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Abstract— A control theoretic analysis of a simple error cor-
rection scheme for lossy packet-switched networks is presented.
Based on feedback information from the error correction process
in the receiver, the sender adjusts the amount of redundancy
using a so called extremum-seeking controller, which do not
rely on any accurate model of the network loss process. The
closed-loop system is shown to converge to a limit cycle in a
neighborhood of the optimal redundancy. The result are validated
using packet-based simulations with data from wireless sensor
network experiments.

I. INTRODUCTION

There is a wide range of applications using communication
networks that need timing and reliability guarantees. Exam-
ples are found from multimedia streaming and IP telephony
to networked embedded systems and industrial automation.
Varying delays and information loss impose fundamental lim-
itations for what can be achieved. For real-time applications,
retransmission of lost data is not an option, but other tech-
niques are needed. For certain application domains, such as
multimedia streaming, several error concealment techniques
have been proposed [1]. In the control literature, there are
recent advances on how to cope with resource limitations in
the communication of sensor and actuator data, e.g., [2]. In
this paper, we take a different approach and ask the question
on how to develop general mechanisms between the network
and the application to handle the network imperfections.

A common way to deal with network imperfections is to
introduce channel coding. By modifying the transmitted data
(e.g., adding redundancy), the probability that the message is
successfully transmitted can be increased. There is a tradeoff
between quality and real-time performance, so the optimal
amount of redundancy depends on the current network state.
Hence, the goal of an adaptive coding scheme is to find an
optimal operating point given the current application demand
and the network state. Previous work in this area includes both
analysis of coding with different amount of redundancy [3],
[4] and algorithms for adapting the coding [4], [5].

Most adaptation schemes for error correcting codes rely
on a model of the network loss process for determining the
amount of redundancy. For general packet-switched networks,
it is hard to obtain accurate network models. We have therefore
studied an extremum seeking error control scheme that provide
good adaptation without relying on a loss model. In [6] it was
shown that by considering the outcome of the error correction
process, it is possible to adapt the redundancy amount even in
presence of model errors. This work was extended in [7] with
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the introduction of a cost function and a hybrid control law that
switches between feedforward and feedback control actions.
In contrast to several other extremum seeking controllers, like
[8], no local convex approximation of the objective function
is needed. Simulations showed that the extremum-seeking
feedback mechanism provides a robust way for finding the
optimum without relying on a model of the loss process,
while the feedforward change detection filter improves the
transient behavior. This scheme is not intended to act as a new
protocol but rather as a protocol booster. These are modules
that can improve the performance of a protocol, but still being
transparent to it. The main purpose of the protocol boosters
is to enable faster evolution and customization of existing
protocols, compared to changing or replacing the protocol
itself [9]. In this context, error correction has been tested with
encouraging results [10].

The main purpose of this paper is to provide a rigorous
analysis of the feedback scheme for error correction discussed
above. It is shown that the scheme can be considerably
simplified under certain conditions, and that this simplified
model is suitable for stability and performance analysis. The
discrepancies between the original and the simplified models
are discussed, and the analysis is validated with experimental
data from a real sensor networks. The outline of the paper is
as follows. In Section II the problem formulation is given, and
Section III presents our models and the control architecture.
Closed-loop analysis is done in Section IV and the experimen-
tal validation in Section V. Finally, Section VI concludes the
paper.

II. PROBLEM FORMULATION

We consider a setup where packets are collected into blocks
of fixed size N in the sender. In the block generated at time
t, there are ut redundancy packets and N − ut packets of
application data. The so called minimum distance is ut +
1, so if the code is maximum distance separable (e.g., a
Reed Solomon code), then up to ut packet losses can be
corrected [11]. In other words, if at least any N − ut are
received, all the original information can be recovered. When
systematic coding is used, the original data are not encoded
but sent as is in the N − ut data packets. Hence, information
is transmitted even if more than ut packets are lost. This
amount will then depend on how many original application
packets are actually received. Let X1

t ∈ [0, N − ut] and
X2

t ∈ [0, ut] be stochastic variables denoting the number
of received application and redundancy packets, respectively.
Then the number of recovered data packets are

yt =

{
N − ut if X1

t + X2
t ≥ N − ut

X1
t if X1

t + X2
t < N − ut
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Fig. 1. The cost function (1) in the given setup for three different values of
the packet loss probability.

If an insufficient number of application packets are received,
some data is lost introducing a distortion on the decoding of
the original message. The distortion can be measured in several
ways. Here, we consider the distortion signal dt to be simply
the difference between the number of sent application data
packets and the number of recovered data packets, i.e.,

dt = N − ut − yt

This distortion is affected by the network loss process, denoted
pt, and the amount of redundancy used.

The cost function used in this analysis is given by

c(d, u) =

(
d

N

)2

+ ρ
u

N
(1)

where ρ > 0 is a given parameter. The cost function reflects
that it is usually important to not allow high distortion or low
rate of transmission information. By assuming a fixed packet
loss probability it is possible to calculate the cost function,
which is shown in Figure 1 for some values of p.

III. CONTROL STRUCTURE AND CLOSED-LOOP MODEL

In this section we present the control architecture for the
error correction scheme and the closed-loop model of the
feedback system.

A. Control Structure
Figure 2 indicates that both the network loss process p and

the cost c are sent back from the receiver to the sender. Note
that the plant for this feedback control system is the error
correction process, with redundancy u as input and the cost
c as output. While u has a direct influence on the cost c,
it has little influence on the loss process. Thus, the signal p
is in the figure considered as an external disturbance acting
on the system and the cost can be seen as a function of u
parameterized by p. In the following we discuss the feedback
loop of this system. A discussion on the general control
structure and the feedforward control based on p is given
in [7].

The purpose of the feedback is to find the optimum of the
cost function c. The optimum is unknown, but can be searched
for implicitly since c is measured. To find the optimum,
we therefore utilize an extremum-seeking controller. Such a
controller for this specific setup is given by

ut+1 = ut − β sgn(ud
t c

d
t ) (2)

NetworkController
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Fig. 2. A general control structure for error correction with indication of
feedforward and feedback information.

PSfrag replacements

x(t)

v(t)

w(t)z(t)

v(t)

c(t)

u(t) p(t)

F (s)

F (s)

−
β

s
h(·)

Π

Fig. 3. Block diagram representing a simplified model of the systems in
Figure 2. The controller in Figure 2 is given by the dashed line and the
network by the nonlinear block h(·). This model is referred to as the Double
loop model.

where β > 0 is a control parameter and ud
t and cd

t denote
derivative estimates at time t of the signals ut and ct, respec-
tively. The controller is inspired by the switching controllers
in [12]. It basically estimates on which side of the peak of
the cost function the system is, and then moves towards that
peak.

B. Closed-Loop Model of the Feedback System
A continuous-time model for the extremum-seeking con-

troller and the plant is derived next. Suppose the network loss
process is constant pt = p. Then we can view the cost as a
static, nonlinear function of the redundancy:

c(t) = h (u(t))

The continuous version of the control law (2) is

u̇(t) = −β sgn(ud(t)cd(t)) (3)

where the estimated derivatives are obtained by a linear filter
F (s). With these assumptions, we have the model, denoted
Double loop model, shown in Figure 3. In the figure, we have
x(t) = ud(t) and w(t) = cd(t).

Figure 4 represents a simplified model of Figure 3, and is
called the Single loop model. It is obtained by opening the loop
to the right in Figure 3, interpreting w(t) as a disturbance, and
introducing G(s) = −β

s
F (s). Note that w(t) depends on u(t)

as well as on the nonlinearity and the filter F (s). The purpose
of this model is to use it for describing function analysis in
next section.

IV. ANALYSIS

A more thorough investigation of the behavior of the feed-
back system can be done using describing function analysis.
First the simplified control loop is studied. Simulations of the
model in Figure 3 will also be used to investigate the agree-
ment between the models. The analysis aims at understanding
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Fig. 4. Block diagram representing the simplified network model denoted
the Single loop model. One of the loops of the Double loop model in Figure 3
has been cut and is represented by the external disturbance w.

and describing the solution to the control system during steady
state. Our proposition is that that the feedback controller will
minimize the cost without explicit knowledge of the cost
function. This will be showed by proving that the solution
will converge to a neighborhood of the optimum. Moreover,
the solution converges to a stable limit cycle with amplitude
and frequency dependent on the filter, the controller gain β
and the nonlinearity.

A. Stability Analysis of Feedback Algorithm
First we prove that the feedback algorithm converges to an

invariant neighborhood of the optimum. Suppose

ut+1 = ut − β sgn(∆ut∆ct) (4)

where ∆ is defined as the difference operator, i.e. ∆ut =
ut − ut−1. This difference is an idealization of the derivative
approximation performed by the filter F .

Proposition 4.1: Assume that the relation between c and u
are given by a static and unimodal function h(·) ∈ C1, i.e.
c = h(u). Then the control law (4) will give convergence
to a neighborhood of the optima u∗, in the sense that ∃T :
|ut − u∗| < 2β, ∀t > T . Moreover, the number of blocks it
will take to converge is bounded above by

T ≤

⌈
min(|u0 − (u∗ − 2β)|, |u0 − (u∗ + 2β)|)

β

⌉

+ 2

with u0 being the initial value.
Proof: Without loss of generality we may assume that

u∗ = 0. Moreover, since h(·) is assumed to be unimodal we
have that

h′(u) < 0 if u < 0

h′(u) > 0 if u > 0
(5)

The time difference ∆ct can be expressed as

∆ct = ct − ct−1 = h(ut) − h(ut−1) =

= (ut − ut−1)h
′(ξ) = ∆uth

′(ξ), ξ ∈ [ut−1, ut]

with help from the mean value theorem. Inserting this in
Equation (4) gives

ut+1 = ut − β sgn(∆ut∆ct) =

= ut − β sgn(∆uth
′(ξ)∆ut) =

= ut − β sgn
(
(∆ut)

2h′(ξ)
)

=

= ut − β sgn(h′(ξ)), ξ ∈ [ut−1, ut]

For this system, at a given time t = t0, there may be several
possible situations.

We may first consider the case where both ut0 and ut0−1

are less than u∗ = 0. In that case, h′(ξ) < 0 and the control

update will be ut0+1 = ut0 +β. Hence the control signal will
increase towards the optimum. The case with both ut0 and
ut0−1 greater than u∗ is similar.

To see what happens when the control signal reaches the
optimum, we consider the other case when ut0 and ut0−1 are
on different sides of u∗. If

ut0−1 < u∗ < ut0 (6)

then h′(ξ) may have either sign and ut0+1 may move either
towards (ut0+1 = ut0 − β) or from (ut0+1 = ut0 + β) the
optimum. In the first case, |ut0+1 − u∗| < β since

u∗ < ut0 < u∗ + β ⇒ u∗ − β < ut0+1 < u∗

where the first inequality comes from (6) together with the
control law (4) and the implication follows from ut0+1 =
ut0 − β. If ut0+1 = ut0 + β, on the other hand, we have that

u∗ < ut0 < u∗ + β ⇒ u∗ + β < ut0+1 < u∗ + 2β

and |ut0+1 − u∗| < 2β.
To conclude, we see that we will always move towards the

origin if both ut and ut−1 are on the same side of the optimum.
This will always be the case if |ut−u∗| ≥ β. If |ut−u∗| < β,
on the other hand, ut and ut−1 may be on each side of the
optimum. In that case the state may move away to at maximum
2β from the optimum. If it does, we are back in the case when
|ut−u∗| ≥ β and the state will thus move towards the optimum
again.

If the system is not started in this invariant region, time
to converge to can be found by considering the system at
some initial condition u0. Since the initial differences may
be incorrect, the system may initially move away from the
optimum. On the next block, however, the differences will be
correct and the system will move towards the optimum. The
distance to the invariant region from u0 is |u0 − (u∗ − 2β)|
if u0 < u∗ and |u0 − (u∗ + 2β)| if u0 > u∗. With a step of
β each block, it will take

⌈
min(|u0−(u∗−2β)|,|u0−(u∗+2β)|)

β

⌉

to
cover this distance. Adding two blocks includes the case with
an initial step away and then back again.

B. System with Time Delay on the Feedback Channel
If there is a fixed an known time delay τ on the feedback

channel, it is still possible to prove stability. This means that
at time t, information on the cost at time t− τ , i.e. c[t − τ , is
available. Note that this can be achieved by using timestamps
on the feedback packets. Hence, the control law in this case
is

ut+1 = ut − β sgn(∆ut−τ∆ct−τ ) (7)

Because of the time delay, however, the region to which the
system converges will be larger and in fact also depend on the
time delay.

Proposition 4.2: Assume that the relation between c and u
are given by a static and unimodal function h(·) ∈ C1, i.e.
c = h(u). Then the control law (7) will give convergence
to a neighborhood of the optima u∗, in the sense that ∃T :
|ut − u∗| < 2τβ, ∀t > T . Moreover, the number of blocks it
will take to converge is bounded above by

T ≤

⌈
min(|u0 − u∗ + (2 + τ)β|, |u0 + u∗ − (2 + τ)β|)

β

⌉

+2τ

with u0 being the initial value.



Proof: Without loss of generality we may assume that
u∗ = 0. The time difference ∆ct−τ will then be, using the
unimodal property (5) similarly as in the proof of Theorem 4.1,

∆ct−τ = ∆ut−τh′(ξ), ξ ∈ [ut−τ−1, ut−τ ]

Inserting this in Equation (7) gives

ut+1 = ut − β sgn(h′(ξ)), ξ ∈ [ut−τ−1, ut−τ ]

First, consider the case where ut, t ∈ [t0 − τ − 1, t0] are
all less than u∗ = 0. In that case, h′(ξ) < 0 and the control
update will be ut+1 = ut + β. This will continue at most
until ut−τ−1 > u∗. Then, ut = ut−τ + τβ since there has
been an increase of β for τ time steps. ut is then bound by
u∗ + (τ + 2)β since

u∗ < ut−τ−1 < u∗+β ⇒ u∗+(τ +1)β < ut < u∗+(τ +2)β

The case with ut, t ∈ [t0 − τ −1, t0] are all being greater than
u∗ is similar.

The time to convergence is found in the same way as the
proof of Theorem 4.1, with the invariant region now being
(τ + 2)β. Also, the initial conditions may drive the system in
the wrong direction for τ samples. This, together with τ more
to get back to the initial condition, adds 2τ to the number of
blocks it takes to cover the distance from the initial condition
to the invariant region.

C. Describing Function Analysis

The two previous results showed that the extremum seeking
controller is stable but not asymptotically stable. Hence it is
interesting to further study the solution around the equilibria.
Using describing function analysis, the following proposition
can be proved.

Proposition 4.3: Assume that w(t) is produced by a
squared version of x(t), with signals defined as in Figure 4.
Moreover, w(t) has zero static component and is phase shifted
π compared to x(t). Finally, G(s) is considered as low-pass.

Then, the system in Figure 4 will fulfill the describing
function conditions, with x(t) = A sin(ωt) where A and ω
are found by solving

4

Aπ
e−i π

2 G(iω) = 1

Proof: First, let x(t) be given as A sin(ωt) and w(t) =
B sin(2ωt+ϕ). The modulated signal z(t) will thus have two
frequency components with the same amplitude, and the input
to the relay is

z(t) = Ā sin(

Ψ1
︷ ︸︸ ︷

ωt + ϕ + π/2) + Ā sin(

Ψ2
︷ ︸︸ ︷

3ωt + ϕ − π/2) (8)

with Ā = AB. The output v(t) from the relay is found by
assuming a Fourier series expansion, and then finding the
coefficients. This approach is described in [13]. A general
representation of v(t) is then given as

v(t) =
∞∑

m=0

∞∑

n=−∞(m6=0)

n=0(m=0)

[Pmn sin(mΨ1 + nΨ2)

+ Qmncos(mΨ1 + nΨ2)] (9)

The coefficients Pmn and Qmn are found by the following
integrals

Pmn =
1

2π2

∫∫ π

−π

sgn (B sin(Ψ1) + B sin(Ψ2))

× sin(mΨ1 + nΨ2) dΨ1 dΨ2

Qmn =
1

2π2

∫∫ π

−π

sgn (B sin(Ψ1) + B sin(Ψ2))

× cos(mΨ1 + nΨ2) dΨ1 dΨ2

First we note that, since sgn is odd, Qmn ≡ 0. Evaluating
Pmn gives

Pmn =

{
8

π2(m2−n2) sin
(

π
2 (m − n)

)
for m − n odd.

0 for m − n even.
(10)

Replacing Ψ1 and Ψ2 from (9) the output is

v(t) =

∞∑

m=0

∞∑

n=−∞(m6=0)

n=0(m=0)

Pmn sin(m(ωt + ϕ + π/2)

+ n(3ωt + ϕ − π/2))

=

∞∑

m=0

∞∑

n=−∞(m6=0)

n=0(m=0)

Pmn sin((m + 3n)ωt

+ (m + n)ϕ + (m − n)π/2) (11)

With the filter G(s) being low-pass, we make the standard
assumption in describing function analysis that frequencies
above ω are damped significantly more than at ω. Therefore,
the output components of frequency ω is the only one of
interest. This corresponds to the terms of the sum (12) where
m + 3n = ±1, for which m + n is odd and thereby Pmn 6=
0 according to (11). The output with frequency ω is then
(remember that m ≥ 0)

v(t) =

0∑

n=−∞

8

π2(8n2 − 6n + 1)
sin(ωt + ϕ + π/2 − 2nϕ)

+

−1∑

n=−∞

8

π2(8n2 + 6n + 1)
sin(ωt + ϕ + π/2 + 2nϕ)

These sums are quite hard to evaluate for arbitrary ϕ, but
simplifies significantly if ϕ = jπ, j ∈ Z. For example, if
ϕ = π then, with k = −n,

v(t) =
8

π2

(
∞∑

k=0

1

8k2 + 6k + 1
+

∞∑

k=1

1

8k2 − 6k + 1

)

× sin(ωt + 3π/2)

=

(
2π + 4 ln 2

π2
+

2π − 4 ln 2

π2

)

sin(ωt − π/2)

=
4

π
sin(ωt − π/2)

The signal x(t) = A sin(ωt) in Figure 4 becomes v(t) =
4
π

sin(ωt−π/2), and thus the describing function in this case
is

Nπ(A) =
4

Aπ
e−i π

2
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Fig. 5. The Nyquist plot indicates that the limit cycle is stable, since the
Nyquist curve crosses the positive imaginary axis.
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Fig. 6. A simulation of the Single loop model (Figure 4), where the oscillation
fortifies our describing function assumption.

With use of the describing function found above, the ampli-
tude and frequency of the oscillation is computed by solving
the following equation.

4

Aπ
e−i π

2 G(iω) = 1 (12)

A numerical example will illustrate the describing function
analysis. Let the filter Gd(z) be chosen as

Gd(z) = −β
(1 − a)(z + 1)

(z − a)3
(13)

with parameters a = e−0.2 and β = 0.1. A continuous
approximation of (14) is then given by

G(s) =
−0.01205s2 + 0.04821s − 0.04821

s3 + 0.598s2 + 0.1192s + 0.007921
(14)

This gives the solution to (13) as [ω,A] = [0.106, 5.35]
which is an oscillation with frequency 0.017 Hz and amplitude
5.35. With help of the Nyquist plot of G(iω) reported in
Figure 5, we also note that the limit cycle is expected to be
stable.

Simulation of the Single loop model with the parameters
as in (15) gives the result shown in Figure 6. The amplitude
is around 5.1 and from the frequency spectrum of the signal
of x(t) it is found that there is one major component with
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Fig. 7. A simulation of the Double loop model (Figure 3). The oscillation in
x(t) and w(t) indicates that the Single loop model captures the main dynamic
behavior.
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Fig. 8. A simulation of the Double loop model (Figure 3). The frequency
is slightly higher than in the simplified model, but the assumptions with one
frequency component in x(t) and one in w(t) with twice the frequency seem
to hold.

frequency 0.017 Hz. This coincides very well with the results
in the calculations, why the describing function approach
seems to hold.

Now, it is also interesting to see how well this simplified
model describes the more detailed Double loop model. By
simulating that system, yet again with the same parameters,
we can see that the behavior is not that different. In fact,
the oscillations with amplitude 3.3 and frequency 0.022 Hz
indicate that the simplified model captures the main dynamics
and properties in the system.

The table below shows the frequency and amplitude of the
oscillation with a few different parameter setups, comparing
the two presented models with the predicted values from
Proposition 4.3.

[β a] [0.1 e−
1
5 ] [0.2 e−

1
5 ] [0.1 e−

1
2 ]

Pred. Amp. 5.35 10.71 1.22
Freq. 0.017 0.017 0.037

Single Amp. 3.3 6.5 0.86
Freq. 0.022 0.022 0.048

Double Amp. 5.1 10.1 1.2
Freq. 0.017 0.017 0.037

V. VALIDATION

To further investigate the feedback control scheme ap-
proach, we have validated it using packet based simulations
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with loss data from experiments on a wireless sensor network.

A. Test Bed Description
The test bed includes applications implemented in TinyOS

[14] running on Telos motes [15] and a server (or gateway)
software for bridging between the individual sensor network
and the IP network. The Telos motes read data from their
onboard sensors and send the readings to the server using
the standard TinyOS multi-hop communication protocol. The
server is in charge of the implementation of the algorithm,
since the packet loss rate from the WSN nodes up to the node
base station can be very high (even more then 10%), while
the packet error rate from the server to the remote application
may be small.

B. Experiments
The packet losses from the experiments on the Telos motes

are shown in Figure 9. As seen, the average loss probability
is quite high and the mean value during the experiment was
11.5%. This data were used for packet based simulations,
and also compared with simulations of Model A using the
cost function in Figure 1 with 11.5% packet loss probability.
Time and frequency plots for x(t) in both cases are shown
in Figure 10. There is obviously a limit cycle present, just
as the Double loop model predicts. The oscillation in the
Double loop model has frequency 0.022 Hz and amplitude 6.5
while the packet based simulations gives an oscillation with
approximately half the frequency (0.011 Hz) and an amplitude
of 11. Even though the values differ by approximately a factor
two, it indicates that the model can predict the main behavior
with a limit cycle and also find the order of magnitude of the
oscillation frequency and amplitude.

VI. CONCLUSION

A simple feedback scheme for error correction control has
been studied. In the time domain, it has been proven to
be stable, though not asymptotically stable, and describing
function analysis in the frequency domain has shown the
existence of a limit cycle. This limit cycle is desired for this
type of extremum seeking controllers, and enables it to find
the optimum of an unknown cost function.

The results obtained has also been validated against packet
based simulations using data from experiments on a wireless
sensor network. This comparison indicates that the results
are relevant also for real networks, with presence of network
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Fig. 10. Comparing simulation of Model A (black line) with results of
packet-based simulations using data from an experiment on a wireless sensor
network (grey line). Model A predicts the stable limit cycle on the network
system, with some discrepancy in frequency and amplitude.

characteristics such as loss bursts as well as implementation
aspects such as discretization and quantization.

Future work includes the full implementation of this scheme
on the sensor network test bed to have an even more realistic
validation of this scheme. It is also interesting to try to improve
the models presented here to give more accurate predictions
of the solution properties.
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