Industrial Applications of Networked Control Karl H. Johansson ACCESS Linnaeus Center Royal Institute of Technology Stockholm, Sweden Joint work with Maben Rabi, Mikael Johansson, Chithrupa Ramesh, Alexandre Seuret, Emmanuel Witrant ACC 2008, Seattle, WA ## **Emerging applications** - Wireless mining ventilation control - HMCON - Wireless control of flotation process - Vehicle fuel efficiency using networked sensing • **Disaster relief** support using mobile relay nodes Surveillance with networked vehicles - Level and flow sensors are used for regulating flotation process using SISO PID controllers - Wireless sensors enable more flexible control strategies # Conflict between traditional - control engineering: time-driven sampling, fixed topology and - networking: event-driven communication, ad hoc topology - Transmit information only when needed: - "If it ain't broken, don't fix it" [K. J. Åström] #### Time- vs. event-driven control Event-driven control implemented as fixed-level detector at sensor May outperform periodic control: Controlle Detector Improved control performance but same communication bandwidth Event-Based Control Periodic Control 10 15 200 100 -100 -100 -200 -200 L 15 Åström & Bernhardsson, IEEE CDC, 2002 #### When to transmit? • Simple medium access mechanism at sensor, #### How to control? Execute control law on fixed control alphabet, e.g., piecewise constant controls Rabi et al., IEEE CDC, 2006 Johannesson et al., HSCC, 2007 Cervin & Henningsson, 2008 Rabi et al., 2008 ## Mathematical framework $$dx_t = f(x_t, u_t)dt + g(x_t, u_t)dB_t$$ x_t state u_t control B_t Brownian motion Piecewise constant controls: $u_t = \sum_{i=0}^{N} U_i \cdot \mathbf{1}_{\tau_i \leq t < \tau_{i+1}}$ Cost: $$J = \mathsf{E} \int_0^T L(x_s, u_s) ds$$ How choose $\{U_i\}$ and $\{ au_i\}$ to minimize J? Rabi et al., 2008 # Controlled Brownian motion with one sampling event $$dx_t = u_t dt + dB_t$$ $$egin{aligned} \min_{U_0,U_1, au} J &= \min_{U_0,U_1, au} \mathsf{E} \int_0^T x_s^2 ds \end{aligned} = \min_{U_0,U_1, au} \left[\mathsf{E} \int_0^ au x_s^2 ds + \mathsf{E} \int_ au^T x_s^2 ds ight]$$ A joint optimal control and optimal stopping problem $$dx_t = u_t dt + dB_t$$ $$\min_{U_0, U_1, \tau} J = \min_{U_0, U_1, \tau} \mathbf{E} \int_0^T x_s^2 ds$$ If τ chosen deterministically (not depending on x_t) and $x_0 = 0$: $$U_0^* = 0$$ $U_1^* = -\frac{3x_{T/2}}{T}$ $\tau^* = T/2$ If $$\tau$$ is event-driven (depending on x_t) and $x_0=0$: $$U_0^*=0 \qquad U_1^*=-\frac{3x_{\tau^*}}{2(T-\tau^*)}$$ $$\tau^* = \inf\{t : x_t^2 \ge \sqrt{3}(T-t)\}$$ Envelope defines optimal level detector ## **Conclusions** • Wide range of emerging wireless control applications - Application constraints inspire to new theoretical problems - Control systems need to be robust against communication outages - Need integrated view of control and wireless networking - Event-based control to support asynchronous networking http://www.ee.kth.se/~kallej #### ISA SP100 Classification of Wireless Automation | Category | Class | Application | Description | | |------------|-------|--------------------------------------|--|---| | Safety | 0 | Emergency action | (always critical) | mportance of message timeliness increases | | Control | 1 | Closed loop regulatory control | (often critical) | | | | 2 | Closed loop supervisory control | (usually non-critical) | | | | 3 | Open loop control | (human in the loop) | | | Monitoring | 4 | Alerting | Short-term operational consequence (e.g., event-based maintenance) | Importanc | | | 5 | Logging and
downloading/uploading | No immediate operational consequence
(e.g., history collection , sequence-of-
events, preventive maintenance) | |