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Abstract: This paper studies an optimal decision fusion problem with a group of human decision makers
when an order effect is present. The order effect refers to situations wherein the process of decision
making by a human is affected by the order of decisions. In our set-up, all human decision makers,
called observers, receive the same data which is generated by a common but unknown hypothesis. Then,
each observer independently generates a sequence of decisions which are modeled by employing non-
commutative probabilistic models of the data and their relation to the unknown hypothesis. The use
of non-commutative probability models is motivated by recent psychological studies which indicate
that these non-commutative probability models are more suitable for capturing the order effect in
human decision making, compared with the classical probability model. A central decision maker
(CDM) receives (possibly a subset of) the observers’ decisions and decides on the true hypothesis. The
considered problem becomes an optimal decision fusion problem with observations modeled using a
non-commutative (Von Neumann) probability model. The structure of the optimal decision rule at the
CDM is studied under two scenarios. In the first scenario, the CDM receives the entire history of the
observers’ decisions whereas in the second scenario, the CDM receives only the last decision of each
observer. The perfromance of the optimal fusion rule is numerically evaluated and compared with the
optimal fusion rule derived when using a classical probability model.
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1. INTRODUCTION

motivates us to study the optimal decision fusion algorithm in
a hypothesis testing problem with multiple human observers
when the order effect is present. To further clarify the order
effect in human judgment, we present the following two well-
known examples from the psychology literature.

1.1 Motivation

Human intelligence is widely employed in crowd-based hy-
pothesis testing problems, e.g., in crowd-sourcing applications
such as Amazon Mechanical Turk. In these applications, a
group of human beings receive common data related to an
unknown hypothesis, and independently generate decisions (re-
garding the validity or not of the hypothesis) based on these
received data. Then, a fusion algorithm is used to combine
the observers’ decisions and form a reliable outcome for the
hypothesis testing problem. The performance of this framework
depends on: (%) the decision fusion algorithm, (¢¢) the models
of the behavior of human decision makers, hereafter called
observers. Decision fusion algorithms are typically designed
based on simple probabilistic models of the observer’s behav-
ior, e.g., see Ok et al. (2016).

The first example is the primacy-recency effect in a medical
inference task studied in Bergus et al. (1998). In this study, 315
physicians were asked to diagnose the existence of a certain
disease in a patient based on the patient’s history and physical
examination along with the clinical test data. The physicians
were divided into two groups. In one group, the physicians first
received the patient’s history whereas in the other group the
physicians first received the examination and clinical test data.
The authors found that the probability of correct diagnostic is
substantially different among the two groups, signifying the
order effect in the associated human decision making.

The second example examines the order effect in a jury task
studied in Trueblood and Busemeyer (2011) using multiple
experiments. In one experiment, 299 university students were
asked to serve as jurors for a hypothetical criminal trial where
they were presented with a prosecution and a defense. Then,
they were asked whether the defendant is guilty or not. The
authors varied the order and strength of the prosecution and
the defense among participants. The statistical analysis of this
experiment shows that the participants’ decisions depend on the
order in which the prosecution and defense were presented. The

However, recent psychological studies show that
non-commutative probability models may be more suitable,
compared with classical probability models, for explaining the
human judgment process, for example when the order effect is
present, see Busemeyer et al. (2015) and references therein. The
order effect implies that the order, in which the judgments are
made, influences our decision making process. This is due to
the fact that making a judgment influences our cognition system

which in turn influences our next judgment. This observation
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authors also studied the perfromance of the (non-commutative)
Von Neumann probability model in capturing the order effect in
the above experiments as well as other experiments including
the jury task experiments in McKenzie et al. (2002). Their
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results show that the Von Neumann probability model provides
a better fit to the empirical data when the order effect is present,
compared with several classical models including the belief
adjustment and the minimum acceptable strength models.

Motivated by these results, in the current paper, the decision
making process by human observers is modeled using the
Von Neumann probability model. Intuitively, this model can
be viewed as a stochastic belief evolution model wherein the
current belief of a decision maker affects her decision, then her
belief is updated based on her current and past decisions.

1.2 Order Effect in Von Neumann Probability Model

The order effect is a key distinguishing point between non-
commutative probability models and the classical probability
model developed by Andrey Kolmogorov. More precisely, in
the classical model, the order in which two random variables are
generated does not affect their joint distribution since classical
distributions operate on measurable sets using set operations.
These operations form a (commutative) Boolean algebra. How-
ever, the joint distribution of two (sequentially generated) ran-
dom variables employing non-commutative probability models
depends on their generation order. To pictorially illustrate this
point, let X and Y denote two random variables which are
generated sequentially using the Von Neumann model and take
values in {1,2,3,4} (see next section for more details on the
Von Neumann model). Fig. 1(a) shows the trajectories of the
empirical probability of the event X = 1,Y = 2 under differ-
ent generation orders of X and Y. According to this figure,
the trajectories of the empirical probability converge to two
distinct values. This observation is in accordance with the fact
that the joint probability of the events depends on their order of
generation.

One may speculate that it is possible to utilize the notion
of conditional probability to express the statistical proper-
ties of X and Y using a pair of classical random vari-
ables. However, this approach violates Bayes’ law in classi-
cal probability. To numerically illustrate this point, we gen-
erated samples from the above example under different gen-
eration orders of X and Y. Then, we empirically estimated
Pr(Y =2|X =1)(Pr(X =1|Y =2)) using the samples in
which X (Y) was generated first. Fig. 1(b) shows the em-
pirical values of Pr(X =1]Y =2)Pr(Y =2) and that of
Pr(Y =2|X =1)Pr(X = 1) as a function of the number of
samples. As this figure shows, the classical probability model
constructed in this way violates Bayes’ law. Finally, it is worth
nothing that there does not exist a one-to-one correspondence,
from a Von Neumann model with dimension more than two to
the classical model, which satisfies certain desirable statistical
properties, e.g., conservation law (functional subordination),
see Section 1.4. and Proposition 1.4.1. in Holevo (2001).

“.

Remark 1. In the rest of the paper, we use “;” to denote the
order of generation of random variables, i.e, (X = 1;Y = 2)
implies Y is generated first.

Remark 2. We note that non-commutative probability models
are alternative frameworks to the classical model. They range
from the quantum probability model developed by John Von
Neumann, Von Neumann (1955), to the free probability, a
highly non-commutative model, developed by Dan Voiculescu,
Voiculescu et al. (1992). These models have a diverse applica-
tion domain, e.g., studying the physical interactions in atomic
scale, quantum communications Hayashi (2016) and character-
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Fig. 1. The empirical probability of the event X =
1 and ¥ = 2 in the Von Neumann probability
model for different generation orders (a), the em-
pirical estimates of Pr(X =1|Y =2)Pr(Y =2) and
Pr(Y =2|X=1)Pr(X =1) (b) as a function of the
number of samples.

izing the asymptotic behavior of eigenvalues of random matri-
ces Tao (2012). In this paper, by a “non-commutative” model
(e.g., in Fig. 1(a)), we refer to the Von Neumann model which
is usually applied to the micro-world.

1.3 Related Work

The optimal detection rule for a single quantum system has
been extensively investigated in the literature, e.g., see Holevo
(2001), Helstrom (1969) and Baras (1987). The error exponent
of the optimal decision rule, jointly performed on a number of
identical quantum systems, in the limit of large number of sys-
tems was studied in Nussbaum and Szkota (2009). The authors
in Baras et al. (1976) considered the problem of minimum vari-
ance filtering of a scalar signal from quantum mechanical mea-
surements and derived the necessary and sufficient conditions
for jointly optimal measurement operators and post-processing
matrices. These results were extended to vector valued signals
in Baras and Harger (1977) and Baras (1988). The interested
reader is refereed to Hayashi (2016) for a complete treatment
of asymptotics in quantum hypothesis testing problems.
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In the psychology literature, the Von Neumann model has been
used to explain the order effect in human decision making
experiments. We note that such connections were discussed in
a much earlier paper by Baras, Baras (1979). The authors in
Busemeyer and Wang (2017) considered two sequential deci-
sion making experiments. In the first experiment, the respon-
dents answered the same question sequentially, AA experiment,
whereas in the second experiment, they answered three ques-
tions wherein the first and the last questions were the same,
ABA experiment. The correlation analysis in Busemeyer and
Wang (2017) shows that the Von Neumann model is more
suitable for capturing the order effect compared with the clas-
sical model. The authors in Wang et al. (2014) proposed a
statistical quantity, named quantum question equality, to test the
suitability of the Von Neumann model for explaining the order
effect. Their empirical studies, using surveys and laboratory
experiments, supports the Von Neumann model for explaining
the order effect in human decision making experimental data.

The authors in Boyer-Kassem et al. (2016) proposed the notion
of the grand reciprocity as a statistical test to verify the suit-
ability of the Von Neumann model in describing order effect in
human decision making. Their empirical analysis shows that
degenerate Von Neumann models provide a better fit to the
experimental data. The paper Aerts and de Bianchi (2017) pro-
posed a model, called general tension reduction, to capture both
the order effect and response replicability in human decision
making process. The authors in Kellen et al. (2017) derived a
classical model to capture the order effect by introducing auxil-
iary random variables. However, these random variables are not
observable from empirical data, e.g., a binary random variable
which indicates whether the first decision of an observer affects
her second decision or not.

1.4 Contributions

In this paper, we study the optimal decision fusion problem
in a hypothesis testing problem with N human observers who
receive common data related to an unknown hypothesis. Then,
each observer independently generates a sequence of decisions.
To capture the order effect, the observers’ decisions are derived
based on the non-commutative Von Neumann model. A central
decision maker (CDM) receives possibly a subset of the ob-
servers’ decisions. The problem of optimal decision fusion at
the CDM is studied under two scenarios. In the first scenario,
the CDM has access to the entire history of the observers’ de-
cisions while in the second scenario, the CDM only has access
to the last decisions of the observers. The performance of the
optimal decision is numerically evaluated and compared with
the optimal fusion rule derived using the classical probability
model.

This paper is structured as follows. Next section describes
the considered hypothesis testing problem as well as the non-
commutative probability model for the decision making of
human observers. The optimal decision fusion rules at the CDM
are derived in Section 3. Our numerical results are presented in
Section 4 followed by the concluding remarks in Section 5. The
proofs are relegated to appendices to aid readability.

2. SYSTEM MODEL

Consider a hypothesis testing problem with L hypotheses and
N human observers. All observers are exposed to the same data

Phenomenon

~.

/

| Central Decision Maker |

H

Fig. 2. A hypothesis testing problem with N observers over T'
time steps.

which are related to one of the L hypotheses {Hy,---, Hp},
e.g., a picture. Let p; denote the occurrence probability of
hypothesis H;. Each observer makes 7" sequential decisions
according to the available data, e.g., she answers a set of
multiple choice questions related to the observed information.
In our set-up, a central decision maker (CDM) at time 7" + 1
receives the (possibly a subset of) observers’ decisions and
forms its estimate of the underlying hypothesis.

Let Wiy, = (Wi, -, W) denote the collection of the

observers’ decisions up to time k, where Wy, represents the
decisions of observer j up to time k. Two different decision
making scenarios are considered at the CDM. In the first
scenario, each observer generates a sequence of 1" decisions
and transmits its sequence of decisions to the CDM at time
T + 1. Thus, the CDM has access to W .7 at time T + 1.
Under the second scenario, each observer makes 1" decisions,
but only transmits her final decision to the CDM. That is, the
CDM receives W at time T 4 1 and does not have access to
the history of the decisions made by observers. The interaction
between the CDM and observers is pictorially depicted in Fig.
2.

2.1 Non-commutative Decision Making Model

The behavior of each observer under H; is modeled using the
finite dimensional Von Neumann probability model. In this
model, the density operator p, i € {1,---, L}, plays the role
of a classical probability distribution (or belief) (typically of the
state of a system or agent). The density operator p is an n x n,
positive definite Hermitian matrix with

Tr (pll) =1
where Tr (-) denotes the trace operator. In our set-up, p} repre-
sents the initial belief or a-priori bias of observers when they are

exposed to the observed (perceived) data related to hypothesis
H,.

The outcome of the decision making process of each observer
is modeled by a positive operator-valued measure (POVM). Let
Qr = {1, -, 1} encode the set of possible decisions of each
observer at time k and let M}, denote the POVM associated
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with the decision made at time k, i.e., My = { M (w)},cq,
consists of [, (n x n) Hermitian positive definite matrices with

> My (w) =1
wENy

where I is the identity matrix. Here, w represents a certain
decision made by an observer and M}, (w) is used to compute
the probability of the event w as it will be described in the next
paragraph.

We next explain how the probabilities of different events are
computed. Let wj, denote a decision of observer j at time k and
wj,,, denote a sequence of decisions of observer j from time 1

to k. We use p}, 11 (w{: k) to represent the belief of observer j
at time k + 1, i.e., the density operator associated with observer
j attime k + 1, under H;. The dependency of P§c+1 (w{k) on
w{ «. Teflects the fact that each observer is biased according to
her previous decisions. Given pj, (w{: k), the probability of

selecting w{c 41 € Qg4 attime k + 1 can be written as

Pr (W;ﬂﬂ = wiﬂ ‘P?Hl (w{k>> =

Tr (MkJrl (wi’—i—l) 1 (“ﬁ;k)) (D

The density operator pi, 41 (w{k> is computed recursively
according to
oy M () () M ()
b (wl) = ' @)
Pr+1 \ Wik i ; i
Tr (M, wk) P, (wi kq))

with

s (wls) = QLG 3)

Based on (2), the belief of the observer j at time k£ + 1 depends
on the entire history of her decisions. Moreover, her belief
affects her decision at time k + 1 according to (1). Thus, this
decision making model can be viewed as a stochastic non-
commutative belief evolution model.

2.2 Composite Systems

Assume that the decision making processes of observers are
independent of each other. Then, the joint behavior of observers
can be described by a composite system. Let H; denote the
composite system of N observers under the hypothesis H;.
Then, the density operator of H; at time &k can be written as
the following tensor product

pi (Wik-1) = Pk (win_1) @+~ @ pp (W)
and the measurement operator at time k is described by

wl €Qy V)
The POVM associated with the joint outcome
wi = (wp,-+ ,wp) is denoted by My, (wy,) = My, (w},) ®

ce @ My, (w]).

3. MAIN RESULTS

In this section, we study the structure of the optimal decision
fusion rule when (a) the CDM receives the entire history of the
observers’ decisions and (b) when it receives the last decisions
of observers. We start by presenting the optimal decision fusion
rule when the entire history is available at the CDM.

3.1 Optimal Decision Using The Entire History of Decisions

In this subsection, we first derive the structure of the optimal de-
cision fusion rule at the CDM. To this end, consider the random-
ized decision rule in which, given W 1.7 = w;.7, the CDM se-
lects H; with probability ¢; (w1.7) where ZiLzl t; (wy.r) =1
forallwy.r € QY x---x QN . Let Pr (C) denote the probability
of correct decision at the CDM. Then, Pr (C) can be written as

Pr(C) =E[Pr(C|Wyr)]

L
Z th’ (wy.r) Pr(Wir = wir |H;)pi
wi.T 1=1
Note that Pr (C') is a function of the ¢; (-)’s. Thus, the optimal
decision fusion rule at the CDM, which maximizes Pr (C), is
the solution of the following optimization problem

L
Z th‘ (wi.r) Pr(Waipr = war [H; ) i

LWLT wyp =1

max

{ti(wr.r)}

L
> ti(wir) =1, Vwir
=1

0 <t;(wyr)
This optimization problem can be written as a set of decoupled
optimization problems. Thus, solving the above optimization
problem is equivalent to solving the following optimization
problem

v7:711]1:T

L
max)} Zti (wi.) Pr (Wip = wir [H;) s

{ti(wi.7)},; i1

L
Z ti (wyr) =1
i—1

0 § ti (’wl;T) VZ

for each wy.r € QF x .-+ x Q. It can be easily shown
that the solution of the above optimization problem is given by
ti (wl;T) =1ifi= arg maxipiPr (Wl:T = Ww1.T |Hz)

Next lemma formally states the structure of the optimal deci-
sion fusion law at the CDM.

Lemma 1. Consider the decision fusion problem at the CDM
with the entire history of decisions. Then, the optimal fusion
rule is given by the solution of the following optimization
problem

arg max p;Pr (Wi.r = wi.r [H;)
(]

According to Lemma 1 the optimal decision fusion rule based
on the entire history of decision, i.e., wy.T, is to select the hy-
pothesis with maximum likelihood of occurrence given w;.p.
To solve the optimization problem above, we need to compute
the joint probability of the event W . = wq.r given H; for
all 4.
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In the next lemma, a formula is derived for computing
Pr(Wip = wir |H;).
Lemma 2. The conditional probability of observing wi.7 un-
der H, is given by

Pr(Wipr =wir |H;)

= ﬁ l_T[ Tr (Mk (wi) pfg_l (w{:k71>) 4
j=1k=1

where pi_, (w{ k_1> satisfies the recursion (2).

Proof. See Appendix A

The optimal decision fusion rule at the CDM, given w;.r, is
obtained by combing Lemmas 1 and 2. This result is presented
in the next theorem.

Theorem 1. Assume that the entire history of the observers’
decisions is available at the CDM. Then, the optimal fusion rule
at the CDM is given by

arg max p; ﬁ ﬁ Tr (Mk (wi) P (w{:kfl)) o)

j=1k=1

where pi_, (w{ k_1> satisfies the recursion (2).

3.2 Optimal Decision Rule Using The Final Decisions

In this subsection, we derive the optimal decision fusion rule at
the CDM when only the last decisions are available at the CDM.
To this end, let W denote the final decisions of the observers
and w be one of its realizations. Similar to the derivation of
Lemma 1, it can be easily shown that the optimal decision rule,
given wr, can be written as

arg max p;Pr (W = wr |H;) 6)

The next lemma derives a recursive expression for computing
the Pr (W = wr |H;).
Lemma 3. The probability Pr(W = wy|H;) can be ex-
pressed as

Pr(Wy =wr |H;) = Tr (Mr (wr) p7)

where pf = ph ® --- ® ph and pi. is computed using the
recursion
i 1 i 1
Prk+1 = Zsz (Uk) P My (Uy) (7
173

with £ > 1.
Proof. See Appendix B.

According to Lemma 3, the density operator for evaluating
Pr(Wy = wr|H;) is computed forward in time using (7).
Here, pi is a density operator representing the effect of prior
beliefs of an observer regarding hypothesis H; at time k.

The next theorem presents the optimal fusion rule at the CDM
when only the final decisions are available.

Theorem 2. Assume that the CDM only has access to the last
decision of each observer. Then, the optimal fusion rule is given
by

arg miaxpiTr (MT (wr) pﬁ«) 8

where pf = p% ® - - - @ p¥ and p is computed by propagating
the initial density under H; forward in time using (7).

To implement the optimal fusion rules, the CDM requires the
knowledge of {pﬁ}i, {pi};» {My}, as well as the decisions
of observers. Moreover, the computational complexity of the
optimal fusion rule in (5) is at most O (LTN n3) and that of

(8)isatmost O (LNn® + Ln® Y, [Ql).
4. NUMERICAL RESULTS

In this section, we consider a binary hypothesis testing problem
and numerically evaluate the performance of the optimal fusion
rule, in terms of the error probability, when the CDM has access
to the whole history of decisions and when it has access to the
last decisions. We also compare the perfromance of the fusion
rule, derived from the non-commutative probability model,
with that of the optimal decision fusion rule obtained from
the classical probability model. A two-stage decision making
problem is considered wherein the observers’ decisions are
modeled by two random variables X' and X? from the Von
Neumann probability model. In our model, X! and X? take
values in {1, 2, 3,4} and the associated POVMs are assumed to
be projection valued measures. The density operators are two
rank-one Hermitian positive definite matrices. It is assumed
that the two hypotheses H; and Hs are equally likely. In our
numerical results, the density operators and the POVMs are
randomly selected.

Let X! and X? denote two classical random variables taking
values in {1, 2, 3,4}. Next, we construct a classical joint proba-
bility distribution for X! and X2, under each hypothesis, from
empirical observations of X! and X?2. The constructed distri-
butions are used to obtain the optimal classical decision fusion
rule. To this end, independent copies (samples) of X' and X2
are generated under different orders and hypotheses using the
density evolution rule (2). Let D; = D; (acQ; a:l) ubD; (a:l; 1‘2)
(@ € {0,1}) denote the collected samples under H;. Here,
D; (x%;2") is the set of samples where X! is generated first

and D; (z';x?) is the set of samples where X? is generated
first. In our numerical results, the classical model is obtained by
discarding the order from data, i.e., the joint distribution of X Cl
and X? under H; is generated using D;. This construction of
the classical probability model respects the Bayes’ law. We note
that it is possible to obtain an empirical conditional probability
distribution of X} given X2 under H; using D; (z';2?) and
that of X2 given X! using D; (2?; z'). However, it is straight-
forward to verify that the classical probability model formed by
these empirical conditional distributions will not respect Bayes’
law due to the non-commutativity of the Von Neumann model
(for more details, see Fig. 1(b) and its description in Subsection
1.2).

Fig. 3(a) shows the error probability of the classical and
the non-commutative fusion rules, under different decision
making orders, when the entire history of decisions is avail-
able at the CDM. According to this figure, the optimal non-
commutative fusion rule always outperforms the optimal clas-
sical fusion rule. Moreover, the performance gap between the
non-commutative and the classical fusion rules increases as the
number of observers becomes large. This observation indicates
that the non-commutative fusion rule is more efficient in in-
corporating the new information provided by new observers in
order to improve its perfromance. Based on Fig. 3(a), the per-
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fromance of the optimal fusion rule depends on the generation
order of X' and X2. This is due to the facts that the optimal
fusion rule depends on the beliefs of observers, and the belief
of an observer evolves differently under different generation
orders.

Fig. 3(b) shows the error probability of the classical and non-
commutative fusion rules when only the last decisions of the
observers are available at the CDM. As this figure shows, the
non-commutative fusion rule achieves a lower error probability
compared with the classical fusion rule. However, the perfor-
mance of the CDM heavily degrades when only the final deci-
sions are available at the CDM since it has access to a limited
amount of information compared with the scenario where it has
access to the complete history of decisions.

Error probability of non-commutative and classical fusion rules with entire decision history
T T

0
10 T T T T T T
+ Non-commutative fusion rule, X' is generated first
Classical fusion rule, X' is generated first
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4 Classical fusion rule, X? is generated first

107 F
»
Z 107
e}
)
2
o)
&,
8
SR
= 10
<3}

10

10

Number of observers
(a)

Error probability of non-commutative and classical fusion rules with final decision
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Fig. 3. The error probability at CDM under the non-
commutative and classical fusion rules versus the number
of decision makers with (a) entire history, (b) final deci-
sions.

At this point, one might be tempted to attribute the order effect
to an auxiliary random variable. Let o denote a binary random
variable where o = 1 denotes X! is generated first and o = 2
denotes X2 is generated first. Thus, we have (X 2; X 1) <=

(X1, X%, a=1)and (X'; X?) < (X% X', a=2).The

joint distribution of X! and X? conditioned on o = 1 and H;
can be estimated using D; (2?; ') Similarly, the joint distri-
bution of X' and X? conditioned on @ = 2 under H; can be
estimated using D; (331; xz). Also the conditional distribution
2.1
of a can be obtained as Pr(a=1|H;) = W
2,1

Pr(a=1|H;) = W. Note that the conditional distri-
bution of « is purely a function of the number of samples in the
sets D; (z?;21), D; (z';2%) i = 0, 1, rather than the statistical
properties of data, which might degrade the perfromance of the
classical estimator. We refer the reader to Trueblood and Buse-
meyer (2011) for a more detailed discussion on this approach.

and

5. CONCLUSIONS

In this paper, we studied the optimal decision fusion problem
with a group of human observers when the order effect has
been manifested. The decision making process of observers
was modeled using the Von Neumann probability model. The
optimal decision fusion rule at a central decision maker (CDM)
was studied under two main scenarios. In the first scenario,
the CDM receives the entire history of the decisions made by
the observers whereas in the second scenario, the CDM only
knows the last decision of each observer. The performance of
the optimal fusion rule was numerically studied.
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Appendix A. PROOF OF LEMMA 2

Note that for & > 2, Pr (W, = w1, |H; ) can be written as
Pr(Wig =wiy |H;) =
Tr (M (wi) [Mi—1 (wi—1) [+~ My (w1) [p1]]]) (A
where M (+) [-] is called an “instrument” Holevo (2001), Baras
(1987), Baras (1988). Given a density operator p and a measure-
ment operator M, M (M (w)) [p] is defined as the probability

of observing w as the outcome of measurement multiplied by
the posterior density operator after observing w, i.e.,

M (w) [p} = Tr (M (w) p) p (w) (A2)

and p (w) is the posterior density operator after observing w
which is given by Gudder (2007)

M3 (w) pM? (w)
Tr (M (w) p)

p(w) (A.3)

Next lemma studies the structure of the instrument M (-) [] in
our problem.

Lemma 4. The instrument My, (+) [-] satisfies

1

<
I
-
o~
Il

where p} (w{}o) =piand pi = p1 @ @ p}
| ——
Nfolds

Proof. See Appendix C.1.

The desired result follows from the above lemma and the
fact that Tr (pl., | (wi.r)) = 1 as pi.; (wi) is a density
operator.

Appendix B. PROOF OF LEMMA 3

Note that Pr (W, = wy, | H; ) can be written as
Pr(Wr =wr|H;)
=Pr(Wr=wpr;Wr_1 € Q)_1;...; W1 € Q) |H;)
= Tr (Mr (wh) e () [ (@F) [63]]])
(B.1)
where QY = Qg x -+ x Q, Q is the probability space at

Nfolds
time k. For k = 1, we have

My () [pi] ‘”ZM? (w1) i M (1)
Do (wh) g} (wh) | @
wy
1
® ZMf (w{V) pi My (w{V>
wyy
=Py @ ® ph
=P

where (a) follows from the additive property of the instrument
(see property 3 in Holevo (2001) page 97) and (b) follows from
the fact that tensor product is a multi-linear map. Now, assume
that we have
M (QF) [ M (20 [p1]] = pia

= Phr1 @ ® Py

Then, we have
M1 () [ M0 (1) [1]]

1 . 1
= Z Mk2+1 (Wrt1) PZ+1Mk2+1 (Wit1)

Wk+1
= p2+2 PRI

= P;c+2
Using (B.1) and (B.5), we have
Pr (WT = wT |Hz)

® Plta
(B.5)
= Tr (Mr (wr) p7)
Appendix C. PROOF OF AUXILIARY LEMMAS
C.1 Proof of Lemma 4

To prove this result, we study the structure of the density
operator at time k£ under H; in the next lemma.
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M1 (’wk+1) [Mk (wk) [ wl [ '

= Do (Wip41) Tr

(I

I]

Mpr (wiy1) My (wy) [--- My (w1) [p]])

—~

*Pk+2 (Wy1) ﬁHT ( ) (w{:t71>) Tr(Mk+1(wk+1)P§c+1(w1:k))
j=1t=1

— sba o) | TLTLT (9 (7)ot (o)) | TET0 (Vs () s () B2
j=1t=1 j

i (ay) — M (1) pLME ()

Tr (M, (w) p})
(M (wh) pingf (wh)) @ @ (MF () pi M7 (w]))
Tr (M1 (wi) pi) x -+ x Tr (My (w]) pi)
= b (w}) ® - @ p} (w])) (B.3)

A
S

M2 (wy) pi (w1.k-1) M2 (wy)

Tr (M3 (wy) pw)
(M2 (k) o (0dm) M1 (wh) o (M (i) o (i) MF ()

- T (Mr (@) 7 (1)) % - % Tr (M () (1)) ®H

Pk+1 (wi) =

Lemma 5. The density operator at time k, p}; (w1.5—1), can be
written as

Pk (Wik—1) = pj, (wig_y) @ @ p (w_y)  (CD)
where p (-) is obtained from the recursion (2).

Proof. See Appendix C.2.

.We prove this result by induction. For k = 1, we have
My (wy) [p'] = Tr (M1 (wy) pi) ph (w1)

@ pb wl)HTr <M1 (w{) pﬁ)
J

where (a) follows from previous lemma. Assume that for at
time k, (A.4) holds. Then, at time k£ + 1, we have (B.2).

The desired result follows from A.1 and Lemma 5.
C.2 Proof of Lemma 5

We first show this result for k£ = 2. Note that the initial density
of the composite system under H; can be written as p] = p] ®

-+ @ pj. Also, the measurement operator corresponding to w;
can be written as My (wq1) = M (w}) ® --- @ My (wi').
Using (A.3), pb (w1 ) can be written as (B.3) where (a) follows
from the fact that Mlé (wy) = MI% (wi) ® - @ Mlé (wiY).
Now assume that p} (w.5—1) is given by (C.1). Using (A.3)
pZH (w1.) can be expressed as (B.4).



