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Abstract

Heterogeneous communication networks with their va-
riety of application demands, uncertain time-varying
traffic load, and mixture of wired and wireless links
pose several challenging problem in modeling and con-
trol. In this paper we focus on the round-trip time
(RTT), which is a particularly important variable for ef-
ficient end-to-end congestion control. Based on a sim-
ple aggregated model of the network, an algorithm com-
bining a Kalman filter and a change detection algorithm
is proposed for RTT estimation. It is illustrated on real
data that this algorithm provides estimates of signifi-
cantly better accuracy as compared to the RTT estima-
tor currently used in TCP. We also analyze how wireless
links affect the RTT distribution. Link re-transmissions
induce delays which do not conform to the assumptions
on which the transport protocol is based. This causes
undesired TCP control actions which reduce through-
put. A link layer solution based on adding carefully
selected delays to certain packets is proposed to coun-
teract this problem.

1 Introduction

Congestion control is one of the key components that
has enabled the dramatic growth of the Internet. The
original idea [11] was to adjust the transmission rate
based on the loss probability. The first implementation
of this mechanism, denoted TCP Tahoe, was later re-
fined into TCP Reno. This algorithm (together with
some of its siblings) is now the dominating transport
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protocol on the Internet. The throughput and delay ex-
perienced by individual users are depending on several
factors, including the TCP protocol, link capacity and
competition from other users. As illustrated in Fig-
ure 1, there are also lower layers that may affect the
achieved delay and bandwidth, particularly if part of
the end-to-end connection is a wireless link. Standard
TCP protocols encounter difficulties when wired and
wireless links are mixed, since packet loss and packet
delays on wireless links may be interpreted as conges-
tion by TCP. Several approaches to counteract this prob-
lem has been suggested in the literature. Modifications
of TCP has been proposed [20, 26]. Other methods
try to more directly differentiate loss as being either
due to congestion or due to lossy wireless transmis-
sions [5, 25, 9]. Performance-enhancing proxies is an
alternative in which either split connection schemes or
interception schemes are used. The first approach intro-
duces a virtual user at the link which acts as receiver to
the source and source to the receiver. In the latter ap-
proach, acknowledgments are monitored and dropped
if they indicate packet loss due to link-level retransmis-
sions. Finally, it is possible to counteract the influence
from the wireless link by letting the receiver control the
transmission via its advertised window. See [7, 22] for
further details on these schemes.

The outline of the paper is as follows. In Section 2
a brief presentation of TCP, and especially the relation
to RTT, is given. This motivates the RTT model and
estimation scheme presented in Section 3. A new al-
gorithm based on a Kalman filter and change detec-
tion [10] is proposed for RTT estimation. In scenarios
where new cross-traffic flows cause bottle-neck queues
to rapidly build up, the algorithm is shown to be par-
ticularly useful to track the rapid changes of the RTT. It
gives significantly better accuracy compared to the RTT
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Figure 1: End-to-end congestion control is affected by
the delay and the bandwidth of the wired part of the net-
work, but also by feedback mechanisms in lower layers
of the wireless links.

estimator currently used in most TCP versions. There
are studies of the statistics of network quantities [1, 2]
and even estimation of RTT at the link level [12]. How-
ever, there seems to be minor work on considering RTT
estimation from the perspective of TCP. In Section 4,
we study when lost packets are retransmitted locally as
in the up-link traffic in today’s mobile networks. We
show that the local power control and local link retrans-
mission mechanisms interact with TCP in that the de-
lay distribution may be significantly different from the
assumptions in TCP. This difference triggers spurious
timeouts and thus reduces throughput. We propose a
simple solution to this problem in which the delay dis-
tribution is shaped in the link itself, before packets are
re-transmitted. Another contribution in this direction
is [24].

2 TCP and RTT
TCP is window-based which means that each sender
has a window that determines how many packets in
flight that are allowed at any given time. The transmis-
sion rate is regulated by adjusting this window. For a
network path with available bandwidth b and RTT τ , the
optimal window size is bτ , in the sense that if all users
employed this window there would be no queues and
the link capacities would be fully utilized. Using loss
probability (as in TCP) to measure congestion means
that the capacity of the network cannot be fully uti-
lized. With necessity, queues have to build up (causing

increased delays) and queues have to overflow (caus-
ing loss of throughput). Several methods to cope with
these short-comings have been suggested. In TCP Ve-
gas [4] a source tries to estimate the number of packets
buffered along its path and regulates the transmission
rate so that this number is low (typically equal to three).
One interpretation of this algorithm is that it estimates
the round-trip queuing delay and sets the rate propor-
tional to the ratio of the round-trip propagation delay
and the queuing delay [18]. Both round-trip delays are
obtained from measurements of the RTT.

Congestion can be indicated in more sophisticated
manners than just dropping packets. In random early
detection (RED) [8], packets are dropped before the
buffer is full, with a probability that increases with the
queue length. RED can thus be seen as a way of indi-
rectly signaling the queue length to the source. In ex-
plicit congestion notification (ECN) the links add in-
formation concerning their status to the packets. As
there is only one bit available in the packet header for
ECN, clever coding is required, e.g., random exponen-
tial marking (REM) [3].

The transmission rate control problem can be solved
in a completely decentralized manner, as was recently
shown in [13, 14]. Each source has a (concave) util-
ity function of its rate. The optimization problem is
to maximize the sum of the utility functions for all
sources. It is shown that in order to solve this problem
each source needs to know the sum of the link prices
on the path. The link price is a penalty function corre-
sponding to the capacity constraint. It is a function of
the total arrival rate at the link and can thus be computed
locally at each router. This optimization perspective of
the rate control problem has been taken in a number of
contributions. The developed algorithms can be clas-
sified as (1) primal, when the control at the source is
dynamic but the link uses a static law; (2) dual, when
the link uses a dynamic law but the source control is
static; and (3) primal–dual, when dynamic controls are
used both at the source and the links, see [16, 19] for
nice overviews. By appropriate choice of utility func-
tion even protocols not based on optimization, such as
TCP Reno, can be interpreted as distributed algorithms
trying to maximize the total utility [17, 19]. TCP Vegas
can be classified as a primal–dual algorithm with the
queuing delay as a dynamic link price.

Network state variables such as queueing delays and
RTT are essential for efficient congestion control, as has
been recognized by many researchers, cf., [23]. This
has a simple intuitive interpretation: The ideal window
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is bτ , where b is available bandwidth and τ the RTT.
Hence, the more accurate estimates of b and τ that are
available, the closer to the ideal situation it is possible
to keep each flow. It is also clear that when only such
indirect measures of congestion can be used, through-
put will suffer somewhat, since queues have to start to
build up in order for the source to detect an increased
delay. The queues can be seen as a way to smooth out
the uncertainty in the bandwidth and RTT estimates. It
follows that one can obtain higher throughput than TCP
Reno, since TCP Reno fills up the bottle-neck com-
pletely before reacting.

3 RTT Estimation
Motivated by the previous discussion on the importance
of accurate RTT estimates, we now take a closer look at
short-range RTT from a statistical perspective. The raw
RTT measurements, obtained from packet acknowl-
edgements (ACK’s), include delays caused by transient
effects in the network (attributed to short-lived cross-
traffic). The short-lived duration of these flows means
that their contribution to the RTT can be considered as
noise from the point of view of congestion control. It is
thus reasonable to filter them out. In present versions of
TCP this is done with a first-order low-pass filter. The
average RTT (averaged over a few RTT) often makes
sudden changes due to the appearance of a long-lived
cross-flow somewhere along the path. It is then impor-
tant for the filter to react quickly to this change, since
otherwise buffers will start to build up with enlarged
risk of packet loss and increased delay as consequences.
It is impossible with a first-order filter to rapidly adjust
to these changes. This motivates the use of a filter based
on change detection for RTT estimation, as presented
in this section. Before introducing the algorithm, we
present a simple model for RTT. The section is ended
by experimental evaluations.

3.1 Model
Let τ(t) denote RTT at the time the ACK is received at
the source node. Introduce dl,i(t) for the link delay of
link i, dp,i(t) for the corresponding propagation delay,
and dq,i(t) for the queue delay. Suppose the considered
end-to-end connection has m nodes. Then,

τ(t) =

m∑

i=1

(dl,i(t) + dp,i(t) + dq,i(t)) .

Figure 2: Network node model.

Assume, for now, that the path through the network re-
mains constant during a session. The propagation and
link delay is fairly constant and thus only contributes
with a bias to the RTT estimate. All the major RTT dy-
namics is depending on the evolution of the queue states
along the path.

The simple dynamics of the queue length qi(t) at
node i is a saturated integrator, as illustrated in Fig-
ure 2. Let ci denote the link capacity and ti the time
instant for the packet arrival at node i. Then, RTT at the
time t when the ACK is received is given by

τ(t) =

m∑

i=1

qi(ti)

ci

+ bias,

where the bias term represents the link and propagation
delays. Since queues are ’noisy’ due to the burstiness of
the arrival traffic, the RTT has a considerable fluctuating
characteristic.

3.2 Change detection
The RTT measurements have a high-frequency compo-
nent that is desirable to detect. To be able to follow
step changes in the RTT mean value due to increased
network load, new competing traffic flows, or sud-
den path changes, more advanced algorithms is needed
than the first-order linear filter currently implemented in
most TCP versions. We propose an adaptive filter with
change detection.

Regard RTT as being composed of a smooth desired
RTT signal together with an additative high-frequency
noise component. We thus model the desired RTT as a
noisy observation of a constant exposed to step changes
in the mean. If we denote the sampled RTT by yt and
the desired RTT by xt, we obtain the model

xt+1 = xt + δtvt, δt ∈ {0, 1}

yt = xt + et.

The noisy characteristic of RTT is thus captured by
the measurement noise et with variance Re. The step
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Figure 3: The principle of change detection.

changes in the desired RTT xt is modeled as the pro-
cess noise vt with variance Rv and the discrete variable
δt. If a change occurs at time t, then δt = 1 otherwise
δt = 0. To estimate the sequence δN of instances when
a change occurred is a segmentation problem. The prin-
ciple of change detection is illustrated in Figure 3. The
optimal linear estimator is the Kalman filter (assuming
Gaussian noise) which is used to estimate xt.

To estimate the δN sequence we use a one-sided cu-
mulative sum (CUSUM) algorithm [10]. Combining
the modified Kalman filter with the CUSUM algorithm
yields the following adaptive filter, which we denote the
CUSUM Kalman filter:

x̂t = x̂t−1 +Kt(yt − x̂t−1)

Kt =
Pt−1

Pt−1 +Re

Pt = (1−Kt)Pt−1 + δt−1Rv

εt = yt − x̂t

gt = max(gt−1 + εt − ξ, 0)

if gt > h then

δt = 1 % alarm

gt = 0

else

δt = 0

end

The output of the CUSUM Kalman filter is given by
the estimate of the (desired) RTT x̂t. The filter has two
design parameters: the negative drift ξ and the alarm
threshold h. These parameters are tuned to adjust the
sensitivity in the detection procedure. The same values
have been used in all our initial experiments with sat-
isfying results, so the filter seems fairly robust. Note
that also the variances Rv and Re influence the filter
behavior.

3.3 Experimental evaluation

The objective is to capture the rapid changes that the
RTT undergoes when queues build up when for instance

the traffic load increases abruptly. We developed a mod-
ified ping tool to monitor RTT time series. By sending a
dense stream of small packets the RTT is monitored ef-
fectively without affecting the network load too much.
Note that data is not easily obtained from a TCP session
itself, because a rapid traffic load increase would prob-
ably trigger the RTO mechanism in TCP (which would
mean lack of samples during the transient). Also, if a
queue along the path fill up, packet loss occurrences re-
duces the TCP sending rate with more sporadic time
series as a consequence. Recall that the RTT time in
congestion control is often in fractions of seconds (typ-
ically 10− 500 ms).

We measured the RTT between KTH and the CAIDA
web site.This path is normally about 20 hops, includ-
ing the Atlantic link. The mean RTT is approximately
190 ms. The sending interval (sampling time) of the
ping tool was 30 ms. According to our measurements,
the path is normally not congested with the result that
the RTT almost shows a deterministic behavior with a
low variance. However, sporadically the traffic load in-
creased with the result of suddenly increased and fluc-
tuating queues, which propagated to the RTT. The pro-
posed CUSUM Kalman filter was used on the collected
data sets. The variances Re and Rv were set to the
variance of the RTT samples. The CUSUM design pa-
rameters were set to ξ = 0.005 and h = 0.05 in all
experiments. This was done manually based on initial
experimentall results.

A detection of a sudden step in the RTT mean value
can be seen in Figure 4. The two upper plots show the
sampled RTT values, together with the output of the
CUSUM Kalman filter and the output of the conven-
tional TCP first-order filter (with gain set to 0.9 [11]).
In the lower plot the test statistic gt is plotted and
the change detection alarm is encircled. The CUSUM
Kalman filter estimate is smooth, but still manage to de-
tect a mean change as low as 7 %. Note that the TCP fil-
ter is more sensitive to noise and periodic fluctuations.
As the change in mean is moderate in this example, the
TCP filter adapts quite fast. The RTT mean change is
probably a result of an abrupt change in the traffic load.
An additive static traffic stream as a UDP flow might be
the explanation, but a re-routing inside the network is
also a possibility.

In Figure 5 we see a large change in the mean RTT
of about 100 %. Even if the probing packets are sent
with only 30 ms intervals, the RTT measurements do
not capture the queue building up. The result becomes
a step in the RTT measurements. In this scenario the
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Figure 4: Experimental evaluation of the proposed RTT
estimation algorithm on a small change in RTT.

proposed RTT estimation algorithm reacts after only a
few samples, and is much faster than the filter in TCP.
Note that this time it was no static mean change, but
the queue vanishes after half a second and go down to
its original level. The estimation algorithm reacts on
the reset and adapts almost immediately while the TCP
filter is lagging.

The two given examples show the main features of
the CUSUM Kalman filter: smooth estimates but still
fast adaption when drastic changes occur. In an applica-
tion within a transmission protocol, the sampling time is
typically larger and the measurements tend to be more
spiky. The probability of hitting a plateau as in Figure 5
with more than a few samples is then low. By filtering
out such events the RTT estimate could be kept at the
appropriate level.

4 TCP and Link-Layer Interac-
tion

Poor TCP performance over wireless links is a well
known problem. In this section, we will try to under-
stand the link properties that are problematic, and try to
address them.

The traditional explanation for poor TCP perfor-
mance is that the wireless links drops packets due to
noise on the radio channel, and that TCP interprets
all packet losses as indications of network congestion.

Figure 5: Experimental evaluation of the proposed RTT
estimation algorithm on a large change in RTT. Note
how well the proposed algorithm (CK filter) captures
the rapid change, while the conventional filter in TCP
(srtt) adjusts much slower.

This explanation is a little too simplistic, when consid-
ering wireless links that employ link-layer retransmis-
sions. With such links, we get almost no packet loss,
but instead we get random delays, which, it turns out,
are also problematic for TCP.

Wireless TCP performance can be attacked at several
levels. In this section, we consider link-layer effects.
We believe that as far as possible, the link-layer should
be engineered to be TCP-friendly, reducing the differ-
ences between wired and wireless links. There will nat-
urally be some residual idiosyncrasies of wireless chan-
nels that cannot be dealt with in this way; this approach
should be viewed as complementing both developments
to make TCP more robust to “strange” links, and cross-
layer developments that let the link and the end-node
TCP:s exchange information about link and flow prop-
erties.

4.1 System overview

When using TCP over a wireless link, there are sev-
eral interacting control systems stacked on top of each
other, illustrated in Figure 1. At the lowest level, the
transmission power is controlled in order to keep the
signal to interference ratio (SIR) at a desired level. This
is a fast inner loop intended to reject disturbances in the
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form of “fading”, or varying radio conditions. On top
of this, we have an outer power control loop that tries
to keep the block error rate (BLER) constant, by adjust-
ing the target SIR of the inner loop. Next, we have lo-
cal, link-level, retransmissions of damaged blocks. The
outer loop power control and the link-layer retransmis-
sions operate at a time scale of 20 ms, which is the size
of the timeslot needed for transmission of a single ra-
dio block. Finally, we have the end-to-end congestion
control of TCP.

By modeling the lower layers, we can investigate ef-
fects the link layer control has on TCP performance.
We refer to our previous paper [21] for further details
on the radio model.

4.2 Markov chain

The target block error rate is a deployment trade-off be-
tween channel quality and the number of required base
stations. For UMTS the reference block error rate is of-
ten chosen to be about 10%, see [6], which is what we
will use.

As there is no simple and universal relationship be-
tween the SIR and the block error rate, the outer power
control loop uses feedback from the decoding process
to adjust SIRref. The outer loop uses a fix step size ∆.
It decreases SIRref by ∆ for each successfully received
block, and increases SIRref by 9∆ each time a block is
damaged.

The process can be modeled as a discrete Markov
chain, where state k corresponds to SIRref = k∆. As-
suming that the inner loop power control manages to
keep the actual SIR close to SIRref, and using an appro-
priate channel model, we get a threshold shaped func-
tion f(r) which gives the probability of block damage,
given SIRref = r. Then the Markov chain transitions
from state k to state k+9, with probability f(k∆), and
to state k − 1 with probability 1− f(k∆). The operat-
ing point of the outer loop power control is close to the
point where f(r) = 10%, i.e., the desired block error
rate.

From f(r) and ∆, it is straight forward to compute
the stationary distribution of the Markov chain. Fig-
ure 6 shows the stationary distribution for a BPSK chan-
nel (see [21] for the parameters) and three different val-
ues for ∆.
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Figure 6: Stationary distribution for the power control.
Each mark represents one state of the power control, the
corresponding value of SIRref, and its stationary proba-
bility. The dotted curve is the threshold-shaped func-
tion f(r), scaled to fit in the figure, which represents
the block error probability as a function of SIRref.

4.3 Link-layer retransmission

Since a packet loss probability on the order of 10%
would be detrimental to TCP performance, the link
detects block damage (this is the same feedback sig-
nal that is used for the outer loop power control), and
damaged blocks are scheduled for retransmission. We
will consider one simple retransmission scheme, the
(1,1,1,1,1)-Negative Acknowledgements scheme [15],
which means that we have five “rounds”, and in each
round we send a single retransmission request. When
the receiver detects that the radio block in time slot
k is damaged, it sends a retransmission request to the
sender. The block will be scheduled for retransmission
in slot k + 3 (where the delay 3 is called the RLP NAK
guard time). If also the retransmission results in a dam-
aged block, a new retransmission request is sent and the
block is scheduled for retransmission in slot k+6. This
goes on for a maximum of five retransmissions.

Consider the system at a randomly chosen start time,
with the state of the power control distributed according
to the stationary distribution. For any finite loss/success
sequence (for example, the first block damaged, the
next six received successfully, the eighth damaged), we
can calculate the probability by conditioning on the ini-
tial power control state and following the corresponding
transitions of the Markov chain. In the following sec-
tions, we use these probabilities to investigate the expe-
rience of IP packets traversing the link.
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IP input: 1 2d1 d2

Radio blocks: 1 1 1 2 2 2

IP output: 1 2

Figure 7: IP packets divided into radio blocks

d 0 40 60 100 120 160 180
p 80.6 8.8 9.3 0.6 0.6 0.03 0.03

Table 1: Delay distribution for a wireless link. The de-
lay d [ms] is the delay due to radio block retransmis-
sions, and p [%] is the corresponding probability.

4.4 IP packet delay
As a link employing link-layer retransmission yields a
very small packet loss probability, the most important
characteristic of the link is the packet delay distribution.
If the distribution is sufficiently “friendly” to TCP, then
the layering of the system works nicely, which means
that upper layers like TCP need not be aware of any
particular properties of individual links in the network.

In this section, we compute the packet delay distribu-
tion explicitly from the models described above. Later,
we will also assume that the calculated delay probabil-
ities apply independently to all packets, which should
be fairly close to reality as long as the power control is
working.

When transmitting variable size IP packets over the
link, each packet is first divided into fix size radio
blocks, see Figure7. We let n denote the number of
radio blocks needed for the packet size of interest. For
the links we consider, we have n ≤ 10.

The delay experienced by an IP packet depends on
which, if any, of the corresponding radio blocks are
damaged, and on the number and scheduling of the
block retransmissions. When all blocks are finally re-
ceived correctly, the IP packet can be reassembled and
passed on.

From the probabilities for all possible success/loss
sequences at the radio block level, and for each n,
we can extract explicit probabilities for the possible
IP packet delays. The resulting delay distribution for
our example channel, with a power control step size
∆ = 0.06dB, and n = 2, is shown in Table 1.

The table includes only the delays due to radio block
retransmissions, there is also a fix delay of 40 ms for
original transmission of two radio blocks.

A TCP timeout event occurs when a packet, or its ac-
knowledgment, is delayed too long. Let RTTk denote

the round-trip time experienced by packet k and its cor-
responding acknowledgment. The TCP algorithms es-
timates the mean and deviation of the round-trip time.
Let R̂TTk and σ̂k denote the estimated round-trip time
and deviation, based on measurements up to RTTk. TCP
then computes the timeout value for the next packet as
RTO = R̂TTk + 4σ̂k, which means that the probability
that packet k causes a timeout is given by

P(RTTk > R̂TTk−1 + 4σ̂k−1) (1)

Timeouts that occur when a packet is severely de-
layed, but not actually lost, are called spurious time-
outs. A simplified model of TCP is to assume that the
the estimation is perfect, and that the timeout value is
set to RTO = E(RTT) + 4σ(RTT). From the delay dis-
tribution of Table 1, we get RTO ≈ 103 ms and the
probability that the delay is larger is ≈ 0.68%. This is
the probability of spurious timeout events. When vary-
ing the parameters n,∆, we typically get a probability
of spurious timeout on the order of 0.5–1% [21].

4.5 Improving the link-layer?
It is not trivial to define precisely what properties a link
should have in order to be friendly to TCP. It seems
clear that for example links with normal or uniformly
distributed and independent delays are friendly enough.
One crude measure is to examine the tail of the distribu-
tion. More precisely, if X is a stochastic variable rep-
resenting the identically and independently distributed
packet delays, define

PTO(X) = P(X > E(X) + 4σ(X)) (2)

The motivation for this measure is the calculation of the
timeout value for TCP. Timeout is intended to be the last
resort recovery mechanism. For TCP to work properly,
a spurious timeout must be a rare event.

Also note that PTO(X) is invariant under the addition
of constant delays.

For distributions we know are friendly to TCP, PTO
is small. For a general distribution, assuming only in-
dependence and finite first and second moments, PTO is
bounded by Chebyshev’s inequality. Comparing these
values,

X uniform =⇒ PTO(X) = 0 (3)

X normal =⇒ PTO(X) ≈ 6.3 · 10
−4 (4)

X wireless =⇒ PTO(X) ∼ 100 · 10
−4 (5)

X arbitrary =⇒ PTO(X) = 625 · 10
−4 (6)

7



we see that the two friendly distributions yield a PTO
at least two orders of magnitude below the worst case
given by Chebyshev, while the wireless delay yields a
significantly higher PTO, although still with some mar-
gin to the worst case.

If we want to improve the system, where should we
attack it? The power control design have many con-
straints of its own, relating to radio efficiency and cost
of deployment. It seems difficult to design and motivate
changes to the power control for improving the delay
distribution properties. Improvements to the TCP algo-
rithm in the end-nodes are important, but also difficult
both for technical and practical reasons, such as limited
information about what goes on in the link (note that the
link and the TCP implementations are not only in sepa-
rate layers, they are also geographically separate), and
the complex standardization and deployment process.

However, we do have some engineering freedom in
the link itself. Even if we do not want to modify the
power control, there are other link-local mechanisms
we can add or optimize.

• Optimize the retransmission scheduling, taking ad-
vantage of the block loss correlation that we get
after power control.

• Use error correction coding.

• Tweak the delay distribution by adding additional
delays to selected packets.

In the following section, we investigate the simplest
of these options, namely the third one.

4.6 Introducing additional delays
Assume that we have a discrete delay distribution for
X , P(X = di) = pi, where di < di+1. It is typical, but
not required, that also pi ≥ pi+1. Let µ and σ2 denote
the mean and variance of X .

We consider the following class of tweaks to X . For
each packet that experiences a delay X = di, buffer
the packet so that it gets an additional delay xi. This
defines a new distribution X̃ , P(X̃ = di + xi) = pi (or
if it happens that di + xi = dj + xj for some i 6= j,
the corresponding probabilities are added up). For an
example of what X and X̃ can look like, see Figures 8
and 9.

We can choose the parameters xi freely, constrained
only by xi ≥ 0.

What is the best choice for xi? We choose a maxi-
mum allowed value, ε, for PTO(X̃), and minimizeE(X̃)

under the constraint that PTO(X̃) ≤ ε. This means
that we want to push down our measure of “TCP-
unfriendliness”, while at the same time not adding more
delay than necessary.

We simplify the problem a little by requiring that
PTO(X̃) should correspond to a tail of the original dis-
tribution X . Let k be the smallest value such that∑

i≥k+2
pi ≤ ε. Let c = dk+1 + δ < dk+2, where δ

is a robustness margin. We impose the additional con-
straints PTO(X̃) = c, xi + di ≤ dk+1 for i ≤ k, and
xi = 0 for i > k. Then, for any xi satisfying these new
constraints, we will have PTO(x) =

∑
i≥k+2

pi ≤ ε.
Written as an optimization problem, we have

min E(X̃) (7)

PTO(X̃) = c (8)
x ≥ 0 (9)
xi ≤ dk+1 − di (10)

This is a quadratic optimization problem. To write it
in matrix form, let x denote the vector (x1, . . . , xk)

T ,
and similarly for p and d. Let S = 16diag p −
17ppT , bi = 2pi(16di+ c− 17µ),mi = dk+1− di and
α = 16σ2 − (c − µ)2, and we can rewrite the problem
as

min pTx (11)

xTSx+ bTx+ α = 0 (12)
0 ≤ x ≤ m (13)

Since the symmetric matrix S is typically indefinite, the
problem is not convex. But it can be solved in exponen-
tial time O(k33k), which has not been a problem thanks
to the very limited size of k.

The typical solution is of the form x =
(0, . . . , 0, xj ,mj+1, . . . ,mk)

T . When the optimum has
this form, it means that the cheapest way to to increase
PTO, in terms of mean delay, is to increase the xi cor-
responding to the smallest pi. Necessary and sufficient
conditions for the optimum to be of this form has not
yet been determined.

Now consider the delays di and probabilities pi in
Table 1, and assume that packets are independently de-
layed according to the given probabilities. This dis-
tribution is also shown in Figure 8. Before tweaking
the delays, we have E(X) ≈ 10.6 ms, and PTO(X) ≈
0.68 %.

With ε = 0.1% and δ = 10 ms, the above optimiza-
tion procedure yields k = 4 and the optimal additional
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Figure 9: Optimized delay distribution

delay x ≈ (0, 0, 26, 20)T ms. This modified distribu-
tion is shown in Figure 9. The mean additional delay
is only 2.54 ms, which seems to be a small cost, if
we compare it to the transmission delay for the packet,
which is 40 ms, or the end-to-end delay which neces-
sarily is even larger. We also achieve PTO < ε, what we
actually get is PTO ≈ 0.06%.

4.7 Robustness

The delay seen by the endpoints is the end-to-end delay,
which consists of the delay over our link and additional
queueing and propagation delays in the rest of the net-
work. We model the delay in the rest of the network as
a stochastic variable V (assuming that the sequence of
delays are identically and independently distributed). It
is then relevant to consider PTO(X̃ + V ). Since PTO is
invariant under the addition of constant delays, we can
make the convenient assumption that E(V ) = 0.

If we assume that V and X̃ are independent, we can
derive a simple bound for PTO(X̃ + V ). First define
c′ = E(X̃+V )+4σ(X̃+V ). Note that c′ ≥ c, so that

c′ − xi − di ≥ δ for i ≤ k. Next, we condition on X̃ ,

PTO(X̃ + V ) = P(X̃ + V > c′)

=
∑

i

piP(V > c′ − xi − di)

≤

k∑

i=1

piP(V > δ) +
∑

i>k

pi

≤ P(V > δ) + ε

This bound shows that if the delay variations in the rest
of the network are small enough relative to our robust-
ness parameter δ, PTO(X̃ + V ) will not be much larger
than ε. For typical distributions, the bound for the first
sum is very conservative. This is because the first few
pi dominates, while the corresponding c′ − xi − di are
significantly larger than δ. A more precise bound can
be calculated using additional information about pi and
the distribution of V .

4.8 Performance implications

When computing TCP throughput, there are two dis-
tinct cases: Depending on the bandwidth-delay prod-
uct, throughput can be limited either by the bandwidth
of the path across the network, or by the maximum TCP
window size.

For a small bandwidth-delay product, a modest buffer
before the bottleneck link (which we will assume is our
radio link) will be enough to keep the radio link fully
utilized. Timeouts, if they occur with a low frequency,
will not affect throughput at all. This can be seen for ex-
ample in the performance evaluation [15]: In the scenar-
ios that have a large maximum window size compared
to the bandwidth-delay product, we get a throughput
that is the nominal radio link bandwidth times 1 − p

(where p is the average block loss probability), and
there is no significant difference between different link
retransmission schemes. Only when bandwidth or de-
lay is increased, or the maximum window size is de-
creased, do we see a drastic changes in throughput when
the BLER or retransmission-scheme varies.

Therefore, we will concentrate on the case of a large
bandwidth-delay product. For a concrete example, we
will consider the following scenario (see Figure 10: Ra-
dio link bandwidth 384 kbit/s, packet size m = 1500
bytes, maximum TCP window size w = 7500 bytes
(i.e. five packets), and a constant round-trip delay time,
excluding the radio link itself, of 0.2 s.

9



PC
SIRref

+

Power
Trans. 384kbps Recv.

SIR
− Block

error

ARQRRQ

Network

Delay = 0.2s

TCP

max cwin = 8Kbytes

TCP

ACK

MTU = 1500 bytes

Figure 10: Numerical example

The available radio bandwidth (excluding losses) is
42.2 Kbyte/s. Due to the limited window size, TCP can
not utilize the link fully. The ideal TCP throughput is
one maximum size window per RTT. For the untweaked
link, the mean total RTT is 200+40+10.6 = 250.6ms,
implying an ideal throughput of 29.2 Kbyte/s.

For each spurious timeout, the sending TCP enters
slow start. The window size is reset to 1 packet, and the
slowstart threshold is set to 2 packets. For the next four
round-trip times, we will send 1, 2, 3, and 4 packets,
10 packets less than if we had kept sending a maximum
window of 5 packets every RTT. This leads to the fol-
lowing expression (a more general formula is derived in
[21]).

Throughput =
w

E(RTT)(1 + 10PTO)
(14)

Hence, over the untweaked link, we get a through-
put of 27.4 Kbyte/s. For the tweaked link, we have a
slightly larger RTT (which in itself would decrease the
throughput slightly), and a significantly smaller PTO.
The resulting throughput is 28.8 Kbyte/s. These figures
are summarized in Table 2.

Kbyte/s
Available radio bandwidth 42.2
Ideal TCP throughput 29.2
With wireless link 27.4
Modified wireless link 28.8

Table 2: Throughput summary

The important point is that a simple but carefully se-
lected modification to the link-layer yields a modest but
significant performance improvement.
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