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Abstract: In this paper, we introduce a continuous-time competing virus model with a shared
resource. We say that the system is in the healthy state if all the agents are healthy, and the
shared resource is not contaminated. If the epidemic remains persistent, and the shared resource
is contaminated, we say that the system is in the endemic state. First of all we show, under
appropriate assumptions, that the model we introduce is well-posed. Secondly, we establish
sufficient conditions for exponential (resp. asymptotic) eradication of a virus. Thirdly, for the
single-virus case with a shared resource, we establish conditions that lead to existence of an
endemic equilibrium. Finally, we provide a necessary and sufficient condition for uniqueness of
the healthy state.
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1. INTRODUCTION
Epidemics, or more broadly spreading processes, have been
of interest to the research community since Bernoulli’s
seminal paper (Bernoulli, 1760). The underlying goal
behind these research efforts is to understand under
what conditions would the epidemic become extinct, and
use the knowledge of these conditions to design mitiga-
tion strategies. Towards this end, various models have
been proposed and studied in the literature; susceptible-
infected-susceptible (SIS), susceptible-infected-recovered
(SIR), susceptible-exposed-infected-recovered (SEIR), etc.
In this paper we focus on SIS models.

In an SIS model, an agent is either in the susceptible
or infected state. A healthy agent could become infected
at some infection rate β, scaled by the interactions it
has with its neighbors. Each agent has its own healing
rate δ, that is, the rate at which it recovers from the
infection. It is assumed that the total number of agents
in the network is large enough to ignore stochastic effects
(Anderson and Robert, 1991) and that the number remains
fixed (Lajmanovich and Yorke, 1976).

The analysis of SIS models has been a major research
thrust in mathematical epidemiology over the last several
decades; see for instance (Lajmanovich and Yorke, 1976;
Fall et al., 2007; Khanafer et al., 2016). One of the
drawbacks with the traditional SIS model is that it is
not amenable for understanding epidemic spread when
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there is a shared resource in the network that could
significantly worsen the spread; for instance public transit,
a neighborhood supermarket, a community well, etc. A
networked continuous-time single-virus SIS model that
incorporates a shared resource was first proposed by Liu
et al. (2019a), referred to as susceptible-infected-water-
susceptible (SIWS) model. For the SIWS model, sufficient
conditions for asymptotic convergence to the healthy state
(defined as the state where each agent is healthy, and the
shared resource is contamination-free) has been provided
by Liu et al. (2019a). However, no theoretical guarantees
were provided for the endemic behavior (i.e., where the
virus remains persistent) of this model.

Yet another drawback with the SIS model is that it does
not account for those scenarios where multiple strains of a
virus could be simultaneously active within a population.
In particular, it is possible that different virus strains
compete with each other to infect the population. That
is, each agent can be infected by one, and only one, of the
multiple virus strains prevalent (Nowak, 1991). Such a phe-
nomenon may also be exhibited in the context of opinion-
spread, where incompatible ideas spread on different social
networks (Sahneh and Scoglio, 2014). Another application
is pathogen interaction on overlay networks with SIR dy-
namics (Funk and Jansen, 2010). Additionally, the notion
of competing viruses could find applications to adoption
of competing products in a marketplace, political stances,
and alternative farming practices (Paré et al., 2020). Thus,
in light of these shortcomings with the traditional SIS
model, and consequently the SIWS model, we propose an
extension.



SIS models that account for multiple competing viruses
have been a recent focus of the research community; see
for instance (Wei et al., 2013; Watkins et al., 2016). A
competing continuous-time time-invariant bi-virus model
has been presented and studied by Liu et al. (2019b). Re-
cently, by extending the setup in (Liu et al., 2019b) to also
account for multiple competing viruses and time-varying
topologies, a more general model has been presented by
Paré et al. (2017). However, none of these works account
for the presence of a shared resource in the network.

In this paper, we propose a SIS-type model that accounts
for multiple competing viruses and a shared resource,
which might (possibly) be contaminated. Our main con-
tributions, then, are the following:

i) establish sufficient conditions for exponential conver-
gence to the healthy state;

ii) establish a weaker sufficient condition for asymptotic
convergence to the healthy state;

iii) establish conditions that give rise to an endemic
behavior, and, thereby, show that the weaker suffi-
cient condition is also necessary for uniqueness of the
healthy state equilibrium.

Outline

The rest of this paper is organized as follows. We conclude
the present section by listing all the needed notation. In
Section 2 we derive the SIWS model that accounts for mul-
tiple competing viruses, and formally state the problem
of interest. The main results are presented in Section 3.
We illustrate our theoretical findings, via simulations, in
Section 4. Finally, we summarize the results in Section 5.

Notation

For any positive integer n, we use [n] to denote the set
{1, 2, ..., n}. The ith entry of a vector x will be denoted by
xi. We use 0 and 1 to denote the vectors whose entries
all equal 0 and 1, respectively, and use I to denote the
identity matrix, while the sizes of the vectors and matrix
are to be understood from the context. For a vector x we
denote its diagonalization with diag(x). For any two real
vectors a, b ∈ Rn, we write a ≥ b if ai ≥ bi for all i ∈ [n],
a > b if a ≥ b and a 6= b, and a� b if ai > bi for all i ∈ [n].
For a real square matrix M , we use σ(M) to denote the
spectrum of M , use ρ(M) to denote the spectral radius of
M , and s(M) to denote the largest real part among the
eigenvalues of M , i.e., s(M) = max{Re(λ) : λ ∈ σ(M)}.
We denote a subset A of a set B by A ⊂ B.

2. THE MODEL

Consider a network of n nodes, where each node represents
a population subgroup, and a common resource W being
shared among the n nodes. Suppose that there are m
viruses active in the network. A node becomes infected
as a consequence of either coming in contact with other
infected nodes, or due to contact with the (possibly)
contaminated shared resource. We assume that the viruses
are competing with each other to infect each node in the
network, which implies that, at a given time instant, an
agent may get infected by no more than one virus. The
spread of the competing m viruses among the n nodes can
be represented by a directed graph G, with existence of a
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Fig. 1. Visualization of the model for the case when m = 2.
An individual is either susceptible (S) or infected
with virus 1 (I1), or infected with virus 2 (I2). The
shared resource (W) is contaminated by individuals
infected with either virus, and in turn augments the
corresponding infection rate.

directed edge from node j to node i if individuals in node
j can infect those in node i. We also assume that not only
does a node get (possibly) infected due to contact with
W but also that W could be contaminated whenever an
infected node comes in contact with it. Thus, each node in
G possibly has bidirectional connections with W .

Each population node contains Ni individuals and has a
birth rate µi, and death rate µ̄i. In each node, at time
t ≥ 0, Si(t) is the number of susceptible individuals, while
Iki (t) is the number of individuals infected by virus k.
Individuals infected by virus k in node i have a recovery
rate γki back to the susceptible state. We denote the node-
to-node infection rate with respect to virus k by αkij ≥ 0.
Clearly, if node j is not connected to node i, then, for
k ∈ [m], αkij = 0. The shared resource W holds a viral

mass of each type k ∈ [m], which is denoted by W k(t),
decaying at a rate δkw and growing at a rate proportional
to the sum of Iki (t) scaled by ζki . We denote the resource-
to-node infection rate for node i with respect to virus k by
αkiw. A visualization of the model is provided in Figure 1.

The evolution of the number of susceptible and infected
individuals in node i can be represented as follows:
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We define new variables to simplify the system. Let:

pki (t) =
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Then, assuming that the birth rates and the death rates
are equal, (1) can be rewritten as:
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In matrix form, (2) can be rewritten as:
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(3)

where P k(t) is the diagonal matrix of pk(t), Bk is the
n×n-matrix with βkij denoting the element corresponding

to the ith row and jth column, Dk is the diagonal matrix
with δki along the diagonal, bk is a column vector with βkiw
is element i, and ck is a row vector with cki as element i.
To simplify further, define:

yk(t) =
[
p
k
(t)

z
k
(t)

]
, y(t) =

[
y
1
(t)

.

.

.

y
m

(t)

]
, Bkw =

[
B

k
b
k

δ
k
wc

k
0

]
,

Dk
w =

[
D

k
0

0 δ
k
w

]
, X

(
y(t)

)
=
[∑m

l=1
P l(t) 0

0 0

]
.

Hence, (3) can be rewritten as:

ẏk(t) =
(
−Dk

w +Bkw −X(y(t))Bkw
)
yk(t). (4)

With the setup as given in (4) in place, we formally state
the problems being investigated in this paper.

i) Under what conditions is a virus eradicated exponen-
tially fast?

ii) Under what conditions is a virus eradicated asymp-
totically?

iii) Under what condition does a virus remain persistent
in the population and the shared resource?

Before we address the aforementioned questions, we point
out connections between the setup considered in the
present work, and those in the existing literature.

Remark 1. Note that if m = 1, system (4) coincides with
the model proposed by Liu et al. (2019a); see (Liu et al.,
2019a, Equation (12)). �

In the rest of this paper, when considering the single-virus
case, i.e., m = 1, we drop the superscripts identifying the
virus.

Defining Ak(y(t)) =
(
− Dk

w + Bkw − X(y(t))Bkw
)
, and

by gathering all viruses into the same system, we can
rewrite (4) as follows:
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Remark 2. Note that if we let bk = 0 for all k in [m], the
influence of the shared resource on the network is nullified.
Then the multi-virus dynamics of the population nodes in
(5) are equivalent to the time-invariant multi-virus setup
of Paré et al. (2017). �

2.1 Assumptions

In order for the (4) to be well-defined and realistic, we
make the following assumptions.

Assumption 3. Suppose that δki > 0, δkw > 0, βkij ≥
0, βkiw ≥ 0 and cki ≥ 0 for all i, j in [n] and k in [m],
with ckl > 0 for at least one l in [n]. �

Note that if Assumption 3 holds, then Bkw is a non-negative
matrix and Dk

w is a positive diagonal matrix. A real square
matrix M is said to be a Metzler matrix if the elements
outside the main diagonal are non-negative. Thus (Bkw −
Dk
w) is a Metzler matrix.

As a consequence of Assumption 3, we can restrict our
analysis to the sets S = {y(t) : pk(t) ∈ [0, 1]n, zk(t) ∈
[0,∞) ∀ k ∈ [m]} and Sk = {yk(t) : pk(t) ∈ [0, 1]n, zk(t) ∈
[0,∞)}. Since pki (t) is to be interpreted as a fraction
of a population and zk(t) is supposed to be a non-
negative quantity, these sets represent the sensible domain
of the system. That is, for any k ∈ [m], if pk(t) takes
values outside the set [0, 1]n, then those values would lack
physical meaning. The following lemma shows that once
the dynamics of (5) enter the set S, it never leaves this
set.

Lemma 4. Let Assumption 3 hold. Then S is positively
invariant with respect to (5), and if y(t) ∈ S for all t ≥ 0,
Sk is positively invariant with respect to (4).

Proof. Note that if pki (t) = 1 then ṗki (t) < 0, so if
pki (0) ≤ 1 then pki (t) ≤ 1 for all t ≥ 0. Further, if pki (t) = 0
and y(t) ≥ 0 then ṗki (t) ≥ 0 for all t ≥ 0. Similarly, if
zk(t) = 0 and y(t) ≥ 0 then żk(t) ≥ 0. Thus y(t) ≥ 0 if
y(0) ≥ 0 for all t ≥ 0. 2

3. MAIN RESULTS

In this section we present the equilibria of the system and
some stability results, under suitable assumptions.

We say that a virus k ∈ [m] is in the eradicated state if
yk = 0. It is immediate that yk = 0 is an equilibrium of
(4) with respect to virus k. If all k ∈ [m] viruses are in the
eradicated state then we say the system is in the healthy
state y = 0, which is an equilibrium of (5). Note that when
m = 1, the notions of healthy state and eradicated state
coincide.

We present a sufficient condition for exponential stability
of an eradicated state in the following theorem.

Theorem 5. Consider (4) under Assumption 3 and assume
that y(0) ∈ S. Suppose that for some virus k we have
that s(Bkw − Dk

w) < 0. Then the eradicated state of
virus k is exponentially stable with a domain of attraction
containing Sk. �

Proof: See Appendix. �

Theorem 5 answers question i) in Section 2. Note that for
the same condition as in Theorem 5, (Liu et al., 2019b,
Proposition 2) showed only local exponential stability,
whereas Theorem 5 holds globally, on the sensible domain.
Hence, Theorem 5 is a stronger version of (Liu et al.,
2019b, Proposition 2) when m = 1, and more general
since it applies to the competing virus case. In particular,
Theorem 5 says that insofar that the matrix (Bkw−Dk

w) is
Hurwitz, then, irrespective of the initial condition of the
network, virus k is eradicated exponentially fast.

Observe that while Theorem 5 guarantees exponential
eradication of virus k, the condition there is rather strin-
gent. It is, therefore, pertinent to ask whether (or not)
eradication of virus k can be achieved even if the condition



in Theorem 5 were to be relaxed. In such a case, one would
naturally expect the speed of eradication to decrease.
The following theorem provides a sufficient condition for
asymptotic eradication of virus k.

Theorem 6. Consider (4). Let Assumption 3 hold and
assume that y(0) ∈ S. Suppose that for some virus k we
have s(Bkw − Dk

w) ≤ 0, cki > 0, βkiw > 0 for all i ∈ [n]
and that the matrix Bk is irreducible. Then the eradicated
state of virus k is asymptotically stable with a domain of
attraction containing Sk. �

Proof: See Appendix. �

Theorem 6 answers question ii) in Section 2. Observe
that, particularized for the single-virus case, Theorem 6
coincides with (Liu et al., 2019a, Theorem 1). In order
to understand Theorem 6 from an epidemiological stand-
point, we need the following lemma for irreducible non-
negative matrices:

Lemma 7. (Liu et al., 2019b, Proposition 1) Suppose that
Λ is a negative diagonal matrix and N is an irreducible
non-negative square matrix. Let M = Λ + N . Then,
s(M) < 0 if and only if ρ(−Λ−1N) < 1, s(M) = 0 if
and only if ρ(−Λ−1N) = 1, and s(M) > 0 if and only if
ρ(−Λ−1N) > 1. �

Observe that, by Lemma 7, the condition in Theorem 6 is
equivalent to ρ((Dk

w)−1Bkw) ≤ 1. Therefore, we can inter-
pret ρ((Dk

w)−1Bkw) as a generalization of the reproduction
number of the virus in the network, that is, the number of
agents that become infection by an infected agent on the
average. As such Theorem 6 states that if the reproduction
number of virus k is less than or equal to one, then virus
k will asymptotically converge to its eradicated state.

It is natural to ask what sort of behavior (4) would exhibit
when the condition in Theorem 6 is violated. The next
theorem addresses this question when m = 1.

Theorem 8. Consider (4) under Assumption 3 with m = 1.
Suppose that Bw is irreducible and s(Bw−Dw) > 0. Then
there exists at least one non-zero equilibrium in S. �

Proof: See Appendix. �

Theorem 8 partly addresses question iii) in Section 2. It
provides sufficient conditions for the existence of a non-
zero equilibrium in a single-virus system, which was not
shown by Liu et al. (2019b). By Lemma 7, if the condition
in Theorem 8 is satisfied, then ρ(D−1

w Bw) > 1, thus im-
plying that the virus remains persistent in the population
and contaminates the resource, further supporting the
generalized reproduction number interpretation.

Combining Theorems 6 and 8, we immediately obtain a
necessary and sufficient condition for uniqueness of the
eradicated state in a single-virus system.

Theorem 9. Consider (4) under Assumption 3 with m = 1.
Suppose that B is irreducible, ci > 0 and βiw > 0 for all
i ∈ [n]. Then the healthy state is the unique equilibrium
of (4) in S if, and only if, s(Bw −Dw) ≤ 0. �

4. SIMULATIONS

In this section, we present simulations to illustrate our
theoretical findings. To this end, we use the city of Stock-

Fig. 2. A map of the relevant districts in Stockholm
(CC (2016)). All districts are connected to the public
transportation system (SL).

Fig. 3. Simulation with two viruses, both (red and blue)
approaching eradication. The average infection rate
by virus k in the network is denoted by p̄k(t).

holm as the setting. In particular, the major districts of
Stockholm, namely, Kungsholmen, Vasastan, Östermalm,
Norrmalm, Gamla Stan and Södermalm, are taken to be
the population nodes, and we view the public transporta-
tion system SL (Storstockholms Lokaltrafik) as the shared
resource; see Figure 2.

We consider two competing viruses spreading across the
city, namely virus 1 and virus 2. Thus, n = 6, and m = 2.
The spread parameters βkij , for k ∈ [2], are taken to be 1
if district i is adjacent to district j, and 0 otherwise. We
also assume that each district is connected to the shared
resource, the public transportation system, with βkiw = 1
and cki = 1/6, for all i ∈ [6], and each virus k ∈ [2]. As
such the matrix Bkw is irreducible for both viruses k ∈ [2].

We begin by considering the case where the shared re-
source is contaminated by both viruses (zk(0) = 0.5),
and in each population node, half of the population is
infected by virus 1 and the other half is infected by virus 2
(pki (0) = 0.5). Further, we set δ1i = 4.6, δ1w = 4.6, δ2i = 10,
and δ2w = 10. As a consequence, s(B1

w−D1
w) = −0.005, and

s(B2
w −D2

w) = −4.6. In line with the result in Theorem 5,
both the viruses are eradicated exponentially fast; see Fig-
ure 3. That is, both the viruses spreading across the above-
mentioned districts of Stockholm (see Figure 2) disappear,
and therefore the population in these districts become
healthy. It can be observed that virus 2 is eradicated much
more quickly than virus 1, which occurs since s(B2

w−D2
w)

is much farther away from the origin than s(B1
w −D1

w).

Next we consider the case where initially all population
nodes are infection-free (pk(0) = 0), while the shared
resource is contaminated by both viruses (zk(0) = 0.5).
Further, we set δ1i = 1, δ1w = 1, δ2i = 5, and δ2w = 5.
That is, the recovery rate of virus 1 is slower compared to



Fig. 4. Simulation with two viruses: one (highlighted in
red) staying endemic, and one (highlighted in blue)
approaching eradication. The average infection rate
of virus k in the network is denoted by p̄k(t).

the recovery rate of virus 2. With these settings in place,
we obtain s(B1

w − D1
w) = 2.9, and s(B2

w − D2
w) = −0.3.

With reference to Figure 4, it can be seen that virus 2
is eradicated exponentially fast, consistent with the result
in Theorem 5. In contrast, it can be seen that virus 1
appears to approach a non-zero equilibrium, thereby not
only validating Theorem 8, but also suggesting that the
result in Theorem 8 can be extended to the multi-virus
setting. Moreover, changing the initial state of virus 1
(y1(0)) did not cause the equilibrium to change, suggesting
that the aforementioned non-zero equilibrium could be
unique. With respect to Figure 2, Figure 4 says that
since one of the viruses persists, the population in the
above-mentioned districts of Stockholm and the SL system
remain infected/contaminated.

5. CONCLUSION

The present paper introduced a SIS model accounting for
multiple competing viruses in the presence of a shared con-
taminative resource. We provided conditions under which
a virus is eradicated exponentially fast (resp. asymptoti-
cally). Subsequently, for the single-virus case, we provided
conditions under which the virus remains endemic in the
population and the resource. Finally, we established a
necessary and sufficient condition for the healthy state to
be the unique equilibrium.
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APPENDIX

Proof of Theorem 5: We need the following proposition
to prove the claim in Theorem 5.

Proposition 10. Let G ⊂ Rn. Consider

ẋ(t) = f(t, x), (6)

where f : [0,∞)×G→ Rn is a locally Lipschitz map. Let
x∗ = 0 be an equilibrium of (6) and E ⊂ G be a positively
invariant and connected set with respect to (6), containing
x∗. Let V : [0,∞)×E→ R be a continuously differentiable
function such that:

k1‖x‖a ≤ V (t, x) ≤ k2‖x‖a,
V̇ (t, x) ≤ −k3‖x‖a,

∀t > 0 and ∀x ∈ E, where k1, k2, k3 and a are positive
constants. Then the equilibrium x∗ is exponentially stable
with a domain of attraction containing E. �

This proposition can be proven using (Khalil, 2002, The-
orem 4.10) and the discussion on pages 122, 317-320 in
(Khalil, 2002).



Proof of Theorem 5: By Lemma 4 we know that S is
positively invariant with respect to (5), and since y(0) ∈ S
we have y(t) ∈ S for all t ≥ 0. Given that (Bkw − Dk

w) is
Metzler, (Rantzer, 2011, Proposition 2) states that there
exists a positive diagonal matrix Qk such that ((Bkw −
Dk
w)TQk +Qk(Bkw −Dk

w)) is negative definite. Define the
Lyapunov function candidate V (yk(t)) = yk(t)TQkyk(t)
with Sk as the domain. This function is positive definite,
so, by the Rayleigh-Ritz Theorem, there exist constants
a = mini(Q

k)ii > 0, b = maxi(Q
k)ii > 0 such that:

a‖yk(t)‖2 ≤ V (yk(t)) ≤ b‖yk(t)‖2. (7)

Differentiating V (yk(t)) with respect to time yields:

V̇ (yk(t)) = 2yk(t)TQkẏk(t)

= 2yk(t)TQk
(
Bkw −Dk

w −X
(
y(t)

)
Bkw

)
yk(t)

≤ 2yk(t)TQk
(
Bkw −Dk

w

)
yk(t)

= yk(t)T
(
(Bkw −Dk

w)TQk +Qk(Bkw −Dk
w)
)
yk(t).

Note that yk(t)TQkX
(
y(t)

)
Bkwy

k(t) ≥ 0 since the matrices
in this product are non-negative while y(t) ∈ S. Since
((Bkw−Dk

w)TQk+Qk(Bkw−Dk
w)) is negative definite, by the

Rayleigh-Ritz theorem there exists a constant c = s
(
(Bkw−

Dk
w)TQk +Qk(Bkw −Dk

w)
)
< 0 such that:

V̇ (yk(t)) ≤ c‖yk(t)‖2. (8)

Since by Lemma 4, Sk is a positively invariant set with
respect to (4), from (7) and (8), it follows that V (yk(t))
fulfills the requirements of Proposition 10. Therefore, the
eradicated state of virus k is exponentially stable with a
domain of attraction containing Sk. 2

Proof of Theorem 6: Note that if s(Bkw − Dk
w) < 0,

Theorem 5 implies exponential stability of the eradicated
state with a domain of attraction including Sk, in turn
implying asymptotic stability with the same domain of
attraction. Because of this the rest of the proof assumes
that s(Bkw − Dk

w) = 0. By Lemma 4 we know that S is
positively invariant with respect to (5), and since y(0) ∈ S
we have y(t) ∈ S for all t ≥ 0. Then the trajectories
of yk(t) are bounded above by the trajectories ȳ(t) of
a similar single-virus system with the same parameters
and positively invariant set Sk. Since s(Bkw − Dk

w) = 0
implies ρ((Dk

w)−1Bkw) = 1 by Lemma 7, the requirements
for (Liu et al., 2019a, Theorem 1) are fulfilled by extension
for the single-virus system, meaning that its healthy state
is asymptotically stable with a domain of attraction con-
taining Sk. Given that 0 ≤ yk(t) ≤ ȳ(t), the eradicated
state for virus k is asymptotically stable with a domain of
attraction containing Sk. 2

Proof of Theorem 8: Define a map T (x) : Rn+1
+ → Rn+1

+
such that:

T (x) = (I + diag(D−1
w Bwx))−1

× (D−1
w Bwx+ diag(D−1

w Bwx)[0xn+1]T ).

Since diag(D−1
w Bwx) is a non-negative diagonal matrix,

the inverse of (I+diag(D−1
w Bwx)) exists, and, hence, T (x)

is well-defined. Note that the components of T (x) are:

Ti(x) =
(D−1

w Bwx)i

1 + (D−1
w Bwx)i

, for i ∈ [n],

Tn+1(x) =
(D−1

w Bwx)n+1xn+1 + (D−1
w Bwx)n+1

1 + (D−1
w Bwx)n+1

.

Given that D−1
w Bw is a non-negative matrix, y ≥ z implies

that T (y) ≥ T (z). A fixed point of T (x) is any point
x ∈ Rn+1

+ such that:

x = (I + diag(D−1
w Bwx))−1

× (D−1
w Bwx+ diag(D−1

w Bwx)[0;xn+1]). (9)

Multiplying (9) by (I + diag(D−1
w Bwx)) gives:

D−1
w Bwx+diag(D−1

w Bwx)[0;xn+1] = (I+diag(D−1
w Bwx))x.

(10)
Using the identity diag(u)v = diag(v)u we see that (10) is
equivalent to:

D−1
w Bwx+diag([0;xn+1])D−1

w Bwx = (I+diag(x)D−1
w Bw)x.

(11)
For a given x ∈ Rn+1

+ , define X(x) to be its diagonalization
with the final element xn+1 set to zero. As such, by
subtracting diag([0xn+1]T )D−1

w Bwx from (11), we obtain:

D−1
w Bwx = (I +X(x)D−1

w Bw)x. (12)

Since X(x) and D−1
w are diagonal matrices, they commute.

Furthermore, by pre-multiplying (12) with Dw, and suit-
ably rearranging terms, we obtain:

(Bw −Dw −X(x)Bw)x = 0. (13)

A solution of equation (13) is clearly an equilibrium of (4)
with m = 1. As such it suffices to show that T (x) has
a non-zero fixed point in S. We will now show that at
least one such fixed point exists. Since s(Bw − Dw) >
0, by Lemma 7, ρ(D−1

w Bw) > 1. Further, given that
Bw is an irreducible non-negative matrix and D−1

w is a
positive diagonal matrix, D−1

w Bw is an irreducible non-
negative matrix. Hence, by the Perron-Frobenius theorem,
λ∗ = ρ(D−1

w Bw) is a simple eigenvalue of D−1
w Bw, with an

eigenspace spanned by a vector x∗ � 0. Thus, there exists
some constant ε > 0 such that, for all i ∈ [n+ 1], we have
εx∗i ≤ (λ∗− 1)/λ∗, which implies that 1 ≤ λ∗/(1 +λ∗εx∗i ).
Hence, εx∗i ≤ λ∗εx∗i /(1 + λ∗εx∗i ), which further implies:

εx∗i ≤
(D−1

w Bwεx
∗)i

1 + (D−1
w Bwεx∗)i

. (14)

Noting that (D−1
w Bwεx

∗)n+1εx
∗
n+1 > 0, we have:

εx∗n+1 ≤
(D−1

w Bwεx
∗)n+1εx

∗
n+1 + (D−1

w Bwεx
∗)n+1

1 + (D−1
w Bwεx∗)n+1

. (15)

Due to the inequalities (14) and (15), we have T (εx∗) ≥
εx∗. Since y ≥ z implies T (y) ≥ T (z), it follows that for
any x ≥ εx∗ we have T (x) ≥ εx∗. Consider T (1) for i ∈ [n],

Ti(1) =
(D−1

w Bw1)i

1 + (D−1
w Bw1)i

≤ 1. (16)

For i = n+ 1, we have:

Tn+1(1) =
2[c 0]1

1 + [c 0]1
≤ 1. (17)

Due to the inequalities (16) and (17), we have T (1) ≤ 1.
Since y ≥ z implies that T (y) ≥ T (z) it follows that
T (x) ≤ 1 if x ≤ 1. Applying Brouwer’s fixed-point
theorem, there is at least one fixed point x̃ of T (x) such
that εx∗ ≤ x̃ ≤ 1. Since x̃ is also a solution of equation
(13), there is at least one non-zero equilibrium for (4)
in S. 2


