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Abstract—Signed graphs have appeared in a broad variety of
applications, ranging from social networks to biological networks,
from distributed control and computation to power systems. In
this paper, we investigate spectral properties of signed Laplacians
for undirected signed graphs. We find conditions on the negative
weights under which a signed Laplacian is positive semidefinite
via the Kron reduction and multiport network theory. For signed
Laplacians that are indefinite, we characterize their inertias with
the same framework. Furthermore, we build connections between
signed Laplacians, generalized M-matrices, and eventually expo-
nentially positive matrices.

Index Terms—Signed Laplacians, spectral properties, the Kron
reduction, n-port network, eventual positivity.

I. INTRODUCTION

A signed weighted graph is a graph whose nodes are linked
by edges of positive and negative weights. Research of signed
graphs can be traced back to Fritz Heider’s psychological
study on interpersonal relations, where positive and negative
weights represent liking and disliking among individuals [1].
This stimulated the interest of mathematician Frank Harary
who introduced the notion of balance of a signed graph in
1953 [2]. These pioneering works have led to psychological
and sociological studies by means of the mathematical tool of
signed graphs. We refer interested readers to [3] and references
therein for the advances until the late 1960s.

Recently, research on signed weighted graphs has seen a
revival, driven by applications in a broad range of areas in-
cluding opinion dynamics [4]-[10], distributed control and op-
timization [11]-[17], data clustering and graph-based machine
learning [18], biological networks [19], power systems [20]-
[22], and knot theory [23]. See also [10] for a recent review
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on convergence properties of dynamics over deterministic or
random signed networks.

To be specific, negative edge weights have been employed
to represent antagonistic relations in social networks, anticor-
relation among data in clustering, and inhibitory interactions in
interneuron networks. In the study of small disturbance angle
stability of power systems, negative edge weights may occur
due to some transmission lines with negative reactance or large
angle differences across certain transmission lines [20], [21].
In distributed control and optimization, negative weights may
stem from faulty communication among agents or adversarial
attacks on the network. In some cases, negative weights even
arise as a result of optimal design. References [11] and [19]
have shown that allowing negative weights in the design may
have positive effects on accelerating the convergence in both
distributed averaging and synchronization.

All in all, there is abundant motivation to study signed
weighted graphs. It is often the case that studying dynamics
over a signed weighted graph requires the analysis of spectral
properties of an associated signed Laplacian matrix. Consider,
for example, the case of a continuous-time multi-agent system
interconnected over a signed graph aiming to reach consensus.
Under certain protocol, consensus can be reached if and only
if the associated signed Laplacian has all its eigenvalues in
the open right half complex plane except for a simple zero
eigenvalue. In fact, many existing consensus-based distributed
control, estimation and optimization algorithms, which are
initially designed for conventional weighted graphs can be
extended to signed weighted graphs by replacing conventional
Laplacians with signed ones. A necessary condition for those
algorithms still to function correctly over a signed weighted
graph is that the corresponding signed Laplacian has a simple
zero eigenvalue and all the other eigenvalues have positive
real parts. Signed Laplacians have attracted increasing atten-
tion recently. In this paper, we focus on undirected signed
weighted graphs for which the preceding spectral condition
on signed Laplacians simplifies to positive semidefiniteness
with a simple zero eigenvalue. Below, we briefly review some
closely related works on undirected signed Laplacians.

A fundamental issue frequently discussed in the literature is
the positive semidefiniteness of signed Laplacians. Exploring
conditions rendering signed Laplacians positive semidefinite is
of great importance in many applications. It was shown in [12]
that a signed Laplacian with a single negative edge weight is
positive semidefinite if and only if the absolute value of the
negative edge weight is less than or equal to the reciprocal of
the effective resistance between the nodes of the negative edge
over the positive subgraph. Therein the authors extended this
condition to signed graphs with multiple negative edges under
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certain additional constraints on the locations of the negative
edges. These results were re-established in [13] using both a
geometrical approach and a passivity-based approach. In [14],
the more general case of a signed graph with multiple negative
edges and no restrictions on the locations of negative edges
was considered, where necessary and sufficient conditions on
the semidefiniteness of signed Laplacians were obtained via
linear matrix inequalities (LMIs). Similar LMI conditions also
appeared in [21], [22]. However, in the most general case, an
explicit condition given in terms of effective resistances has
not been available in these papers.

When a signed Laplacian matrix is not positive semidefinite,
its inertia, i.e., the numbers of its negative, zero, and positive
eigenvalues with multiplicity counted, often plays an important
role in applications. It is known that the type of an unstable
equilibrium point in a power system is decided by the inertia
of a certain signed Laplacian [21]. Reference [24] obtained
bounds on the inertia of a signed Laplacian based on the
topology of the graph. Reference [15] considered the problem
of how the structure of a signed graph influences the inertia
of the associated signed Laplacian.

Another issue worthy of attention stems from the observa-
tion that a signed Laplacian is not an M-matrix' as opposed to
the conventional Laplacian with only positive weights. Many
nice properties of M-matrices are inherited from nonnegative
matrices. It is well known that a nonnegative matrix possesses
the Perron-Frobenius property [25], i.e., its spectral radius is
an eigenvalue with a corresponding nonnegative eigenvector.
However, a matrix possessing the Perron-Frobenius property
is not necessarily nonnegative. For this reason, much interest
has been generated in exploring so-called eventually nonneg-
ative matrices, namely, matrices which become nonnegative
after a certain finite power [26], [27]. Furthermore, based on
eventual nonnegativity, various generalized M-matrices have
been proposed and studied [28], [29]. Recently, the interplay
between eventual nonnegativity and multi-agent consensus has
also been considered [5], [30]. In light of these developments,
it is of interest to study whether a signed Laplacian belongs
to a class of generalized M-matrices.

In this paper, we present results in the three topical areas
identified above. The main contributions of the paper can be
summarized as follows:

(a) We study semidefiniteness of signed Laplacians with mul-
tiple negative weights and no restrictions on where the
negative edges are located with the n-port network theory,
yielding explicit necessary and sufficient conditions in
terms of conductance (or resistance) matrices. The inertia
of an indefinite signed Laplacian is also characterized via
the conductance matrix.

(b) We further characterize semidefiniteness and inertia of
signed Laplacians via the Kron reduction, a seminal tool
in power systems.

(c) We establish connections between signed Laplacians, gen-
eralized M-matrices, and eventual positivity.

Part of the results regarding (a) have appeared in the authors’

'A square matrix M is said to be an M-matrix if it can be expressed as
M = sI— B, where I is the identity matrix, B is nonnegative, and s > p(B).

conference papers [31]-[33]. These results are now unified
under the framework of m-port network. Some proofs not
included in the conference versions are now included here
and the unnecessary assumption adopted in [33] when charac-
terizing the inertia is also relaxed. The contributions (b) and
(c) are new and go much beyond the scope of discussions
in the conference papers. The new contributions provide a
more comprehensive view of the spectral properties of signed
Laplacians and their connections to eventual positivity.

The rest of the paper is organized as follows. The problem
setup and motivating applications are introduced in Section II.
Some preliminaries are given in Section III. Positive semidef-
initeness of signed Laplacians is investigated in Section IV,
followed by characterization of the inertias of indefinite signed
Laplacians in Section V. Connections between signed Lapla-
cians and eventual positivity are discussed in Section VI. The
paper is concluded in Section VII.

Notation: Denote by 1 the vector with all its elements equal
to 1, where the dimension is to be understood from the context.
Denote by d; the vector whose ith element is 1 and all the
other elements are 0. Also, let d;; =d; —d;. Denote the spectral
radius of a square matrix A by p(A). Denote the corank of a
matrix A € R"*™ by corank(4) = n — rank(A). A square
matrix A is said to be nonnegative (positive, respectively),
denoted by A > 0 (A > 0, respectively), if all the elements of
A are nonnegative (positive, respectively). A square matrix A
is said to be exponentially nonnegative (exponentially positive,
respectively) if et = >"77 (t‘,j!)k >0 (e > 0, respectively)
for all ¢ > 0. Denote by |« the cardinality of a set a and by
a\f the relative complement of a set 5 in a.

For a real symmetric matrix S, we write S > 0 when S is
positive semidefinite, and S > 0 when S is positive definite.
Denote by 7(S) = {7_(95),m(S), 7+ (S)} the inertia of a
real symmetric matrix S, where 7w_(S), mo(S), and 7 (S5)
are respectively the numbers of negative, zero, and positive
eigenvalues with multiplicity counted. For a matrix

S Si2
S = ,
[521 522}

denote by S/90 = S11 — 512552521 the (generalized) Schur
complement of Sy2 in .S, where S;Q means the Moore-Penrose
pseudoinverse of Soo. Similarly, S/17 = Soa — 521511512.

II. PROBLEM SETUP AND APPLICATIONS

A. Signed graphs and signed Laplacians

Consider an undirected graph G=(V, £) with a set of nodes
V={1,2,...,n} and a set of edges E={ey,ea,...,€n}. We
use (4,7) to represent the edge connecting node ¢ and node
Jj, and associate with each edge (7,j) a real-valued nonzero
weight a;;, which can be either positive or negative. If node
1 and node j are not connected by an edge, a;; is understood
to be zero. Such a graph is called a signed weighted graph.
For brevity, hereinafter signed weighted graphs are referred to
simply as signed graphs.

For an undirected graph G, a spanning tree, i.e., a spanning
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subgraph? which itself is a tree, exists if and only if G is con-

nected. A spanning forest is a spanning subgraph containing

a spanning tree in each connected component of the graph. A

spanning tree can be regarded as a special case of a spanning

forest. Hereinafter we use I to represent a spanning tree or a

spanning forest, depending on whether the underlying graph

is connected or not.

For a signed graph, the associated signed Laplacian matrix
L=[l;;)€R™™ is defined by [5], [12], [24]

i 7 J,

n . .

Zj:Lj#i Qij, =]

A signed Laplacian matrix is no different from a conventional

one, except that the conventional Laplacian has only positive

weights. Some properties known for conventional Laplacian
matrices continue to hold in the presence of negative weights.

For instance, a signed Laplacian L is symmetric, and hence all

the eigenvalues are real. Also, L has a zero eigenvalue with a

corresponding eigenvector being 1 € R™.

However, signed Laplacians also carry some fundamental
differences. First, unlike the conventional Laplacians that are
positive semidefinite, signed Laplacians may be indefinite.
Second, while the multiplicity of zero eigenvalue of a conven-
tional Laplacian equals the number of connected components
in the underlying graph, this is in general not true for a signed
Laplacian. Third, any conventional Laplacian is an M-matrix
and its negation is exponentially nonnegative [34]. This is no
longer the case for a signed Laplacian.

Considering the aforementioned similarities and differences,
we address in this paper the following questions regarding the
signed Laplacian L:

1) How to characterize the negative weights under which L
is positive semidefinite with a simple zero eigenvalue?

2) In case L is indefinite, is there a simple way to characterize
its inertia?

3) Is it possible that under some conditions, L is some gener-
alized M-matrix and —L is some generalized exponentially
nonnegative matrix? What kind of generalized M-matrices
and exponentially nonnegative matrices can we consider?

o —Qij,

lij =

These questions are not only of interest from a mathematical
perspective, but also of importance in many applications. To
further motivate this study, we shall discuss some representa-
tive applications in the following subsections.

Before proceeding, we introduce a useful factorization of L.
Let W =diag{w1,ws, ..., wn}, where wy=a;;, for (i,j) =
ex. Also, assign an (arbitrary) orientation to each edge ey
by denoting one endpoint as head and the other as tail. The
oriented incidence matrix D € R™*™ is a (—1,0,1)-matrix
whose rows are indexed by the nodes and columns are indexed
by the edges, where the (7, k)th entry is 1 if node ¢ is the head
of eg, —1 if node i is the tail of ey, and 0 otherwise. The signed
Laplacian L can then be factorized as

L=DWD'. (1)
While D depends on the choice of orientations, L does not.

2 A spanning subgraph of G is a graph which contains the same set of nodes
as G and whose edge set is a subset of that of G.

B. Small disturbance angle stability of power systems

Consider a power network with both synchronous generators
and inverter-based generators that exploit renewable energy
sources. The interconnection of different generators and loads
in the power network can be described by an undirected graph
G=(V, &) consisting of n nodes and m edges, wherein each
node represents a bus and each edge represents a transmission
line between two buses. Assume that the transmission lines are
lossless. We use set V; = {1,2,...,n;} to represent all the
buses with synchronous generators, and set Vo = {n1+1,n;+
2,...,n} to represent the remaining buses with inverter-based
generators or frequency-dependent loads. Let V; and 6; be the
voltage magnitude and phase angle of bus 7. Also, denote by
—B;; the susceptance of transmission line (7, ) € £. Assume
B;; = Bj;. The dynamics of phase angle 6; at bus 7 are given
by

0 = wi,
(i,4)€E
where m; >0 is the inertia of synchronous generator i € V),
and m; = 0 for i € Vs; k; >0 is the damping coefficient of a
synchronous generator for ¢ €V, and the reciprocal of droop
gain of an inverter-based generator or frequency dependence
coefficient of a load for ¢ € Vs; p; > 0 denotes the generation
at a generator bus, and p; < 0 denotes the consumption at a
load bus.
Let 0 = 91 02

*

0 0
and only if the Jacobian of the system at this equilibrium point

has all the eigenvalues in the open left half plane except for a
simple zero eigenvalue [35]. The simple zero eigenvalue has a

Qn]/,w = [wl wo wm]/.

*

Suppose is an equilibrium point. Then { is stable if

. 1 . * 1
corresponding eigenvector O" , meaning 0 +0k "] JkeR
*
represents the same equilibrium point as 0

In relation to the study of this paper, it is known that
semi-stability of the Jacobian matrix amounts to a Laplacian
matrix Lg« = DWy.«D’ being positive semidefinite with a
simple zero eigenvalue, where D is the incidence matrix of G,
Wy» =diag{wy, wo, ..., w, } and wy = V;V;B;; cos(6; —07)
for (i,7) = eg. This is mostly stated in the literature under
the assumption that Ly~ has a simple zero eigenvalue; see
for instance [35], [36]. We mention without a detailed proof
that the argument is also valid when such an assumption is
removed.

In most cases, the transmission lines are inductive (B;; >0)
and 0 — 07 < m/2 for all (i,j) € &. Therefore, all the
weights wy, are positive and the semidefiniteness requirement
of Ly~ is automatically satisfied provided that G is connected.
However, there do exist real scenarios where either some lines
are capacitive (B;; <0) or the angle differences across some
lines exceed /2 [20]-[22]. In either case, the corresponding
weights wy, are negative and Lg+« becomes a signed Laplacian.
Hence, characterizing the negative weights under which Ly«
is positive semidefinite with corank 1 is important in studying
the small disturbance angle stability.
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The semidefiniteness of Ly~ is not the only thing that is of
interest. In case of an unstable equilibrium point, the inertia of
Ly~ determines the type of the equilibrium point (the number
of eigenvalues of the Jacobian matrix with positive real parts),
which plays a crucial role in the transient stability analysis of
power systems [21], [36].

C. Feasibility of DC power flow

Consider again a power network of n buses interconnected
by m transmission lines, the topology of which is modeled by
G=(V,&). Suppose that G is connected. The DC power flow
is a linearized approximation of the AC power flow, assuming
lossless transmission lines, unit voltage magnitudes, and small
angle differences. It has been widely utilized in the operations
of power systems due to its simplicity and easy computation.
The DC power flow equations are as follows:

pPi = Z Bij(Oi—Hj), ’L':LQ,...,H,
(i,7)€€

where we use the same notation as in the previous subsection.
Let p = [pl D2 pn],,ﬁ = [91 0o Hn]/. Then
the equations can be rewritten into the compact form p = L#,
where L is a Laplacian induced by the weights B;;. To ensure
the feasibility of DC power flow, L has to have a simple zero
eigenvalue. This is indeed the case in the majority of scenarios
where B;; > 0 for all (4, j) € £. However, as remarked before,
there also exist cases, although not common, where B;; < 0
for some (i, 7). In this case, L is a signed Laplacian and may
have multiple zero eigenvalues, rendering the DC power flow
infeasible. This has been discussed recently based on analysis
of semidefiniteless of L and experimental simulations in [22].
Note that the inertia of L is most essential here. In this paper,
we will conduct a detailed study on the inertia of L, and thus
deepen and generalize the analysis in [22].

D. Consensus of multi-agent systems with repelling interac-
tions

Consider a multi-agent system consisting of n agents, each
of which is modeled as a one-dimensional single integrator

i?i(t) = ui(t)J = 1,27 ceey Ny

and interacts with its neighbours over an undirected graph G =
(V, &) via the protocol

U7(t) = Z a,;j(xj 7177;)7 (2)

(.)€

where a;; € R. Let z = [z1 3 xn}/. The dynamics
of the agents can be re-written into the compact form (t) =
—Lz(t), where L is the Laplacian matrix associated with G.
The agents are said to reach consensus if their states converge
to the same value as time goes to infinity.

When all the weights in G are positive, it is well known that
the agents will reach consensus if and only if G is connected
[37]. This is due to the property that L > 0 and has a simple
zero eigenvalue with a corresponding eigenvector 1 if and only
if G is connected. In addition, if the initial condition x(0) is
nonnegative, then z(t) will remain nonnegative for all time.

This is because —L is exponentially positive when the graph
is connected.

When some of the weights are negative due to the possibly
repelling interactions among the agents or adversarial attacks
on the network, L becomes a signed Laplacian. Nevertheless,
by the knowledge of stability of linear systems, consensus can
still be reached if and only if the signed Laplacian L > 0 and
has a simple zero eigenvalue. On the other hand, the authors in
[5] showed that when — L is eventually exponentially positive,
consensus can be reached. We postpone the formal definition
of eventual positivity to Section VI, but raise at this stage the
following questions: Is the eventual exponential positivity of
—L also necessary for guaranteeing consensus? If so, does it
suggest certain equivalence between the semidefiniteness of L
and the eventual exponential positivity of —L? It turns out that
the answers to both questions are “yes”. The detailed reasoning
will be justified in Section VL.

We would like to mention that a different consensus protocol
was proposed in [4] for multi-agent systems with antagonistic
relations modeled by signed graphs:

> Jaijl(sgn(ai)z; — ;).

(i,4)€€

Numerous works have been reported recently in relation to
this protocol; see for instance [7]-[9], [17], [38]. Under this
protocol, the dynamics of the coupled agents can be written
compactly into &(t) = —Lx(t), where £ = [{;;] is a different
“signed Laplacian matrix” defined as

i # J,
i=j.

—Qij,
Z?:l,j;éi |ail,

Unlike the definition of L adopted in this paper, each diagonal
element of L is equal to the absolute sums of the off-diagonal
elements in that particular row. The spectral properties of L
have much to do with the notion of balance of a signed graph.
It has been shown in [4] that under such a protocol, the agents
either reach bipartite consensus (some of the agents converge
to a common value while others converge to the opposite
value) or converge trivially to zero, depending on whether the
signed graph is balanced or not.

Comparing two definitions, one can see that L =L + H,
where H is a diagonal matrix with diagonal entries being h;; =
2[ 37751 js min(aij, 0)|. If we let Gioopy be a graph obtained
from G by adding self-loops to each node ¢ with weight h;;,
then £ can be regarded as a loopy signed Laplacian associated
with Gioopy. Hence, £ extends the loopy Laplacian introduced
in [39] to signed graphs with self-loops. We note that in the
recent paper [10], L and £ were called “repelling Laplacian”
and “opposing Laplacian” respectively.

gij =

III. PRELIMINARIES: GRAPHS AS ELECTRICAL
NETWORKS

For a connected signed graph, one can associate with each
edge a resistor whose conductance (possibly negative?) is
given by the edge weight. Such an association of signed graphs

3Negative conductance corresponds to active resistor that produces power.
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with resistive networks endows the signed Laplacian L with
a nice physical interpretation. Let ¢ € R™ be a vector whose
elements denote the amount of current injected into each node
by external independent sources. Assume that the sum of the
elements of ¢ is zero, i.e., ¢'1 = 0, meaning that there is no
current accumulating in the electrical network. Let u € R™ be
the vector of resulting electric potentials at the nodes. Ohm’s
law [40] says that the current flowing through each edge is
equal to the potential difference multiplied by the conductance.
Hence, the vector of currents flowing through all the edges is
given by W D'u. Furthermore, Kirchhoff’s current law [40]
asserts that the difference between the outgoing currents and
incoming currents through the edges adjacent to a node is
equal to the external current injection at that node. This leads
to the current balance equation DW D'u=c. In view of (1),
this equation can be rewritten as

Lu=c. 3

This means that L captures the linear relationship between the
current injections and the resulting electric potentials at the
nodes. Due to this physical interpretation, L is also referred
to as Kirchhoff matrix in some literature [41].

Now, suppose that one unit of current is injected into node
1 and extracted from node j. Then, the voltage across nodes %
and j defines the effective resistance between nodes ¢ and j,
denoted by 7.q (4, 7). Also, the voltage across nodes s and ¢
defines the transfer effective resistance between the node pairs
(i,7) and (s,t), denoted by 74an((s, 1), (i,7)).

The effective resistance and transfer effective resistance can
be obtained through experimental measurements. They are also
related to the graph Laplacian L as described below. When L
has a simple zero eigenvalue, solving equation (3) yields

u=Le+al,

where L' is the Moore-Penrose pseudoinverse of L and a is
an arbitrary real number. Let ¢ = d;;. By definition,

re (i, j) = diy L dyj, 4)
rtran((sut)a (7’73)) = d/stLTdU (5)

Since L' is symmetric, we have

Toran (8, 1), (4, 5)) = Ttran((4,5), (5,1))-

When all the edge weights are positive, it has been shown
that the effective resistance serves as a distance function in the
node set of a weighted graph [42]. Recently, some preliminary
results on distributed computation of effective resistances have
been reported in [43].

Note that 7 (i, 7) can be defined for arbitrary two nodes 4
and j, regardless of whether they are connected by an edge or
not. Similarly, r;an((s,t),(i,7)) can be defined for arbitrary
two node pairs (i,7) and (s,t). If nodes ¢ and j happen to be
the head and tail of an edge ey, then d;; coincides with the
kth column of the incidence matrix D. In light of (4) and (5),
the effective resistances of the edges along with the transfer
effective resistances between different edges can be expressed
in a compact matrix form D'LtD.

Using the terminology prevalent in circuit theory [44], we
say a resistive network is passive if u’'c >0, and strictly passive
if u'e>0 for all ¢'1=0, c#0. It is well known that a resistive
network with only positive resistances is passive, and is strictly
passive if, in addition, the underlying graph is connected. Since
the resistive network associated with a signed graph may have
both positive and negative resistances, a natural question is:
How can we characterize the passivity of the network in terms
of the negative resistances? In view of (3), this is a rephrasing
of the first question raised in Section II.A using the language
of circuits.

A. The Kron reduction

Consider a resistive electrical network of n nodes with the
associated Kirchhoff matrix (signed Laplacian matrix) given
by L. In many applications, it may happen that only the current
balance on a subset of nodes is of importance. These nodes are
called external terminals, and the remaning nodes are called
interior terminals. Denote by o C {1,2,...,n}, |a| > 2, the
set of external terminals, and by 8 = {1,2,...,n}\« the set
of interior terminals. By an appropriate labeling of nodes, we
can make the first || rows of L correspond to those external
terminals. Then, L admits the partition

L L
L= aa af ) 6
[Lﬂa Lﬂﬁ] ©

Consequently, the current balance equation (3) can be rewritten

as
Cq, L [e7e% L Oéﬁ U
[ [ .

Applying Gaussian elimination on the interior voltages ug,
and letting the current injections into the interior terminals
cg =0, yields ¢, = L,u,, where

Ly = Lao — LagLlLga. (7)

One can see that L, is simply the Schur complement of Lgg in
L. Tt has been shown in [39] that L, is also a Laplacian and,
therefore, is called a reduced signed Laplacian. A reduced
signed Laplacian L, corresponds to a reduced signed graph
G, involving only all the external terminals. Such a process
of obtaining a lower-dimensional reduced network which has
the same current balance equation on the external terminals as
the original one is called Kron reduction. The Kron reduction
process preserves connectivity, i.e., G, is connected if and only
if G is connected [39].

The Kron reduction can be regarded as a form of abstraction
of electrical networks by considering only the current balance
at the external terminals. Hereinafter, by saying we perform
the Kron reduction on a signed graph G, we mean performing
the Kron reduction on the resistive network associated with G.

B. n-port network

Another frequently used abstraction of electrical networks
is m-port (multiport) networks, which enables capturing be-
haviours at selected pairs of external terminals while putting
the internal structure of the network into a black box. Some
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preliminaries on n-port network theory are given below. See
[45] and the references therein for more details.

As depicted in Figure 1, an n-port network is an electrical
network whose external terminals are grouped into n pairs
such that for every pair of terminals, the current flowing into
one terminal equals the current flowing out of the other. Such
pairs of terminals are called ports. Note that different ports are
allowed to share a common terminal. The external behavior
of an n-port network is completely determined by the port
voltages v1,va,...,vV,, and port currents 21,2, ...,%,. Let
v — ['Ul s / X /

o] andi=[iy Gy ... ]
ilTwl-T iszz_T i3T+v3-T inTm_T

Port 1 Port 2 Port 3 Portn

Figure 1: An n-port network.

Given a resistive n-port network, we can express the port
voltages in terms of the port currents as v = Zz1, or express the
port currents in terms of the port voltages as ¢ = Yv. The ma-
trices Z and Y are symmetric and called the resistance matrix
and conductance matrix, respectively. Each diagonal element
of matrix Z (Y) represents the resistance (conductance) over
a port. Each off-diagonal element of matrix Z (Y) represents
the transfer resistance (transfer conductance) from one port to
another. An n-port resistive network is strictly passive if and
only if v'4 >0 for all nonzero 2. Therefore, both the resistance
matrix and the conductance matrix of a strictly passive n-port
network are positive definite.

For the resistive network associated with a signed graph,
one can select pairs of external terminals as needed and treat
the whole network as a multiport. In that case, the resistance
over a port is nothing but the effective resistance between the
two terminals of the port. The transfer resistance from one
port to another coincides with the notion of transfer effective
resistance introduced before.

Note that the resistance matrix Z may not be well-defined
because of possibly infinite resistance across certain ports. The
infinite resistance may occur due to the dis-connectivity of the
network or the presence of negative resistances. Nevertheless,
the conductance matrix Y is always well-defined, since infinite
resistance simply means zero conductance. When both Z and
Y are well-defined, they are the inverse of each other.

In what follows, we introduce several connections between
n-port networks and their associated matrix operations. For
an n-port network A, we use superscript a when denoting its
corresponding quantities to differentiate from those of other
networks, e.g., i%, v, Z%, Y.

First, given an n-port network A, we can partition the ports
into two groups: the first r ports and the remaining (n — )
ports. The resistance matrix and conductance matrix of A can
be partitioned with compatible dimensions as

o _ {Zi‘l ng} oy {Yf‘l

.
Z31 23y Y31

a
Y22

If we leave the first r ports of network A open circuited, i.e.,
forcing i} = 45 = --- =i, = 0, we end up with an (n— r)-
port network C whose resistance and conductance matrix are

Z¢ = Z§2 and Y° = Ya/ll. (8)
Instead, if we short the first » ports of A, i.e., forcing v§ =

v§ =--- =v? =0, we will end up with another (n — r)-port
network D whose resistance and conductance matrix are

Z4=27%1, and Y = Y53, )

Now, consider two n-port networks A and B. Let E be an
n-port network obtained by a parallel connection of A and B
as shown in Figure 2. Then, the resistance and conductance
matrix of E are related to those of A and B by

N\ T
ze — (ZaT + 22" andye=ve+yvt  (10)

Network A

Port 1 Port 2 Port 3 Portn

O —O
O —O
O —O

Port 1 Port 2 Port 3 Portn

Network B

Figure 2: Parallel connection of n-port networks A and B.

IV. SEMIDEFINITE SIGNED LAPLACIANS
A. Semidefiniteness and Kron reduction

Consider a signed graph G=(V, £) with the corresponding
signed Laplacian L. We treat the nodes incident to negatively
weighted edges as external terminals and the remaining nodes
as interior terminals. Denote the set of external terminals and
the set of interior terminals by « and f3, respectively.

Applying the Kron reduction on G yields a reduced signed
graph G, and an associated reduced signed Laplacian L, as
in (7). Since the Kron reduction preserves connectivity, G, is
connected if and only if G is connected. The edges connecting
the external terminals in G remain in G,. However, many new
edges emerge in G, due to the reduction process.

In applications, negative weights often appear due to distur-
bances, faults, or adversarial attacks. Hence, it is reasonable
to expect that the number of external terminals, i.e., ||, is
much smaller than the size of the graph and, thus, L, has a
much lower dimension than L.

The following theorem establishes a connection between the
positive semidefiniteness of L and L,.

Theorem 1: For a given signed Laplacian L € R"*", the
following statements are equivalent:

(a) L >0 and corank(L) = 1;
(b) L, > 0 and corank(L,) = 1.

This theorem suggests that in dealing with a large network

under sparse perturbations on the negatively weighted edges,
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only behaviors at a small number of external terminals are
relevant to the positive semidefiniteness of L.

Before formally proving this theorem, we introduce some
more notation and useful lemmas.

Denote by G (G_, respectively) the spanning subgraph of
G with only the positively weighted edges (only the negatively
weighted edges, respectively). Also, denote by Ly (L_, re-
spectively) the corresponding Laplacian matrix. Clearly,

L=1L,+L_.

As in Section III.A, we relabel the nodes in a way such that
the first || rows of L correspond to all the external terminals
and the rest of the rows correspond to all the interior terminals.
Then, L can be partitioned as in (6), and L, and L_ can be
partitioned accordingly as

L. Lm} L__{LM 0}

be = L’ﬂm Liss 0 0

Lemma 1 ([31]): The spectrum of a signed Laplacian L is
monotonically increasing with respect to each edge weight of
the underlying signed graph G.

Lemma 2: Given a signed graph G and its associated signed
Laplacian L, if L > 0 with corank(L) = 1, then G, is
connected.

Proof: We prove the lemma by contradiction. Suppose
G is not connected; then L has multiple zero eigenvalues.
Since G = G4 + G_, the edge weights of G are smaller than
or equal to the corresponding weights of G;. By Lemma 1,
Ai(L) < N(Ly),i = 1,2,...,n, where \;(L) and X\;(Ly)
are respectively the ith eigenvalues of L and L, both ordered
non-decreasingly. This means that L must have multiple zero
eigenvalues or negative eigenvalues or both. However, L hav-
ing multiple zero eigenvalues contradicts with corank(L) = 1,
while L having negative eigenvalues contradicts with L > 0.
This completes the proof. ]

Lemma 3: Given a signed graph G and its associated signed
Laplacian L, if G is connected, then Lgg > 0.

Proof: Based on the given signed graph G, we construct a
graph G by negating all the negative edge weights in G while
keeping all the positive edge weights in G unchanged. Then,
Gisa graph with only positive weights. Denote the Laplacian
of G by L. Then,

L+aﬂ

E:L+_L7:L+aa_ aa
L s

In view of Corollary 6.2.27 in [25], we have Ly, = Lgg > 0
which completes the proof. ]

Now we present the proof of Theorem 1.

Proof of Theorem 1: We first show that statement (a) implies
statement (b). By Lemma 2, if L >0 with corank(L)=1, G
is connected and so is G. According to Lemma 3, we have
Lgg > 0. Moreover, there holds

L_[ I O}/{Lr oH I 0}
LagLga I| |0 Lgg| |LgsLlpa I)°
The statement (b) then follows readily from Sylvester’s law of
inertia [25].

Y

Now we show the converse direction. Again, by Lemma 2,
if L, >0 with corank(L,) =1, then the spanning subgraph
of G, containing all its positively weighted edges, denoted
by G,,, is connected. It turns out that G, is exactly the
reduced graph obtained by applying the Kron reduction on
G4 Since connectivity is preserved by the Kron reduction,
G+ is connected and thus Lgg > 0. In view of (11), statement
(a) follows again from Sylvester’s law of inertia. [ ]

Example 1: Consider the signed graph in Figure 3, which
consists of nine nodes, fifteen positively weighted edges, and
two negatively weighted edges. The weights are labeled on
the corresponding edges. Taking nodes 5, 6, and 7 as external
terminals and applying Kron reduction yields a reduced graph
as shown in Figure 4. Since the reduced graph is connected and
does not have any negatively weighted edges, the associated
reduced Laplacian is positive semidefinite with a simple zero
eigenvalue. Then, according to Theorem 1, we know that the
signed Laplacian associated with the signed graph in Figure 3
is also positive semidefinite with a simple zero eigenvalue.

Figure 3: A signed graph with two negatively weighted edges.

11.0571

0.6765

Figure 4: The reduced graph after the Kron reduction.

B. Semidefiniteness and conductance matrix

In this subsection, we shall characterize the set of negative
weights under which a signed Laplacian is positive semidefi-
nite via the notion of resistance matrix or conductance matrix.

It was shown in [12] that when a signed graph G has a
single negative edge (4, j), the associated signed Laplacian L
is positive semidefinite with a simple zero elgenvalue if and
only if |a;;| < ﬁ where r:(i,7) = d L \dy; is the
effective resistancé between nodes i and 7 over the subgraph
G+ This condmon can also be expressed as reg(7,7) > 0 as
m m + a;j. Our objective is to extend this type
of condition to the general case with multiple negative edges
and no restrictions on the positions of negative edges. To this
end, we exploit the multiport network theory. Given a signed

graph G, we can express G as the union of three subgraphs:
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G =F_UC_UGy, where F_ = (V, &p_) is a spanning forest
of G_, and C_ is a spanning subgraph of G_ containing the
rest of the edges in G_. Suppose that F_ has myp_ edges.
In many applications, it may well happen that the number of
negatively weighted edges is small compared to the size of
the whole graph, which means that my_ can be much smaller
than n.

If only the external behavior of the network across the edges
in F_ is the subject of concern, we can treat the two terminals
incident to each edge in F_ as a port, leading to an mp_-port
network. The resistance matrix and conductance matrix of such
an myp_-port network are given by

+

Ze =Di L'De ., Y = (DfLLTDIL) ,
respectively, where Dy _ is a submatrix of D that consists of all
the columns corresponding to the edges in F_. Clearly, Dp_
has full rank. Such an mp_-port network is strictly passive if
and only if Zp_ > 0, or equivalently, Yr_ > 0. In reference
to the result in the case of a single negative edge, we raise
the following question: Does strict passivity of this mp_-port
network ensure that L is positive semidefinite with corank 1?
The answer is in the affirmative, as captured in the following
theorem, which was shown in the authors’ conference paper
[33]. The proof exploits the shorted operator of a multiport
network and is not included here for brevity.

Theorem 2 ([33]): For a signed Laplacian L € R™"*"™, the
following statements are equivalent:

(a) L > 0 with corank(L) = 1.
(b) G is connected and Zr_ >0 (or equivalently, Yr_ >0).

Remark 1: When all the weights are positive, the inequality
Zw_ > 0 becomes irrelevant. Then, Theorem 2 reduces to the
well-known result for classical Laplacian matrices.

The following conclusion can be drawn from Theorem 2. To
characterize the positive semidefiniteness of a signed Lapla-
cian with multiple negative weights, the effective resistances
and transfer effective resistances should be considered in a
combined way. We note that the choice of a spanning forest
F_ in G_ is not unique. Nevertheless, Theorem 2 holds for
any choice of F_.

It is important to point out that in Theorem 2 the effects of
negative and positive weights on the positive semidefiniteness
of L are weaved together in the positive definite matrices Zr_
and Yp_. This motivates a further question: Is it possible to
have a characterization that explicitly separates the effects of
negative and positive weights?

To find answers, we exploit the parallel connection of multi-
port networks and the associated matrix operation. Specifically,
we consider the aforementioned my_-port network as a par-
allel connection of an mp_-port network with all the positive
resistances and another my_ -port network with all the negative
resistances. See Figure 5 for an illustration.

Note that the resistance matrices of the my_-port network
with only positive resistances and the my_-port network with
only negative resistances are given by

Zf =Dy LDy and Zy =Dy L' Dy,

(a) A 2-port network associated with a signed graph, where
the edges in black correspond to positive resistances and the
edges in red correspond to negative resistances.

_________________________________________

(b) A parallel connection of a 2-port network with positive
resistances and a 2-port network with negative resistances.
Figure 5: A 2-port network considered as a parallel connection
of a 2-port with merely positive resistances and a 2-port with
merely negative resistances.

respectively. Also, the conductance matrices of the mp_-port
network with positive resistances and the my_-port network
with negative resistances are given by

T T
Vit = (De LiDe ) and Yo = (D LiDe ),
respectively. Then, in view of (10), we have
— (gt T - 1\f _ v+ —
Z]}L = Z]F, + Z]F, and Y[Ff = YIE‘, + Y]F,'

The next theorem characterizes the set of negative weights
that give rise to a positive semidefinite L with corank 1. The
theorem has been stated in our conference paper [32], but
without a proof. A concise yet informative proof is provided
here by exploiting the parallel connection of multiport net-
works. We denote by Dg_ a submatrix of D comprising all
the columns of D corresponding to the edges in G_. Also,
we let W_ be the corresponding submatrix of W containing
all the negative weights in G_.

Theorem 3: For a given signed Laplacian L € R"*", the
following statements are equivalent:

(a) L > 0 with corank(L) = 1.
(b) G is connected, and Z; <—Zg , or equivalently, Yz~ >
—Yp .
Proof: One can easily show that when G is connected,
ZI;’_ =Dy LLDF_ > (. This is due to the fact that Ll >0,
Dr_ has full column rank, and the range of Dr_ is orthogonal
to the kernel of Li. By similar arguments, one can also show
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Zy < 0. Hence, in this case,

Vi =z '>0adYy =27 <.

Then, in view of Theorem 2, to prove the equivalence between
(a) and (b), it suffices to that Yr_ > 0 is equivalent to Y]Ft >
—Y; . This follows directly from Yy =Yg + Vi . n

Remark 2: In many applications, G represents a nominal
graph which may suffer from perturbations in the form of neg-
atively weighted edges. In this regard, YF'*: can be considered
as a measure of fragility of G under such perturbations. The
larger Y;' is, the less fragile G is.

From the above theorem, we have the following corollary.

Corollary 1: If G does not have any cycle containing two
or more negative edges, then L >0 with corank( )=11if and
only if G is connected, and r (i, j) < ﬁ forall (i,5)e&_.

Proof: When G does not have any cycle containing two
or more negatively weighted edges, the voltage across any port
(i,7) € F_ merely depends on the current through the port
itself. In this case, both Z; and Z; are diagonal matrices
with the corresponding diagonal elements given by r:ff(i 7)
and ——, respectively. The conclusion then follows immediately
from ”fheorem 3. ]

Corollary 1 is consistent with the statements in [12, Theo-
rem II1.4] and [13, Theorem 3.2].

Example 2: We consider a modified version of the signed
graph in Example 1, where the positive weights are labeled on
the respective edges as in Figure 3, but the negative weights
asg, ag7 are no longer fixed a priori. By Theorem 3, the set of
negative weights that give rise to a positive semidefinite signed
Laplacian with a simple zero eigenvalue is characterized by
the inequality

.
as6

—0.1046

[0 J— 0.1371

ae7

0.1488
—0.1046

and depicted as the interior of the shaded area in Figure 6.

0

a67
I

a56

Figure 6: The set of negative weights asg, agry that give rise
to L > 0 with a simple zero eigenvalue.

Remark 3: We wish to mention that the semidefiniteness of
a signed Laplacian L can also be verified in a sequential way,
as if the negative edges are added one by one. The procedure
is sketched as below. Starting from a connected G, we add

one negative edge back, say (4, j), forming a graph G; with
the associated signed Laplacian L;. We know that if |a;;| <

m then L; > 0 with corank 1. Next, we add another
ij 7+

negative edge back to Gy, say (k,[), forming a graph Go with

the associated signed Laplacian L. It is not difficult to show

that if |ag| < m then Lo >0 with corank 1. As a matter

of fact, this can be inferred from [21, Theorem 3]. As this
process repeats itself, if the corresponding inequality condition
continues to hold until the addition of the last negative edge,
then we know that L. > 0 with corank 1. Otherwise, L is
indefinite or has multiple zero eigenvalues or both.

V. INERTIAS OF SIGNED LAPLACIANS

When a signed Laplacian is indefinite, its inertia is often
of importance, as discussed in the motivating applications
in Section II. It turns out that the Kron reduced signed
Laplacian and the conductance matrix of the multiport network
encapsulate the inertia of an indefinite signed Laplacian.

A. Inertia and Kron reduction

As in Section IV.A, we treat the nodes incident to negatively
weighted edges as external terminals and the remaining nodes
as interior terminals. Then, the signed Laplacian L admits the
partition as in (6). Applying the Kron reduction on G leads
to a reduced network G, with the associated signed Laplacian
L,.

Theorem 4: Assume that G is connected. Then 7(L) =
w(Le) + (0,0,]8]).

Proof: Since G is connected, by Lemma 3, Lgg > 0. In
view of (11), it follows from Sylvester’s law of inertia that

m(L) = m(Ly) + m(Lpg) = (Ly) + (0,0, |B]).

This completes the proof. ]

B. Inertia and conductance matrix

As in Section IV.B, let F_ be an arbitrary spanning forest of
G_. Taking the two nodes incident to each edge in F_ as two
external terminals of a port gives rise to an mp_ -port network.
The following theorem states an explicit relation between the
inertia of the signed Laplacian L and that of the conductance
matrix Yr_. An earlier version was reported under a stronger
assumption that G is connected in our conference paper [33].

Theorem 5: Assume that G is connected. Then w(L) =
m(Yr_)+(0,1,n—1—mp_).

Proof: Since G is connected, we can augment F_ with
n—1—mp_ edges from G, to form a spanning tree F of G.
Considering the two nodes of each edge in [ as two terminals
that constitute a port, we have an augmented (n — 1)-port
network A with the conductance matrix Y¢. Then,

(L) =n(Lh) == ([De 1)L [De 1])

DLLTDr 0
:7T<[ 0 F OD:W(D{FLTDF)JF(O,LO)

=7(Y") +(0,1,0),
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where the second equality is due to Sylvester’s law of inertia,
and the last equality is due to Y¢ = (D]’FLTDF)T.
We label those ports corresponding to FF_ as the first mp_
ports. Then, the conductance matrix admits the partition
Y4 Y4
ye = |11 13] _
|:Y21 Y3
Shorting all the my_ ports corresponding to F_, we obtain a
shorted network D as depicted in Figure 7. In view of (9), the
conductance matrix of D is given by Y35.

Port 1 Port my_

Port mp_+1

Figure 7: A shorted connection D of A.

Since G is connected and no current flows through the
negative resistors, the shorted network D is strictly passive
and, thus, Y55 > 0. Then, applying the inertia additive formula
of Schur complement [46, Theorem 1.6], we have
(V) =m(Y22) +7(Ya5) =7(Y/22) + (0,0,n—=1—mg_).
In view of (8), we have Y%/9o = Y§_.

m(L) = =(Y?) +(0,1,0)
=m(Yr_)+ (0,0,n =1 —mp_) + (0,1,0)
= W(Y[Ff) + (0, l,n—l—mF7)7

Hence,

which completes the proof. ]
The authors in [21] gave an alternative way of characterizing
the inertia of a signed Laplacian L, under the assumption that
L has a simple zero eigenvalue.
Remark 4: With some additional effort, one can deduce
from Theorem 5 the following inertia bounds first reported
n [24, Theorem 2.10]:

¢(Gy) 1 <m (L) <n—e(G),
o(G_) —1<my(L) < n—c(Gy),
1<mo(L) <n+2—¢(G-) —c(Gy),

where ¢(G,) and ¢(G_) represent the numbers of connected
components in G4 and G_, respectively. Take the bounds on
7_(L) for an illustration. The upper bound is straightforward
as m_ (L) = m_(Yr_) < mp_ = n — ¢(G_). Regarding the
lower bound, note that there must exist ¢(G4) — 1 number of
negatively weighted edges linking the connected components
of G together so as to form a connected spanning subgraph of
G, denote by G. See Figure 8 for an illustration. Treating each
negatively weighted edge in Gasa port, one can view Gasa
(¢(G4) —1)-port network, the conductance matrix of which is
diagonal with diagonal elements given simply by the negative
weights in G. Let L be the signed Laplacian associated with
G. From Theorem 5, we have 7_(L) = ¢(G4) — 1 and thus
7 (L) >n_(L) = ¢(Gy) — 1.

Example 3: We consider a modified version of the signed
graph in Example 1, where the positive weights are as labelled

(@ G ® G

Figure 8: A signed graph G and a spanning subgraph G, where
the positively weighted edges are in black and the negatively
weighted edges are in red.

on the respective edges in Figure 3 and the negative weights

are changed to asg = —3,ag7 = —7. Then,
Ve — 11.4890 11.0571
F- 7 111.0571 8.7337

which has one positive eigenvalue and one negative eigenvalue.
It follows from Theorem 5 that

(L) = (1,0,1) + (0,1,6) = (1, 1,7).
If we retain the positive weights and increase the magnitudes
of the negative weights so that asg = —40, agy = —30, then
Ve — —25.5110 11.0571
-7 110571 —14.2663

which has two negative eigenvalues. Again, by Theorem 5, we
have 7(L) = (2,0,0) + (0,1,6) = (2,1,6).

VI. SIGNED LAPLACIANS AND EVENTUAL POSITIVITY

In this section, we address the third question raised in Sec-
tion II.A. Before proceeding, some preliminaries on eventual
positivity and Perron-Frobenius property are introduced.

It is widely recognized that the nonnegativity (exponential
nonnegativity, respectively) of a matrix A indicates the orthant
invariance of the system x(k + 1) = Axz(t) (&(t) = Ax(t),
respectively), i.e., the trajectory of the system’s state remains
in the nonnegative orthant if it starts with a nonnegative initial
condition. Recently, much attention has been paid to the even-
tual nonnegativity (eventual exponential nonnegativity) of a
matrix A, which indicates only asymptotic orthant invariance,
i.e., given a nonnegative initial condition, the state trajectory
could exit the nonnegative orthant temporarily and returns to
it at a future time and remains therein forever.

Definition 1: A matrix A € R"*" is said to be eventually
positive (nonnegative, respectively) if there is a positive integer
ko, such that A* > 0 (A* > 0, respectively) for all k& > k.

Definition 2: A matrix A € R"*" is said to be eventually
exponentially positive (nonnegative, respectively) if there is a
positive real number ¢, such that eAt0 (eAt >0, respectively)
for all ¢t > tg.

The relationship between eventual positivity and eventual
exponential positivity is given below.

Lemma 4 ([26]): A matrix A € R™*™ is eventually expo-
nentially positive if and only if there exists s > 0 such that
A + sl is eventually positive.
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As is well known, positive matrices possess the so-called
strong Perron-Frobenius property, but the converse is not true.
Recently, the equivalence between eventual positivity and the
strong Perron-Frobenius property has been established.

Definition 3 ([27]): A matrix A € R"*" is said to possess
the strong Perron-Frobenius property if p(A) is a simple posi-
tive eigenvalue with a positive right eigenvector and |\| < p(A)
for every other eigenvalue A # p(A) of A.

Lemma 5 ([27]): Let A € R™ ™ be a symmetric matrix.
Then it possesses the strong Perron-Frobenius property if and
only if it is eventually positive.

Based on eventual nonnegativity, the following generaliza-
tion of M-matrix has been introduced in [29].

Definition 4: A matrix A € R™"*" is an eventual M-matrix
if it can be expressed as A = sI — B, where s > p(B) and
B is eventually nonnegative.

Now, we are ready to state the main theorem of this section.

Theorem 6: For a given signed Laplacian L € R™"*", the
following statements are equivalent:

(a) L >0 and corank(L) = 1.
(b) L is an eventual M-matrix that can be expressed as L =

sI — B, where s = p(B), and B is eventually positive.
(c) —L is eventually exponentially positive.

Proof: First, we show that (a) implies (b). Suppose L > 0
and has corank 1. Let Ay, Ag, ..., A\, be the eigenvalues of L
ordered nondecreasingly, i.e., 0 = A1 < Ay < A3 < --- < A,
Let s = A\, and B = sI — L. Clearly, p(B) = \,, is a simple
positive eigenvalue of B with a corresponding eigenvector 1.
Moreover, p(B) is greater than the magnitude of any other
eigenvalue of B. Therefore, B possesses the strong Perron-
Frobenius property and is eventually positive by Lemma 5.
This validates that L = s/ — B is an eventual M-matrix with
B being eventually positive.

Second, we show that (b) implies (c). From the fact that L
is an eventual M-matrix with L = sI — B and B is eventually
positive, it follows that —L + sI is eventually positive. By
Lemma 4, —L is eventually exponentially positive.

Finally, we show that (c) implies (a). By definition, if —L is
eventually exponentially positive, then e~ is eventually posi-
tive and, hence, satisfies the strong Perron-Frobenius property
in light of Lemma 5. Note that e~ has an eigenvalue 1 with
a corresponding eigenvector 1. Since e~ is symmetric, all
the other eigenvectors are orthogonal to 1 and hence cannot
be positive. Therefore, p(e~’) = 1 is a simple eigenvalue of
e~ and is greater than all the other eigenvalues in absolute
value. From this, the statement (a) follows. [ |

The implications of Theorem 6 in linear consensus prob-
lems are interesting. It answers the questions in Section II.D
regarding consensus over signed graphs under the protocol (2).
When there exist repelling interactions between some agents,
the corresponding edge weights are negative and L is a signed
Laplacian. It is known that consensus can be reached if and
only if L > 0 with a simple zero eigenvalue. Then, Theorem 6
tells that the eventual exponential positivity of —L is not only
sufficient in guaranteeing consensus as indicated in [5], but
also necessary. Moreover, —L being eventually exponentially
positive means that for a given nonnegative initial condition
x(0), the agents’ states x(¢) may exit the nonnegative orthant

temporarily and return to it at a future time and remain therein
forever. This is a prominent distinction from the consensus
over a conventional graph with only positive weights, in which
the states always stay nonnegative under a nonnegative initial
condition. Below is a simulation example for illustration.

Example 4: Consider a consensus problem of nine agents
interacting over the signed graph depicted in Figure 3, and
under the consensus protocol (2). From the analysis in Exam-
ple 1, we already know that the associated signed Laplacian L
is positive semidefinite with a simple zero eigenvalue. Hence,
the agents can reach consensus. Let the initial states be

xz(0) =[1.61 3.52 6.02 4.76 17.57
0.1 10.87 2.28 15.79]".
The simulation result is shown in Figure 9, where we can
see that consensus is indeed reached, but the state of the

sixth agent becomes negative temporarily due to the eventual
exponential positivity of —L.
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Figure 9: State trajectories of the agents.

VII. CONCLUSION

In this paper, we studied the spectral properties of signed
Laplacians. We first characterized the positive semidefiniteness
of signed Laplacians in terms of the negative weights via both
the Kron reduction and n-port network theory. The study was
then extended to characterizing the inertias of indefinite signed
Laplacians. Moreover, we revealed the connections between
signed Laplacians, generalized M-matrices, and eventually
exponentially positive matrices.

One future direction of research is to extend the study to
directed signed graphs. We wish to explore conditions on the
negative weights under which the associated signed Laplacians
have all the eigenvalues in the open right half plane except for
a simple zero eigenvalue. Preliminary results on some special
cases can be found in [16], [47], [48]. A generalization of the
notion of effective resistance to directed graphs proposed in
[49], [50] may give a clue in this exploration. We also envision
that the connection with eventual exponential positivity will
continue to play an important role in the directed case.
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