and qsj [k] = ⌈q⌉, for every vj ∈ V ′′,

here V ′′
⊂ V and |V ′′

| = 2R − n.
As a result, during the operation of Algorithm 1, for k ≥ (yinit +

)τ lDun we have
s
j [k] = ⌊q⌋ or qsj [k] = ⌈q⌉,

or every vj ∈ V , with probability at least p0, (i.e., since ε fulfills
13), we have that (1 − ε)(y

init
+n)

≥ p0). □

emark 3. Note that during the operation of Algorithm 1 if we
dopt the set of assumptions A1, A2 for Gd[k] during every k, then
11) becomes
lDun

DTi ≥ [pθmin (1 + D+

max)]
−(lDun) > 0, (19)

where pθmin = minθ∈{1,2,...,M} pθ > 0. Since each digraph Gdθ
, for

θ ∈ {1, 2, . . . ,M}, is selected in an i.i.d. manner with probability
pθ ≥ pθmin and the union graph is strongly connected, we can first
select a topology that includes the first edge on the path from
node vℓ to node vi (at least one such topology exists), then select
a topology that includes the second edge on the path from node
vℓ to node vi (at least one such topology exists), and so forth (with
self loops included if necessary). Then, (11) is replaced by (19) and
the structure of the proof remains the same.

It is important to note here that Algorithm 1 converges in
finite time in the presence of a dynamic digraph. Compared
to Rikos and Hadjicostis (2020), the main difference is an increase
on the required number of time steps for convergence (which will
be shown explicitly in the next section). However, in practical
applications, there is also a possible increase in processor usage
at each node (due to the calculation of the nonzero probabilities
blj[k] for each of its outgoing edges mlj[k] during each time step
k in Iteration Step 1 of Algorithm 1) and a possible increase on
the required number of transmissions for convergence. Analysis
of the requirements on processor usage and the number of trans-
missions will be considered in the future in order to highlight the
proposed algorithm’s operational advantages.
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. Simulation results

In this section, we illustrate the behavior and the advantages
f Algorithm 1 for the following scenarios.
A. We execute Algorithm 1 (i) over a randomly chosen static

igraph of 10 nodes, and (ii) a dynamic digraph of 10 nodes
hose union graph is equal to the nominal digraph of the first
ase after l = 5 time steps (note that in the second case, we adopt
the set of assumptions A1, A2). The initial quantized states of the
nodes were randomly chosen between 1 and 50 (for each node,
the initial state was a randomly chosen integer value between 1

and 50 with probability
1
50

) with the average of the initial states

of the nodes turning out to be q =
368
10

= 36.8 which means that
⌊q⌋ = 36 and ⌈q⌉ = 37.

B. We compare the performance of Algorithm 1 against exist-
ing algorithms over static strongly connected directed networks.
Specifically, we show the average number of time steps needed
for quantized average consensus to be reached over 1000 ran-
domly generated static digraphs of 20 nodes each. The initial
quantized states of the nodes were also randomly chosen be-
tween 1 and 50 with the average of the initial states of the

nodes turning out to be q =
388
20

= 19.4 (for convenience, the
initial quantized state of each node remained the same for each
one of the 1000 randomly generated digraphs). We compare the
performance of Algorithm 1 against nine other algorithms: (a)
the distributed averaging algorithm with quantized communica-
tion presented in Rikos and Hadjicostis (2020) in which, at each
time step k, each agent splits its mass variables in equal pieces
and then transmits all of the pieces to randomly chosen out-
neighbors; (b) the distributed averaging algorithm with quan-
tized communication presented in Rikos and Hadjicostis (2021)
in which, at each time step k, each agent sends its mass variables
towards an out-neighbor chosen according to a priority in the
form of a quantized fraction; (c) the distributed averaging algo-
rithm with quantized communication presented in Chamie et al.
(2016) in which, at each time step k, each agent vj broadcasts a
quantized version of its own state towards its out-neighbors; (d)
the quantized asymmetric averaging algorithm presented in Cai
and Ishii (2011) in which, at each time step k, one edge, say
edge (vℓ, vj), is selected at random and node vj sends its state
information and surplus to node vℓ, which performs updates
over its own state and surplus values; (e) the quantized gossip
algorithm presented in Kashyap et al. (2007) in which, at each
time step k, one edge is selected at random, independently from
earlier instants, and the states of the nodes that the selected
edge is incident upon are updated; (f) the deterministic algorithm
in Aysal et al. (2008) where nodes use probabilistic quantization
and operate over an undirected connected communication topol-
ogy2; (g) the distributed algorithm in Frasca et al. (2009) where
each node stores real values and transmits quantized values with
refined quantization step, and the exact average is calculated
asymptotically; (h) the algorithm in Carli et al. (2010) where
nodes store real values, transmit quantized values and commu-
nicate in a gossip fashion; (i) the algorithm in Dibaji et al. (2017)
where nodes quantize their states in a probabilistic manner and
consensus is reached (which may not be equal to the average).

2 The algorithms in Aysal et al. (2008) and Kashyap et al. (2007) require the
nderlying graph to be undirected. For this reason, in Fig. 4, for Aysal et al.
2008) and Kashyap et al. (2007), we make the randomly generated underlying
igraphs undirected (by enforcing that if (vj, vi) ∈ E then also (vi, vj) ∈ E) while,
or the algorithms in Cai and Ishii (2011), Carli et al. (2010), Chamie et al. (2016),
ibaji et al. (2017), Frasca et al. (2009) and Rikos and Hadjicostis (2020, 2021),
he randomly generated underlying graph is generally directed.
9

Fig. 3. Execution of Algorithm 1 over a randomly chosen static digraph of 10
nodes (top) and a dynamic digraph of 10 nodes (bottom).

Fig. 3 shows the operation of Algorithm 1 over a randomly
hosen static digraph of 10 nodes and over a dynamic digraph
f 10 nodes whose union is equal to the nominal digraph after
= 5 time steps (i.e., assumptions A1, A2 hold). The initial values

are the same in both cases and the average of the initial states

of the nodes is equal to q =
368
10

= 36.8. On the top of Fig. 3
e can see that every node is able to reach quantized average
onsensus after 10 time steps and the states of the nodes stabilize
o either ⌊q⌋ = 36 or ⌈q⌉ = 37 after 15 time steps. At the
ottom of Fig. 3 we can see that Algorithm 1 requires more steps
o converge due to the dynamic nature of the communication
opology (since the union graph of the dynamic digraph is equal
o the nominal digraph after l = 5 time steps) and each node’s
tate is able to stabilize either to ⌊q⌋ = 36 or to ⌈q⌉ = 37
fter 47 time steps. This makes Algorithm 1 the first algorithm
n the literature to achieve oscillation-free quantized average
onsensus after a finite number of time steps over a dynamic
igraph without any network requirements, since (i) in Cai and
shii (2011) the calculation of the quantized average relies on
static threshold that depends on the number of nodes in the
etwork; (ii) in Chamie et al. (2016) the operation requires a
et of weights over the links of the dynamic digraph that form
doubly stochastic matrix, which need to be recalculated again
uring each time step (see Gharesifard & Cortés, 2012; Rikos,
haralambous, & Hadjicostis, 2014) while the states of the nodes
xhibit an oscillating behavior; and (iii) in Kashyap et al. (2007)
he operation requires bidirectional communication (i.e., undi-
ected graph) and the states of the nodes also exhibit oscillating
ehavior.
Fig. 4 shows the average number of time steps needed for

uantized average consensus to be reached over 1000 randomly
enerated digraphs of 20 nodes each, in which the average of

he nodes initial states is equal to q =
388
20

= 19.4. In Fig. 4

we can see that Algorithm 1 is among the fastest algorithms in
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Fig. 4. Comparison between Algorithm 1 (A), the distributed averaging algorithm with quantized communication in Rikos and Hadjicostis (2020) (B), the distributed
averaging algorithm with quantized communication in Rikos and Hadjicostis (2021) (C), the quantized gossip algorithm in Kashyap et al. (2007) (D), the deterministic
algorithm in Aysal et al. (2008) (undirected graph) (E), the distributed algorithm in Frasca et al. (2009) (F), the distributed algorithm in Carli et al. (2010) (G), the
quantized asymmetric averaging algorithm in Cai and Ishii (2011) (H), the distributed averaging algorithm with quantized communication in Chamie et al. (2016) (I),
and the distributed algorithm in Dibaji et al. (2017) (undirected graph) (J), averaged over 1000 randomly generated strongly connected digraphs of 20 nodes each.
the current literature for the case where it operates over static
communication networks. Its convergence speed is almost equal
to that in Chamie et al. (2016), Frasca et al. (2009) and Aysal et al.
(2008), with the difference, however, being that every node’s
state is able to stabilize either to ⌊q⌋ = 19 or ⌈q⌉ = 20 rather than
oscillate between these states. Specifically, during Algorithm 1
(see (A)) each node’s state becomes equal to ⌊q⌋ = 19. How-
ever, we have (i) for the algorithms in Rikos and Hadjicostis
(2020) and Chamie et al. (2016), the state of each node does
not become equal to a specific value due to oscillations between
⌊q⌋ = 19 or ⌈q⌉ = 20; (ii) in Dibaji et al. (2017) the nodes
achieve consensus, which may not be the average of the initial
states. Furthermore, Algorithm 1 has no prerequisites regarding
the underlying communication topology (e.g., there is no need
10
to obtain a set of weights that form a doubly stochastic matrix
Aysal et al., 2008; Chamie et al., 2016; Frasca et al., 2009). This
means that Algorithm 1 is among the fastest algorithms in the
literature and also it (i) does not have prerequisites regarding the
underlying communication topology (Aysal et al., 2008; Chamie
et al., 2016; Frasca et al., 2009), (ii) does not oscillate between the
ceiling and the floor of the real average of the initial states (Rikos
& Hadjicostis, 2020), and (iii) is able to calculate the average of
the initial states (Dibaji et al., 2017).

Fig. 5 considers the same experiments as Fig. 4, but plots the
distance from average q in (1) defined as

e[k] =

⌊ √∑
(A(j))2

⌋
, (20)
vj∈V
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Fig. 5. Distance from Average e[k] defined in (20) for Algorithm 1 (A), the
istributed averaging algorithm with quantized communication in Rikos and
adjicostis (2020) (B), the distributed averaging algorithm with quantized com-
unication in Rikos and Hadjicostis (2021) (C), the quantized gossip algorithm

n Kashyap et al. (2007) (D), the deterministic algorithm in Aysal et al. (2008)
undirected graph) (E), the distributed algorithm in Frasca et al. (2009) (F),
he distributed algorithm in Carli et al. (2010) (G), the quantized asymmetric
veraging algorithm in Cai and Ishii (2011) (H), the distributed averaging
lgorithm with quantized communication in Chamie et al. (2016) (I), and the
istributed algorithm in Dibaji et al. (2017) (undirected graph) (J), averaged over
000 randomly generated strongly connected digraphs of 20 nodes each.

here

(j) = max(qj[k] − ⌈q⌉, 0) + max(⌊q⌋ − qj[k], 0).

Note here that in e[k] we use the floor operation because we
assume that if the difference of the state of a node with the true
average q is less than 1, then this node has converged to the
average. In Fig. 5, we can see that Algorithm 1 requires the same
number of time steps as Chamie et al. (2016). Also, Algorithm 1
requires a few more steps than Aysal et al. (2008), Frasca et al.
(2009), Rikos and Hadjicostis (2020). However, as mentioned
previously, Algorithm 1 does not need a set of weights over the
digraph links that form a doubly stochastic matrix (Aysal et al.,
2008; Chamie et al., 2016; Frasca et al., 2009), and does not oscil-
late between the ceiling and the floor of the real average (Chamie
et al., 2016; Rikos & Hadjicostis, 2020).

Table 2 shows the average number of transmissions required
for convergence of the algorithms presented in Fig. 5. Specifically,
the number of transmissions are averaged over 1000 randomly
generated static digraphs of 20 nodes each, in which the average

of the nodes initial states is equal to q =
510
20

= 25.5. Note
ere that in Table 2 we count the number of nodes performing
ransmissions until the state of every node is equal either to
he ceiling or the floor of the quantized average of the ini-
ial values. In Table 2, we can see that Rikos and Hadjicostis
2020) require the least number of transmissions for convergence.
owever, the operation of Algorithm 1 over static digraphs, re-
uires almost the same number of transmissions as Chamie et al.
2016) and Kashyap et al. (2007), and a few more transmis-
ions than Carli et al. (2010), Dibaji et al. (2017) and Rikos and
adjicostis (2021).
11
Table 2
Average Number of Transmissions During Operation of Algo-
rithm 1 (A), the distributed averaging algorithm with quantized
communication in Rikos and Hadjicostis (2020) (B), the dis-
tributed averaging algorithm with quantized communication
in Rikos and Hadjicostis (2021) (C), the quantized gossip algo-
rithm in Kashyap et al. (2007) (D), the deterministic algorithm
in Aysal et al. (2008) (undirected graph) (E), the distributed
algorithm in Frasca et al. (2009) (F), the distributed algorithm
in Carli et al. (2010) (G), the quantized asymmetric averaging
algorithm in Cai and Ishii (2011) (H), the distributed averaging
algorithm with quantized communication in Chamie et al.
(2016) (I), and the distributed algorithm in Dibaji et al. (2017)
(undirected graph) (J), averaged over 1000 randomly generated
strongly connected digraphs of 20 nodes each.
Algorithm N. Tr.

(A) 211.88
(B) 89.52
(C) 131.28
(D) 218.48
(E) 713.11
(F) 525.52
(G) 147.14
(H) 383.41
(I) 221.34
(J) 180.85

Remark 4. Algorithm 1 possesses attractive features for
consensus-based distributed optimization. Apart from operating
with quantized states which reduces the communication bot-
tleneck (Reisizadeh et al., 2020; Shlezinger et al., 2020), it also
allows for fast distributed averaging, which makes it suitable as
an intermediate step between optimization operations (Gram-
menos et al., 2020; Khatana & Salapaka, 2020). In the latter
case, the convergence speed of the averaging algorithm plays a
significant role for the overall convergence speed of the opti-
mization procedure (as we saw in this section, the convergence
speed of Algorithm 1 significantly outperforms other algorithms
in the available literature for the case where the communication
topology is static). Specifically, the convergence speed of Algo-
rithm 1 over static networks plays an important role in Rikos et al.
(2021). In this paper a set of server nodes operates over a large
scale network, i.e., a data center. Server nodes aim to balance
their CPU utilization by deciding how to allocate CPU resources
to workloads in a distributed fashion. The optimal allocation
algorithm in Rikos et al. (2021) relies on Algorithm 1 to achieve
fast convergence and also to calculate the optimal scheduling in
finite time with quantized (i.e., efficient) communication. In this
case, Algorithm 1 achieves finite time convergence after 15 − 20
time steps for large scale networks consisting of 10 000 nodes
(see Fig. 2 in Rikos et al., 2021). The fast convergence speed
and finite time convergence of Algorithm 1 is also significant
for the operation of the test allocation algorithm in Nylof et al.
(2022). In this paper, a set of cities (or separate entities) in a
country aim to optimally allocate tests according to infections
for monitoring the spread of a pandemic. The optimal allocation
is also done in a privacy-preserving manner (since the number
of infections and stored test kits contain sensitive health data).
The test allocation algorithm in Nylof et al. (2022) is based
on a variation of Algorithm 1 in which a privacy preserving
mechanism is incorporated. This variation of Algorithm 1 is able
to calculate the optimal allocation in finite time with quantized
(i.e., efficient) communication and processing while it preserves
the privacy of the state of every node from other possibly curious
nodes. In this case, the operation of the variation of Algorithm 1
achieves finite time convergence after 10 − 50 time steps for
large scale networks consisting of 100 nodes (see Fig. 3 in Nylof
et al., 2022). Finally, note that Algorithm 1 can also find various
applications on load balancing and voting schemes. In these cases



A.I. Rikos, C.N. Hadjicostis and K.H. Johansson Automatica 146 (2022) 110621

e
a
a
d

6

o
s
p
b
o
e
o
w
d
j
a
a
s
i

r
p
d

R

A

A

R

R

R

R

ach node needs to calculate a specific state and the oscillation
voiding characteristic of Algorithm 1 facilitates convergence to
specific state rather than leading to oscillations between two
ifferent states/decisions.

. Conclusions

We have considered the quantized average consensus problem
ver dynamically changing communication networks. We pre-
ented a randomized distributed averaging algorithm in which
rocessing, storing and exchange of information between neigh-
oring agents is subject to uniform quantization. We analyzed its
peration, established its correctness and showed that it allows
very agent to reach a consensus state equal to either the ceiling
r the floor of the real average (thus avoiding oscillating behavior)
ithout any specific requirements regarding the network that
escribes the underlying communication topology, apart from
ointly strong connectivity. We analyzed the convergence of our
lgorithm and showed that it almost surely converges to the
verage of the initial states in finite time. Furthermore, we pre-
ented simulation results and argued that its convergence speed
s among the fastest in the available literature.

In the future we plan to explore the performance of Algo-
ithm 1 in the presence of network unreliability (e.g., delays and
acket drops). Furthermore, we plan to utilize our algorithm for
esigning consensus-based distributed optimization algorithms.
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