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Abstract— This paper introduces assume/guarantee contracts
on continuous-time control systems, hereby extending contract
theories for discrete systems to certain new model classes
and specifications. Contracts are regarded as formal charac-
terizations of control specifications, providing an alternative
to specifications in terms of dissipativity properties or set-
invariance. The framework has the potential to capture a richer
class of specifications more suitable for complex engineering
systems. The proposed contracts are supported by results that
enable the verification of contract implementation and the
comparison of contracts. These results are illustrated by an
example of a vehicle following system.

I. INTRODUCTION

Specifications on dynamical (control) systems typically
come in the form of requirements on stability, performance
(generally expressed as a bounded gain for a suitably chosen
input-output pair), or passivity. Such specifications have in
common that they can be captured in the elegant framework
of dissipativity as introduced in [25], see also [20], [2]
and [21] for related control approaches. An alternative class
of specifications can be characterized through set-invariance
techniques, capturing properties such as safety, e.g., [9].

However, stricter performance requirements and increasing
complexity of modern engineering systems such as intelli-
gent transportation systems or smart manufacturing systems
require the expression of control specifications that go be-
yond dissipativity or invariance. This observation motivates
the work on formal methods in control, e.g., [23], [5], which
generally requires the abstraction of continuous dynamical
systems to discrete transition systems because of the need to
express logic specifications such as LTL.

A different approach is taken in this paper. Namely, we
present an approach for expressing rich specifications on
dynamical systems directly in the continuous domain by
introducing contracts for linear time-invariant dynamical
systems, leading to the following contributions.

First, inspired by contracts for discrete systems in com-
puter science developed in [6] and [7], we define as-
sume/guarantee contracts for a class of continuous-time
linear dynamical systems. A contract is a pair of dynamical
systems known as the assumptions and guarantees and can
be regarded as a specification on the dynamical system.
Namely, a system implements a contract (i.e., satisfies the
specification) when it satisfies the guarantees whenever it
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is interconnected with an environment that satisfies the
assumptions; a definition that will be made precise by using
the notion of simulation (see, e.g., [16], [19]) as a means for
comparing system behavior.

Second, we present a result that allows for efficiently
verifying whether a dynamical system implements a given
contract. In particular, geometric conditions are given for
contract implementation enabling the use of tools from
geometric control theory, e.g., [28], [3], [24].

Third, a notion of contract refinement is developed as
a means for comparing contracts, i.e., providing a way to
formalize whether a given contract provides tighter or relaxed
requirements with respect to a second contract. The definition
is again inspired by results in computer science, see [4], [7].

Fourth, the contract approach is illustrated by application
to a vehicle following system as used for, e.g., vehicle
platooning [1]. Here, the objective is to guarantee a desired
inter-vehicle distance under the assumption that the lead
vehicle satisfies the kinematic relation. Crucially, knowledge
of the exact dynamics of the lead vehicle is not assumed.

Through the above contributions, it is argued that as-
sume/guarantee contracts provide various distinguishing and
useful features with respect to specifications expressed using
dissipativity theory or set invariance. Namely, the explicit
characterization (through the assumptions) of the set of
environments in which the dynamical system is expected
to operate potentially allows for relaxing requirements on
the system (as the guarantees might be partially ensured by
the assumptions). The characterization of these environments
is particularly relevant in the analysis of interconnected
systems; an important topic that will be explored in future
work.

Moreover, by using simulation relations as a basis for
comparing system behavior (recall that the assumptions and
guarantees are themselves dynamical systems), a rich class
of system behaviors can be characterized including dynamic
behavior. We note that the static nature of the supply rates
limits the ability of traditional dissipativity theory to capture
dynamic behavior. Dynamic supply rates [2] and integral
quadratic constraints [14] have been introduced to address
this limitation, but these approaches do again not characterize
the environment in which a system operates.

Related work on contracts for dynamical systems is pre-
sented in [18], where contracts are used to capture set-
invariance properties in input and output spaces. As such,
the contracts in [18] do not allow for including dynam-
ics in the specification. Richer contracts, called parametric
assume/guarantee contracts, are defined in [12], allowing
for expressing input-output gain properties. However, only
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discrete-time systems are considered in this work.
The remainder of this paper is organized as follows.

Section II introduces the class of systems considered in this
work and develops a notion of simulation for such systems.
Corresponding compositional properties are given in Sec-
tion III before developing contracts as system specifications
in Section IV. Section V presents an illustrative example and
Section VI concludes the paper.

Notation. For a linear map A : X → Y with X and Y
finite-dimensional vector spaces, imA and kerA denote the
image and kernel of A, respectively. Given a linear subspace
V ⊂ X × Y , let πX (V) = {x | ∃y s.t. (x, y) ∈ V} be the
projection of V on X ; πY(V) is defined similarly.

II. SYSTEMS IN DRIVING VARIABLE FORM

Consider the linear dynamical system

Σi :

 ẋi = Aixi +Gidi,
wi = Cixi,
0 = Hixi,

(1)

with state xi ∈ Xi, external variable wi ∈ W , and driving
variable di ∈ Di. Here, Xi,W , and Di are finite-dimensional
vector spaces. The system (1) is regarded as an open system
in which the external variable wi interacts with the envi-
ronment, whereas the state xi is the internal variable. The
driving variable di plays the role of generator of trajectories.

Remark 1: The interpretation of the system (1) in terms
of external variables and (internal) state variables is similar
to the perspective taken in the behavioral approach to system
theory, e.g., [27]. In fact, the form (1) (but without constraints
Hixi = 0) is given in [26] as one representation of this
perspective. We stress that no explicit distinction is made
between inputs and outputs in (1), even though the external
variable wi could be partitioned as such (see again [27]). C

Remark 2: The algebraic constraints in (1) provide a
flexible system description that will turn out to be useful
in defining system composition (in Section III) as well as
in formalizing complex specification, see the example in
Section V. C

Due to the algebraic constraints in (1), not all initial
conditions lead to feasible trajectories. This motivates the
introduction of the consistent subspace V∗i as the set of initial
conditions xi(0) for which there exists (for some di(·)) a
trajectory xi(·) that satisfies the constraints, i.e., Hixi(t) = 0
for all t ∈ R+. The consistent subspace can be characterized
as the largest (with respect to subspace inclusion) subspace
Vi ⊂ Xi such that

AiVi ⊂ Vi + imGi, Vi ⊂ kerHi, (2)

see, e.g., [22], [13].
Following results on unconstrained systems in [16], [19]

and constrained systems in [22], the notion of simulation
relation is introduced as a means for comparing the behavior
of systems Σ1 and Σ2. Such system comparison will turn
out to be crucial for expressing rich system specifications.

Definition 1: A linear subspace S ⊂ X1 × X2 satisfying
πXi

(S) ⊂ V∗i , i ∈ {1, 2}, is a simulation relation of Σ1 by
Σ2 if, for all (x1(0), x2(0)) ∈ S, the following hold:

1) for each driving function d1(·) such that the corre-
sponding state trajectory x1(·) with initial condition
x1(0) satisfies x1(t) ∈ V∗1 for all t ∈ R+, there exists a
driving function d2(·) such that the corresponding state
trajectory x2(·) with initial condition x2(0) satisfies(

x1(t), x2(t)
)
∈ S (3)

for all t ∈ R+;
2) the external variables are equal, i.e.,

C1x1(0) = C2x2(0). (4)

Whereas simulation relations are defined in terms of
system trajectories, equivalent algebraic conditions can be
obtained using standard arguments from geometric control
theory, e.g., [28], [3], [24]. This is formalized next.

Lemma 1: A linear subspace S ⊂ X1 × X2 satisfying
πXi

(S) ⊂ V∗i , i ∈ {1, 2}, is a simulation relation of Σ1

by Σ2 if and only if the following conditions hold for all
(x1, x2) ∈ S:

1) for all d1 ∈ D1 such that A1x1 + G1d1 ∈ V∗1 , there
exists d2 ∈ D2 such that A2x2 +G2d2 ∈ V∗2 and(

A1x1 +G1d1, A2x2 +G2d2
)
∈ S; (5)

2) the external variables are equal, i.e.,

C1x1 = C2x2. (6)

Proof: The proof follows that of [13, Proposition 3.1],
see also [19, Proposition 2.9] for unconstrained systems.

Now, simulation can be defined directly using the notion
of simulation relation in Definition 1.

Definition 2: A system Σ1 is said to be simulated by Σ2

(or, Σ2 simulates Σ1), denoted Σ1 4 Σ2, if there exists a
simulation relation S of Σ1 by Σ2 satisfying πX1(S) = V∗1
and πX2(S) ⊂ V∗2 . A simulation relation with this property
will be referred to as a full simulation relation.

The following lemma gives an important property of the
notion of simulation, which enables its use as a means for
comparing the behavior of systems Σi. The result of this
lemma will be exploited later.

Lemma 2: Simulation 4 is a preorder. Namely, it is
1) reflexive, i.e., Σ1 4 Σ1 for any Σ1;
2) transitive, i.e., for any systems Σi, i ∈ {1, 2, 3}

satisfying Σ1 4 Σ2 and Σ2 4 Σ3, it holds that
Σ1 4 Σ3.

Proof: Reflexivity of the simulation operation follows
by choosing S = {(x1, x1) | x1 ∈ V∗1}, which is easily veri-
fied to be a full simulation relation of Σ1 by itself. To prove
transitivity, let S12 and S23 be (full) simulation relations of
Σ1 by Σ2 and Σ2 by Σ3, respectively. Following [11], define

S13 =
{
(x1, x3)

∣∣ ∃x2 ∈ X2 such that

(x1, x2) ∈ S12, (x2, x3) ∈ S23
}
. (7)

Then, it can be checked that S13 defines a full simulation
relation of Σ1 by Σ3.
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III. SYSTEM COMPOSITION

In this section, we consider the interconnection of systems
through their external variables. Given two systems Σi, i ∈
{1, 2}, of the form (1), their composition Σ1⊗Σ2 is defined
as the system resulting from setting

w1 = w2. (8)

Thus, system composition is regarded as variable sharing; a
perspective that is advocated in, e.g., [27].

Following (8), a realization of Σ1⊗Σ2 is given as

Σ1⊗Σ2 :

 ẋ⊗ = A⊗x⊗ +G⊗d⊗,
w⊗ = C⊗x,
0 = H⊗x,

(9)

with state x⊗ = (x⊗1 , x
⊗
2 ) ∈ X1 × X2, external variable

w⊗ ∈ W , and driving variable d⊗ = (d⊗1 , d
⊗
2 ) ∈ D1 × D2.

The linear maps in (9) are given by

A⊗ =

[
A1 0
0 A2

]
, G⊗ =

[
G1 0
0 G2

]
, (10)

C⊗ = 1
2

[
C1 C2

]
, H⊗ =

H1 0
0 H2

C1 −C2

 . (11)

Note that the final constraint imposed by H⊗ restricts the
external behavior of (9) to the external behavior that is
common to Σ1 and Σ2, which agrees with (8). Due to
this additional constraint, the consistent subspace V⊗,∗ of
Σ1⊗Σ2 can not easily be expressed in terms of those of
Σ1 and Σ2. Instead, recall that V⊗,∗ is the largest subspace
V⊗ satisfying

A⊗V⊗ ⊂ V⊗ + imG⊗, V⊗ ⊂ kerH⊗. (12)

The next result states that the composed system Σ1⊗Σ2

is simulated by both Σ1 and Σ2. In fact, it is the largest
(with respect to simulation) system with this property.

Theorem 3: Consider systems Σi, i ∈ {1, 2}, of the
form (1) and let their composition Σ1⊗Σ2 be defined as
in (9)–(11). Then, the following two statements hold:

1) For i ∈ {1, 2}, Σ1⊗Σ2 is simulated by Σi, i.e.,

Σ1⊗Σ2 4 Σi. (13)

2) Let Σ be a system of the form (1) that is simulated
by both Σ1 and Σ2. Then, it is also simulated by
Σ1⊗Σ2. Stated differently, the following holds:

Σ 4 Σi, i ∈ {1, 2} =⇒ Σ 4 Σ1⊗Σ2. (14)

Proof: The proof can be found in [8, Appendix A].
Theorem 3 thus formalizes the intuition that the intercon-

nection of systems through variable sharing in (8) can only
restrict the behavior of systems (the first statement of the
theorem). Another important consequence of Theorem 3 is
that the property of simulation is preserved under system
composition, as stated next.

Theorem 4: Let Σi and Σ′i, i ∈ {1, 2}, be systems of the
form (1) such that Σ1 4 Σ′1 and Σ2 4 Σ′2. Then,

Σ1⊗Σ2 4 Σ′1⊗Σ′2. (15)

Proof: From the first statement in Theorem 3 we obtain

Σ1⊗Σ2 4 Σi 4 Σ′i, (16)

for i ∈ {1, 2} and where the final simulation relation
follows from the assumption Σi 4 Σ′i. Then, transitivity
of the simulation relation (see Lemma 2) gives Σ1⊗Σ2 4
Σ′i, after which the application of the second statement of
Theorem 3 leads to (15).

IV. CONTRACTS AS SPECIFICATIONS

Consider the linear dynamical system

Σ :

 ẋ = Ax+Gd,
w = Cx,
0 = Hx,

(17)

as in (1), but with indices removed for ease of presentation.
The system (17) can interact with its environment through
the external variable w. To make this explicit, an environment
E is defined to be a system of the same form, i.e.,

E :

 ẋe = Aexe +Gede,
we = Cexe,
0 = Hexe,

(18)

with xe ∈ X e and driving variable de ∈ De. Finally, its
external variables we take values in the same spaceW as the
system (17), i.e., we ∈ W . Consequently, the interconnection
of Σ and E can be considered by setting w = we, leading
to the system E ⊗Σ with external variables w ∈ W .

We are interested in guaranteeing properties of Σ when
interconnected with relevant environments E . To make this
explicit, two systems will be introduced. First, define as-
sumptions A as the system

A :

 ẋa = Aaxa +Gada,
wa = Caxa,
0 = Haxa,

(19)

with xa ∈ X a, da ∈ Da, and external variables wa ∈ W .
Next, guarantees G are defined as

G :

 ẋg = Agxg +Ggdg,
wg = Cgxg,
0 = Hgxg,

(20)

where xg ∈ X g , dg ∈ Dg , and wg ∈ W . Note that both
the assumptions (19) and guarantees (20) are systems of the
same form as Σ in (17) and that they share the same space
of external variables. Finally, X a, Da, X g , and Dg above
are all finite-dimensional vector spaces.

The introduction of A and G allows for defining contracts.
Definition 3: A contract C is a pair of systems (A,G) as

in (19) and (20).
The relevance of contracts is given by their use as formal

specifications for systems Σ as in (17). This is made explicit
using the following definition.

Definition 4: An environment E as in (18) is said to be
compatible with the contract C = (A,G) if it is simulated
by the assumptions A, i.e., E 4 A. A system Σ as in (17)
is said to be an implementation of the contract C = (A,G)
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if the composition of Σ with any compatible environment is
simulated by the guarantees G, i.e.,

E ⊗Σ 4 G (21)

for all E 4 A.
A contract C thus gives a formal specification for the

external behavior of a system Σ through two aspects. First, it
specifies (by the assumptions A) the class of environments in
which the system is supposed to operate. Second, it charac-
terizes the required behavior of Σ through the guarantees
G, which the system needs to satisfy for any compatible
environment.

Remark 3: Whereas the concept of contracts was origi-
nally proposed in the scope of software engineering in [15],
Definition 3 is inspired by assume/guarantee contracts in
formal methods developed in [6], see also the recent book [7]
for a detailed discussion. We note that these works consider
models of computation that are inherently discrete in nature,
such that the theory developed in [6], [7] is not applicable
to continuous dynamical systems as in (17). C

Whereas Definition 4 defines contract implementation
using a class of environments, the verification of contract
implementation can be performed on the basis of the contract
C = (A,G) directly, i.e., without explicitly constructing all
compatible environments. This is stated next.

Lemma 5: Consider a system Σ as in (17) and a contract
C = (A,G). Then, Σ is an implementation of the contract if
and only if

A⊗Σ 4 G. (22)

Proof: This is a direct result of Theorem 3 and the fact
that E = A is a compatible environment.

An important consequence of Lemma 5 is that it allows for
efficiently verifying whether a system Σ implements a given
contract C. To do so, the following theorem is instrumental.

Theorem 6: Consider a system Σ as in (17) and a contract
C = (A,G). Let the consistent subspaces of A⊗Σ and G
be denoted as V⊗,∗ and Vg,∗, respectively. Then, a linear
subspace S ⊂ X × X a × X g satisfies πXa×X (S) ⊂ V⊗,∗
and πXg (S) ⊂ Vg,∗ and is a simulation relation of A⊗Σ
by G if and only if[

A⊗ 0
0 Ag

]
S ⊂ S + im

[
G⊗ 0
0 Gg

]
, (23)[

imG⊗ ∩ V⊗,∗
0

]
⊂ S +

[
0

imGg ∩ Vg,∗

]
, (24)

S ⊂ ker

H⊗ 0
0 Hg

C⊗ −Cg

 , (25)

where the linear maps A⊗, G⊗, C⊗, H⊗ form a realization
of A⊗Σ. The system Σ implements the contract C if and
only if there exists a linear subspace S satisfying the above
and, in addition, πXa×X (S) = V⊗,∗.

Proof: The proof is given in [8, Appendix B].
Remark 4: Theorem 6 enables the efficient algorithmic

verification of contract implementation through the use of

tools from geometric control theory, e.g., [28], [24]. Namely,
the so-called invariant subspace algorithm can compute the
largest (in the sense of subspace inclusion) subspace S that
satisfies (23) and (25). For this subspace S∗, the condition
(24) as well as πX×Xa(S) = V⊗,∗ then need to be verified,
which can again be done algorithmically. For an example
of the use of the invariant subspace algorithm for system
(bi)simulation (albeit for a different class of systems than
the one studied in this paper), see [19]. C

Remark 5: From condition (22) in Lemma 5 and Theo-
rem 3, it can be concluded that if Σ is an implementation
of C = (A,G), it is also an implementation of (A,A⊗G)
(and vice versa). There is thus no restriction in replacing G
by G′ = A⊗G. C

A distinguishing feature of using contracts as specifica-
tions is that contracts themselves can be compared through
a notion of refinement (see [4] for a similar definition in a
more abstract setting).

Definition 5: A contract C′ = (A′,G′) is said to refine a
contract C = (A,G), denoted as C′ 4 C, if the following two
conditions hold:

A 4 A′, A⊗G′ 4 G. (26)

The above definition allows one to reason about tightening
or relaxing specifications, where we note that this involves
two aspects. Namely, a contract C′ refines C if it simultane-
ously enlarges the class of environments and asks for tighter
guarantees. This observation is made explicit as follows.

Theorem 7: Let C′ = (A′,G′) and C = (A,G) be
contracts such that C′ 4 C. Then, the following holds:

1) If E is a compatible environment for C, then it is also
a compatible environment for C′.

2) If Σ is an implementation of C′, then it is also an
implementation of C.

Proof: Statement 1 is a direct result of the condition
A 4 A′ in (26), as transitivity of the simulation relation
(see Theorem 2) gives that E 4 A implies E 4 A′ (recall
Definition 4 on compatibility of an environment).

To prove statement 2, Let Σ be an implementation of C′.
Now, consider

A⊗Σ 4 A′⊗Σ 4 G′. (27)

Here, the first simulation relation is the result of Theorem 3
and A 4 A′, whereas the second follows from the assump-
tion that Σ implements C, i.e., A′⊗Σ 4 G′ by Lemma 5.
Using the definition of system composition and Theorem 3,
we also have A⊗Σ 4 A, after which the same theorem
gives A⊗Σ 4 A⊗G′. The result then follows from (26)
and transitivity of the simulation relation.

Remark 6: When regarded as a means for characterizing
control specifications, contracts in Definition 3 provide an
alternative to specifications expressed as dissipativity or set-
invariance properties, see [25], [20], [9]. Contracts have the
unique feature that they explicitly characterize the set of
environments in which a system Σ is supposed to operate. In
addition, the expression of contracts as (a pair of) dynamical
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s1, v1 s2, v2

Fig. 1. A vehicle following system.

systems and the use of the notion of simulation for com-
paring system behavior allows for defining specifications in
which dynamic behavior can explicitly be taken into account,
potentially allowing for expressing richer specifications than
in dissipativity or set-invariance theory. C

V. ILLUSTRATIVE EXAMPLE

To illustrate the assume/guarantee reasoning enabled by
contracts, consider the vehicle following system in Figure 1.
We aim to show that a given controller for the follower vehi-
cle (with index 2) guarantees that the inter-vehicle distance
to its predecessor satisfies a certain spacing policy, regardless
of the behavior of the predecessor.

For the vehicle following system, the position si and
velocity vi, i ∈ {1, 2}, of both vehicles are regarded as the
external variables, such that

wT =
[
s1 v1 s2 v2

]
, (28)

and W = R4. We assume that the exact dynamics of the
first vehicle is unknown, but that the second vehicle satisfies

ṡ2 = v2, v̇2 = u2, (29)

and implements the controller

u2 = h−1(v1 − v2) + kh−1(s1 − s2 − hv2), (30)

for some h, k > 0. Now, the objective is to show that the
controller (30) guarantees tracking of the so-called constant
headway spacing policy (see, e.g., [10]), i.e., that

s2(t)− s1(t) = hv2(t) (31)

holds for all t ∈ R+. To guarantee this property using a
contract C = (A,G), the requirement (31) is captured by
choosing the guarantees G as in (20) with state xg = wg

according to (28) and such that

Ag = I, Gg = I, Cg = I, Hg =
[
−1 0 1 h

]
. (32)

Note that the guarantees G merely constrain the external vari-
ables wg through the constraint Hg (corresponding to (31))
and that the choice for Ag , Gg , and Cg does not impose
further restrictions. As a result, it is easy to show that the
consistent subspace of G is given as Vg,∗ = kerHg .

Next, even though the exact dynamics of the first vehicle
is unknown, it is safe to assume that its position s1 and
velocity v1 satisfy the kinematic relation ṡ1 = v1. This can
be expressed by choosing the assumptions A in (19) as

Aa =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, Ga =


0 0 0
1 0 0
0 1 0
0 0 1

, Ca = I, (33)

0 2 4 6 8 10 12 14

0

1

2

3

t [s]

v
1
,v

2
[m

/s
],
e

[m
]

v1
v2
e

Fig. 2. Simulation of the model (29), (30), and (37) for initial conditions
[ 1 2 0 1 ]T ∈ kerHg (solid) and [ 1 2 0.8 1 ]T /∈ kerHg (dashed)
and parameters h = 1, k = 0.25, c = 0.5. Here, e = −s1 + s2 + hv1
and the external disturbance is chosen as d1(t) = 1 for t ∈ [0, 5) and
d1(t) = 1 + sin(t− 5) for t ≥ 5.

and with Ha = 0, corresponding to the state xa = wa. We
stress that the form (33) characterizes the kinematic relation
of the first vehicle, but does not constrain the behavior of
the second vehicle (in terms of s2 and v2).

Given the contract C = (A,G) specified by (32) and (33),
it remains to be shown that the vehicle (29) with controller
(30) satisfies the contract. To this end, the closed-loop system
Σ as in (17) (with state x = w) is represented as

A =


0 0 0 0
0 0 0 0
0 0 0 1

kh−1 h−1 −kh−1 −k − h−1

, G =


1 0
0 1
0 0
0 0

, (34)

and with C = I , H = 0. Similar to before, we stress that the
system (34) does not pose any restrictions on the behavior of
the first vehicle, but only captures the dynamics (29)–(30).

In order to use Theorem 6 to verify contract implementa-
tion, the invariant subspace algorithm (see Remark 4) is used
to compute the largest linear subspace S satisfying (23) and
(25). This yields

S =
{
(xa, x, xg)

∣∣ xa = x = xg, xg ∈ Vg,∗}. (35)

Then, after noting that the consistent subspace of the com-
position A⊗G is given by V⊗,∗ = {(xa, x) |xa = x}, it can
be verified that S in (35) also satisfies (24). Hence, S is a
simulation relation of A⊗Σ by G.

We note that, by definition of contract implementation and
simulation (see Definition 2), the simulation relation S needs
to be full in order to guarantee contract implementation, see
Theorem 6. However, this is not the case as

πXa×X (S) =
{
(xa, x)

∣∣ xa = x, x ∈ Vg,∗} ( V⊗,∗. (36)

This limitation stems from the fact that satisfaction of the
spacing policy (31) is not guaranteed for initial conditions
x0 of Σ that do not satisfy the constraint Hgx0 = 0.
Nonetheless, for initial conditions x0 ∈ kerHg = Vg,∗, the
existence of the simulation relation S guarantees that the
controlled vehicle (29)–(30) achieves tracking of the spacing
policy (31) (captured in G) for any preceding vehicle that
satisfies the kinematic relation (captured in A).
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To illustrate this, let the dynamics of the first vehicle be
given as

ṡ1 = v1, v̇1 = −cv1 + d1, (37)

for some constant c > 0 and external disturbance d1. It
can be verified that the dynamics (37) is simulated by the
assumptions A in (33) (when (37) is appended with arbitrary
dynamics for the second vehicle in a similar way as in (33)).
Hence, the satisfaction of the spacing policy is guaranteed
for initial conditions x0 ∈ kerHg . This is confirmed by
the results in Figure 2, which depicts (in solid lines) a
time simulation of the model (29), (30), and (37) for initial
conditions x0 ∈ kerHg and confirms that the spacing policy
(31) is satisfied for all time t ≥ 0 (even when the first vehicle
is subject to time-varying disturbances). Finally, we note
that it can in addition be shown that the subspace kerHg

is attractive, even though this is not a requirement in the
contract C = (A,G). This is illustrated by a simulation in
Figure 2 as well (in dashed lines).

VI. CONCLUSIONS

Assume/guarantee contracts for dynamical systems are
introduced in this paper as a means of characterizing control
system specifications. For these contracts, a result is given
that enables efficient algorithmic verification of contract
satisfaction and the notion of refinement is introduced to
allow for comparison of contracts.

We regard this work as the first step towards contract
theory for continuous-time dynamical control systems. For
such theory, tools for system composition are crucial (see
[17], [7]) and future work will focus on this topic. The
expression of relevant control specifications in terms of
contracts will be a second topic of further research.
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