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Abstract— We consider a networked control system with an
unreliable feedback link from the sensor to the controller.
Specifically, a discrete-time linear system is to be controlled via
a packet-drop channel where multiple packets are transmitted
at each time instance. We propose a coded control scheme
that jointly designs the coding strategy, which mitigates the
channel unreliability, and the control strategy, which stabilizes
the unstable system. This scheme is based on the idea of
successive refinement, that more important system states (or
linear combinations thereof) should be better protected against
the unreliable channel. The proposed scheme is simple to
implement as it uses a static encoder and decoder/controller,
in the sense that all encoding and decoding procedures do not
require information from previous time steps. Furthermore,
we compare it with two other static schemes and show that
our approach strikes a good balance between optimality and
complexity.

I. INTRODUCTION

Networked control systems (NCS) are distributed systems,
where the communications between plants, sensors or/and
controllers are subject to certain constraints. Most studied are
the scenarios where the feedback link from the sensor to the
controller is implemented via an unreliable communication
channel. Various aspects of the problem are studied under
different assumptions on the feedback link. For example, in
the set-up where the feedback channel is a bit-pipe channel
with a finite data rate, the classical data-rate theorem (see,
e.g. [16]) provides a necessary condition for stabilizing
the plant, characterized by the unstable eigenvalues of the
system. In the set-up where the feedback channel is modelled
as a discrete memoryless channel, the notion of anytime
capacity [10] gives the necessary and sufficient condition
under which the moments of the system states can be
stabilized. In [12], a packet-drop channel is considered as
the unreliable feedback link, where a real-valued vector is
received with a certain probability by the controller in each
time instance. A Kalman filter with intermittent observations
is developed for this system in [12] to address the problem
of estimating the states of a linear system over the erasure
channel. The minimum erasure probability is found under
which the estimation error is bounded. For a system without
an explicit feedback constraint, a linear quadratic Gaussian
(LQG) control problem is studied in [13] where prefix-free
binary codes are used to feed back the system states. Both
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upper and lower bounds for the code rate are determined for
a given control cost. NCS with a packet erasure channel is
studied in [7], where repetition codes are used to improve
the control performance. Authors in [4] studied the system
with one controller and two sensors, where the outputs of
the sensors are connected to the controller via an unreliable
channel. For a more comprehensive overview of the results,
the reader is referred to the survey papers [8], [5]. In addition
to the theoretical results, practical coding techniques have
also been developed for NCS. For example, LDPC (low-
density parity check) codes are used in [14] to control a linear
system with unreliable feedback links, and [11] exploited the
real-time nature of rateless codes to stabilize a linear system
with noisy feedback.

Fig. 1: A networked control system. The system state
x(t) ∈ Rn is to be encoded into L vectors (packets)
v` ∈ Rs, ` = 1, . . . , L, and transmitted to the decoder. Every
packet experiences independent erasures, and is received by
the decoder/controller with probability 1− p.

In this work, we study a system similar to that in [12],
where the feedback link between the sensor and the controller
is modeled by a discrete time packet-drop channel, with the
difference that multiple packets are transmitted in each time
instance (see Fig. 1). This model is relevant for the scenarios
where a (possibly distributed) system is to be controlled
over a wireless communication channel, and also provides
new degrees of freedom that we could leverage in the
system design. Particularly, we explore the idea of successive
refinement from information theory, which assigns different
priorities to the system states (or linear combinations thereof)
according to their importance to the closed-loop system
performance. Specifically, the paper makes the following
contributions.
• A coded control strategy is proposed based on the

principle of successive refinement, that more important
system states (or linear combinations thereof) are better
protected against the unreliable channel, and have a
higher probability being utilized by the controller.
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• We provide an algorithm which jointly optimizes the
coding scheme and the control policy based on the
channel characteristic and the control specification. That
is, the problems of coding against the unreliable channel
and controlling the unstable system are addressed in a
common framework.

• We compare our strategy with two other static schemes:
the first scheme solves the control and coding problems
separately hence is of low complexity; the second
scheme, though with high complexity, jointly addresses
the two problems in a globally optimal way. Numerical
results show that the proposed scheme strikes a good
balance between the two extremes. It achieves perfor-
mance comparable to that of the optimal scheme, at the
same time maintaining a lower complexity.

II. PROBLEM STATEMENT

Consider a discrete-time linear system of the form

x(t+ 1) = Ax(t) +Bu(t) (1)

where x(t) and u(t) denote the system state and input,
respectively, and A ∈ Rn×n, B ∈ Rn×m. The system is
assumed to be unstable, i.e, the absolute value of the largest
eigenvalue of A is larger than 1.

The networked control system in consideration is depicted
in Figure 1. We assume that the system state x(t) is perfectly
observed by an encoder. The unreliable channel is modelled
as a so-called packet-drop channel. More precisely, at each
time instance, L packets are sent from the encoder, and
each packet arrives at the decoder/controller independently
with probability 1− p, where p ∈ [0, 1] denotes the erasure
probability of the channel. Notice that in contrast to some
earlier work where only one packet is sent out at each time
instance ( [12], [5] for example), we assume that multiple
packets are transmitted by the encoder. This assumption is
justified under a variety of scenarios. If the actual feedback
link is a wireless communication channel, due to the short
coherence time of typical wireless channels [15], the encoder
needs to send out multiple short packets instead of a long
packet, so that the channel impulse response can be essen-
tially invariant for one packet. Moreover, the packet-drop
channel with multiple packets is also a suitable model for
scenarios in which there are several non-collocated sensors,
each of which has an observation of the system state. In this
case, the total number of transmitted packets (from multiple
sensors) is always larger than one in each time instance, and
the packet(s) sent out by different sensors will be received
by the controller via independent wireless channels.

We further assume that each packet contains a real-
valued vector, as in previous works [5]. This assumption is
appropriate when each packet holds sufficiently many bits so
that the quantization effect can be ignored, but packet losses
cannot. More precisely, a length-s vector is contained in each
packet at time t, denoted as v`(t) ∈ Rs, ` = 1, . . . , L, and is
assumed to be generated directly using the system state as

[v1, · · · vL(t)] = E(x(t)), ` = 1, . . . , L. (2)

With a slightly abuse of notation, we use v̂`(t) to denote
the received information. Under the erasure channel model,
we have either v̂`(t) = v`(t) if the packet is received, or
v̂`(t) = e, denoting that an erasure has occurred. At each
time instance, a controller C generates the control signal u(t)
using the received packets from the current transmission

u(t) = C(v̂1(t), . . . , v̂L(t)). (3)

We emphasize the fact that although u(t) can be generated
using all the information available to the controller (including
all received information from previous time steps), we focus
on a static decoder/controller in the form of (3) in the current
paper.

Since packets are sent through a stochastic channel, the
resulting control signal u(t) and the system state x(t) are
also stochastic. In this regard, we will adopt the following
definition of stability.

Definition II.1 (Second moment stable). The system (1) is
said to be second moment stable, if for any x(0) ∈ Rn, it
holds that limt→∞ E||x(t)||2 = 0.

Sometimes we impose a more stringent requirement on
the convergence of the system, given by the decay rate.

Definition II.2 (Decay rate). Let β ≥ 1, the system (1) is
said to have a decay rate β, if for any x(0) ∈ Rn, it holds
that limt→∞ βtE ||x(t)||2 = 0.

Now we can formally state our control problem as follows.
Problem: Given the discrete-time system in (1) and the
packet-drop channel with parameters L (number of packets),
s (size of each packet), and p (erasure probability), design
the encoder and controller in the form of (2) and (3),
respectively, such that the closed-loop system has a certain
decay rate.

III. A SUCCESSIVE REFINEMENT APPROACH

In this section, we propose a simple control strategy
inspired by the principle of successive refinement. A similar
idea was used in the multiple description coding scheme in
[9], and in the coded computation strategy in [18]. We also
point out that the multiple description coding scheme is also
used in [6] for state estimation over packet-drop channels.

A. The coding scheme

We first describe the controller. With simplicity in mind,
we use a linear controller based on the decoded information.
Namely,

u(t) = K(t)x̃(t) (4)

where x̃(t) is generated using a decoder D with the received
packets:

x̃(t) = D(v̂1(t), . . . , v̂L(t)).

The encoder E and the decoder D are to be designed such
that the following property is satisfied.
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Definition III.1 (Successive refinement). Let D1, . . . , DL

be L matrices with the dimension D` ∈ Rr`×n, ` = 1, . . . , L.
If any ` out of the total L packets are received by the
controller, the controller can recover D1x, . . . ,D`x. That
is, we have

x̃(t) = C`x(t) = D(v̂1(t), . . . , v̂L(t)) (5)

if any ` packets are received, where we define

C` :=

D1

...
D`

 ∈ R(
∑`

i=1 r`)×n. (6)

The successive refinement coding scheme has the property
that certain quantities are given higher priority than others
during the transmission. More precisely, the vector D1x(t) ∈
Rr1 has the highest chance being correctly decoded by the
controller. Indeed, it can be recovered with probability 1 −
pL, when any one out of L packets is received. The term
D2x(t) ∈ Rr2 has the second highest priority with a recovery
probability of

∑L
`=2

(
L
`

)
(1− p)`pL−`, when any two out of

L packets are received, and so on. As there are L packets
containing sL numbers in total, there is a tension between
the length of the vector D`x(t) and its priority. For example,
if we choose r1 equal to s (the length of the packet), it is easy
to see that the only coding option is to set v`(t) = D1x(t)
to all ` = 1, . . . , L, which results r1 = s and r` = 0 for all
` 6= 1.

If the successive refinement requirement is satisfied, there
are in total L+1 different resultant x̃(t), determined by the
matrix C`, ` = 1, . . . , L. We set C0 = 0 to include the case
when no packet is received, where x̃(t) = 0. For each C`
we can design a corresponding linear controller to generate
the control signal as

u(t) = K`C`x(t). (7)

where K` ∈ Rm×
∑L

i=1 r` for ` = 1, . . . , L and C` given
in (6). We point out that as we allow r` = 0 for some `
(as shown in the example from Fig. 2), it can happen that
C` = C`′ for some ` 6= `′.

Remark III.2 (Static scheme). The current strategy sets
C0 = 0, and consequently u(t) = 0 in this case. This means
that if no packet is received, the controller does not apply
any control signal and the system evolves uncontrolled as
x(t + 1) = Ax(t). Obviously in this case, a control signal
could still be generated using the last known system states,
e.g. letting u(t) = u(t − 1). More generally, we could
obtain a better estimation of the current system state by
exploiting previously received information. However, we do
not consider this option, as our current design methodology
insists on static controller which does not estimate current
system state using past information. In general, static output
feedback stabilization is an important open question in
control theory, and more information could be found in, e.
g. [1].

Fig. 2: A successive refinement coding scheme. The plot
shows the generated packet v1(t), . . . , v4(t) from the infor-
mation D`x(t), ` = 1, . . . , 4. Since r1 = 0, the controller
is not required to decode with the information from one
packet. It can be checked that the controller can recover
D2x(t) := (a21, a22, a23) with the information from any two
packets, D3x(t) := (a31, a32, a33) with the information from
any three packets, and D4x(t) := a4 with the information
from all four packets. The shaded values can be seen as the
parity check information.

Given the number L and the length s of the packets, the
following theorem shows possible choices of r1, . . . , rL.

Theorem III.3 (Feasible configurations). Given L and s,
there exists a coding scheme that satisfies the successive re-
finement property in Def. III.1, if the length r` of D`x(t), ` =
1, . . . , L satisfies the following condition

L∑
i=1

gi ≤ sL (8)

where gi is defined as

g` :=

{
r`
` L ` divides k`
bk`` c · L+ L− `+mod(k`, `) otherwise

(9)

Proof: A proof of the result can be found in [18].
A choice (r1, . . . , rL) is called a feasible configuration if

it satisfies the condition in (8). The above theorem shows that
we can find coding schemes for feasible configurations which
guarantee the successive refinement requirement. We give an
example of the coding scheme in Fig. 2 to illustrate the result.
In this example we assume L = 4 and s = 3. A feasible
configuration with (r1 = 0, r2 = 3, r3 = 3, r4 = 1) is
depicted in Fig. 2, where we denote D1x(t) = ∅, D2x(t) =
(a21, a22, a23), D3x(t) = (a31, a32, a33), and D4x(t) = a4.

IV. CLOSED-LOOP SYSTEM

In this section, we study the performance of the closed-
loop system under the proposed coded control scheme.

Theorem IV.1 (Decay rate of the closed-loop system).
Given the discrete-time system in (1) and the packet-drop
channel with parameters L (number of packets), s (size of
each packet), and p (erasure probability), there exists an
encoder and a decoder in the form of (2) and (3) such that
the closed-loop system is second moment stable and has a
decay rate 1/α, if the following conditions are satisfied:
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S :=


αP ATP (A+BK1C1)

TP . . . (A−BKLCL)
TP

PA p−10 P 0 . . . 0
P (A+BK1C1) 0 p−11 P . . . 0

...
...

...
. . .

...
P (A+BKLCL) 0 0 . . . p−1L P

 (12)

1) There exist matrices D`,K` for ` = 1, . . . , L, a
positive-definite matrix P � 0 and a constant 0 <
α < 1, such that the matrix S defined in (12) satisfies

S � 0. (10)

Note that C` in (12) is defined as

C` :=

D1

...
D`

 where D` ∈ Rr`×n,

and p` is given by

p` :=

(
L

`

)
pL−`(1− p)` (11)

2) The dimension r` ∈ N+ of the matrices D` for ` =
1, . . . , L satisfies (8).

As shown in the sequel, the conditions can be verified by
solving an optimization problem. We first prove the above
result.

A. Proof of Theorem IV.1

Recall that under our successive refinement encoding
scheme, the control signal is given in (7), where the matrix
C` varies for different time instances. Hence effectively we
are dealing with an i.i.d. jump linear system [3] of the form

x(t+ 1) = H(t)x(t) (13)

where H(t) is a random matrix taking values in the set
{H1, . . . ,HL} with H` defined as

H` := A+BK`C` for ` = 0, . . . , L (14)

with C` given by (6) and C0 = 0. Furthermore, as we
assume i.i.d. channels for each time instance, the random
matrix H(t) is an i.i.d. matrix for each time t. To study the
equivalent system in (13), we use the result in [2] on stability
of jump linear systems. It is shown that [2, Thm. 2.1] for
a jump linear system of the form x(t + 1) = Hτ(t)x(t),
where τ(t) is an i.i.d. sequence taking values in a set T =
{0, 1, . . . , L} ⊆ Z+, the necessary and sufficient condition
of its second moment stability (cf. Def. II.1) is that for some
positive-definite matrix P � 0, it holds that∑

τ∈T
pτH

T
τ PHτ − P ≺ 0 (15)

where pτ denotes the probability distribution of τ . Further-
more, the result can be extended to show that the jump linear

system has a decay rate 1/α (cf. Def. II.2), if the following
condition is satisfied∑

τ∈T
pτH

T
τ PHτ − αP ≺ 0. (16)

The above result can be turned into an algorithm to design
the system. To this end, we follow the approach in [17] to
rewrite the condition (16) as

S � 0

using Schur complements and equations (14) and (11), where
S is given in (12). Furthermore, due to the successive re-
finement requirement, r` (the dimension of D`) must satisfy
the condition (8). Lastly, the probability that the random
matrix H(t) takes value H`, for ` = 0, . . . , L is equal to
the probability that x̃(t) equals C`x(t), i.e., any ` out of L
packets are received by the controller. Hence we have

P {H(t) = H`} =
(
L

`

)
pL−`(1− p)` = p`

for all t. This proves the claim.

B. Controller design

As shown in Theorem IV.1, there are many degrees of
freedom in the design for the jump linear system in (13), such
that the conditions in (10) are satisfied. More precisely, we
can design the matrices D`, for ` = 1, . . . , L (or equivalently
C`) and their sizes r`, and the corresponding control matrix
K` in accordance with certain control performance criteria.
Notice the matrices C` are nested in the sense that C`1
is always a sub-matrix of C`2 for any `1 ≤ `2. As a
result, the quantity D`x(t) is available to the controller with
probability p`+. . .+pL, confirming the successive refinement
property in which more important system states or the linear
combinations thereof (smaller `) is received correctly with
higher probability.

In fact, instead of checking the feasibility of the con-
dition (10) for a given α, we could design the encoder
and controller to maximize the decay rate of the equivalent
system (13). Specifically, a lower bound on the decay rate
of the system (13) can be found by solving the optimization
problem

minimize α (17)
s. t. S � 0 and P � 0

C` :=

D1

...
D`

 where D` ∈ Rr`
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r` ∈ N+ satisifying (8)

where the matrix S is defined in (12) and the variables are
P, r`, D`,K`, ` = 1, . . . , L and α. If the above problem is
feasible with some 0 < α < 1, then the system (13) is stable
with a decay rate 1/α.

Due to the integer constraint on r`, we first fix the
choice of r`, and solve the optimization problem (17) for
the given r`. It should be noted that in this case, the
optimization problem is not convex in its variables D`,K`, P
and α. Nevertheless, by using an alternating method, a (local)
minimizer can be found via executing a sequence of convex
optimization problems involving linear matrix inequalities
(LMI), as discussed in [17]. More precisely, we solve the
problem in (17) using Algorithm 1. Notice that each step
of (a), (b) and (c) in Algorithm 1 amounts to solving an
convex optimization problem involving LMI, and can be
readily carried out using off-the-shelf convex optimization
solvers.

We point out that the coding scheme and the control policy
enter the optimization procedure via matrices C` and K`

through the condition S � 0 in (17). Hence the problem
(17) optimizes the coding scheme and the control policy in a
joint manner, and its solution automatically gives the priority
of the system states, with the objective that the decay rate
of the equivalent system (13) is maximized. More precisely,
D1x(t), D2x(t), . . . give (linear combinations of) the system
states in the decreasing order of importance, and K1,K2, . . .
give the corresponding controllers, designed jointly by the
optimization problem (17). However, we should also point
out that the optimization problem (17) is non-convex, hence
Algorithm 1 may provide a locally optimal solution.

Remark IV.2. To check the feasibility of the condition in
(10) for a given α, we consider an optimization problem
identical to (17) except that the objective function is simply
0. Algorithm 1 can be used to solve this problem with the
given α without any further modification. A feasible solution
to the problem implies the feasibility of the condition (10).

Remark IV.3 (Encoding and decoding complexity). It
can be seen that v`(t) is a linear combination of the system
state x(t). Hence the encoding has the same computation
complexity as a matrix-vector multiplication. The decoding
procedure in (5) amounts to solving a set of linear equations.
Also notice that with the linear controller (7), the two steps
in (5) and (7) can be combined into one matrix-vector
multiplication. Furthermore, since the coding scheme is
based on MDS codes, the decoding procedure could be
further simplified using MDS codes with more structures
(Reed-Solomon codes, for example).

Remark IV.4 (Non-adaptive controller). By setting the
control matrices to be identical K1 = . . . = KL = K in
the problem (17), we obtain a simpler control rule, where
the controller does not adapt according to different received
information. This can simplify the controller design, as well
as the decoding procedure.

Algorithm 1 Algorithm for solving problem (17)
Require: Choose a feasible configuration r1, . . . , rL satis-

fying (8). Initialize α,D`,K` and P .
repeat{

(a) Fix P,K`, solve problem (17) with variables α and
D`, ` = 1, . . . , L

(b) Fix P,D`, solve problem (17) with variables α and
K`, ` = 1, . . . , L

(c) Fix K`, D`, α, solve problem (17) with the variable
P . }
until α converges.

V. COMPARISONS AND NUMERICAL RESULTS

In this section, we give a few numerical results to illustrate
the proposed coded control scheme. In particular, we will
compare our results with two other static schemes. The first
scheme, described in Section V-A, always constructs the full
system state x(t), and generates control signal based on x(t).
The second scheme, described in V-B, is the optimal static
scheme under our assumptions. These two schemes represent
two extremes in the entire design spectrum, whereas the
first scheme is simple, but fails to address the coding and
the control problem jointly; and the second scheme has the
highest complexity, applying different control laws according
to all possible channel realizations. Numerical results show
that our proposed scheme strikes a good balance between
these two extremes.

A. Reconstructing the full system state

Under the premise that the control signal should be
generated using only the currently received information, a
less sophisticated but simpler coding scheme is to let the
controller reconstruct the full system state x(t) at each time
instance, if possible. Then a control signal is generated based
on the system state x(t). This can be implemented with
the maximum distance separable (MDS) codes, where L′

received packets allow the controller to recover x(t) if it
holds that sL′ ≥ n. Under this coding scheme, each packet
contains s linear combinations of the n system states. If the
number of the linear combinations (sL′ in this case) is larger
than the number of unknowns (n in this case), the unknown
system state can be solved using the received packets by
solving a set of linear equations. If not, the unknown state
cannot be recovered and no control input will be applied for
this step.

With the full system state x(t), the controller could use any
stabilizing control policy (for example, an LQR controller).
However, we can do better by treating it as a linear jump
system. By the same token, the equivalent system under this
scheme is also a jump linear system of the form (13), but
with only two possible states H(t) ∈ {A+BK,A}. We have
H(t) = A+ BK if enough packets are received to recover
x(t), otherwise H(t) = A. It is straightforward to find that
P {H(t) = A+BK} =

∑L
`=L′

(
L
`

)
pL−`(1 − p)` with the

smallest L′ satisfying sL′ ≥ n. Following Remark III.2, the
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controller does not attempt to estimate x(t) if less than L′

packets are received.

B. Optimal strategy

With the encoder and controller in the form of (2) and (3),
respectively, we could in principle design the optimal (linear)
encoder and decoder, at the cost that the complexity of this
scheme grows exponentially with the number of packets L.

In the optimal scheme, the packets are generated as

v`(t) = D̃`x(t), ` = 1, . . . , L

where D̃` ∈ Rs×n for all `. Since there are 2L possible
cases with different received packets, the control/decoder
will generate a corresponding control signal u(t) based on
the received packets. Specifically, the control signal can be
rewritten as

u(t) = K`′E`′

D̃1

...
D̃L

x(t)

for `′ = 1, . . . , 2L where E`′ denotes a selection matrix
which keeps the entries of D̃`x(t) if the corresponding
packets are received.

Using the same argument as in Section IV, this strategy
results in an equivalent jump linear system of the form x(t+
1) = H̃(t)x(t) where H̃(t) takes value H̃`′ for some `′ =
1, . . . , 2L defined as

H̃`′ = A+BK`′E`′

D̃1

...
D̃L

 (18)

where the probability is given by

P
{
H̃(t) = H̃`′

}
=

(
L

b

)
pL−b(1− p)b

where b denotes the number of received packets in this
time instance. Using the same machinery in Section IV-
B, the matrices D′`, K

′
` can be optimized using Algorithm

1 to maximize the decay rate of the system. The main
drawback of the optimal scheme is that since there are
2L different states (compared to L different states in the
proposed scheme), the complexity of the scheme grows
exponentially with the number of packets L, rendering it
inapplicable for a real-time control system.

C. Comparison

Although the scheme in Section V-A is very simple,
its performance is often inferior to the proposed scheme,
because the designs of the communication and the control
scheme are separated. Indeed, aiming to recover the full
system state imposes a very stringent requirement on the
channel quality, and is often impossible when the erasure
probability of the channel is high. Moreover, it is easy to
see that the scheme in Section V-A is a special case of our
scheme.

It can be argued straightforwardly that our proposed
scheme in Section III can be viewed as an instance of the op-
timal strategy proposed in Section V-B with certain choices
of K`′ and D̃`′ . However, using the optimal strategy has the
following two difficulties. Firstly, the number of the possible
states of the induced jump system grows exponentially with
the number of packets L. Therefore, after the reception of
packets, the controller needs to search for the corresponding
control matrix K`′ from a look-up table whose size grows
exponentially with L, which is a bottleneck for real-time
implementations. Secondly, even equipped with Algorithm
1, the problem of finding a good controller for the optimal
strategy quickly becomes intractable for even a moderate-
sized L. This is because the size of the LMI constraint,
which guarantees the stability condition in (15), also grows
exponentially with the number of packets L. In contrast, the
number of the possible states of the jump system induced
by our proposed scheme, as well as the size of the LMI
constraint in (12), grows only linearly in L, for a fixed choice
of r`. We point out that finding a good choice of r` is an
interesting question of its own, and will be studied in the
future work.

D. Example

To illustrate the results, we consider a linear system of the
form (1) with the dynamical matrix A ∈ R6. The eigenvalues
of A is given as

eig(A) := [7, 2, 1.8, 1.5, 1.2, 1.1].

The matrix B is a 6 × 6 matrix where the pair (A,B) is
controllable. We assume at each time instance, L = 3 packets
are transmitted where each packet contains a vector v`(t) ∈
Rs with s = 3. The erasure probability is set to be p = 0.25.
Furthermore, an i.i.d. Gaussian noise sequence with variance
0.5 is added to the system state.

We use Algorithm 1 to find encoding matrices D` and con-
trollers K` to stabilize the system, based on three difference
choices of configurations:

r(1) = [r1 = 1, r2 = 2, r3 = 3]

r(2) = [r1 = 2, r2 = 0, r3 = 3]

r(3) = [r1 = 0, r2 = 6, r3 = 0]

It can be checked using (8) that all three configurations are
feasible. In particular, the choice r(3) corresponds to the
scheme described in Section V-A, where the full system
state x(t) ∈ R6 is recovered when any two packets out of
three are received. As a comparison for this example, we
also compute the optimal strategy as discussed in Section
V-B, whose decay rate is denoted as 1/α∗.

Algorithm 1 produces following α for the three configu-
rations and the optimal strategy

α(1) = 0.7656

α(2) = 0.8325

α(3) = 7.6563

α∗ = 0.7656
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Fig. 3: A sample path of the networked control system.
The plot on the top shows a sample path of the system
||x(t)||2 with two different control policies with r(1) and
r(3), respectively.

This shows that the first two configurations provide a sta-
bilizing control strategy with α(1), α(2) < 1, and the third
configuration fails to find coding matrices D` and controllers
K` which stabilizes the system1.

Finally, for the optimal strategy in Section V-B, Algorithm
1 produces α∗ = 0.7656, which is the same as α(1). This
shows that our proposed scheme with the choice of r(1) gives
the same decay rate (up to four digits after the decimal point)
as the optimal strategy, but with a simpler implementation.
Indeed, every time it applies one of 3 possible controllers,
instead of 8 possible controllers as in the optimal strategy.
This advantage is more pronounced when the number of
packets L is large.

A closed-loop simulation for the above example is given
in Figure 3. The bottom plot shows the number of received
packets in each time instance, ranging from 0 to 3. The plot
on the top shows a sample path of the system under two
different control policies with r(1) and r(3), respectively. The
solid line shows the norm of the system state ||x(t)||2 using
the control policy with r(1), and the dashed line represents
the control policy r(3), with which the full system state is to
be reconstructed with two received packets.

VI. FUTURE WORK

We conclue the paper with two interesting questions for
the future work.

• Choosing the optimal r` is a combinatorial optimization
problem. Find good choices of r` with a low computa-

1We point out that due to the non-convexity of the problem (17), failing
to find a α(3) smaller than 1 using Algorithm 1 does not eliminate its
existence. However for this particular example, many rounds of simulations
with different initializations always give the same result.

tional method (instead of an exhaustive search) would
be interesting to our approach.

• The current work uses a static encoder and de-
coder/controller, which do not attempt to estimate the
system state using past information. It has benefits
in terms of simplicity, but is in general inferior to a
controller which utilizes all available information. One
direction of the future work is to study a dynamic
estimator/controller, and compare the results with the
static ones.
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