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Abstract: The stability analysis and stabilization of networked control systems subject to
data loss and time-varying transmission delays are explored. The stability result is based on
quadratic separation and operator theory, which allows to capture the above phenomena into
the single formalism of aperiodic sampling. The obtained stability condition is expressed through
an LMI. The stabilization problem is a bit more involved due to the inherent structure of the
obtained LMI. An approximation (dilation) is then proposed to obtain a more tractable LMI
for stabilization. Several examples illustrate the effectiveness of the proposed approach.
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1. INTRODUCTION

Networked control systems (NCS) [Hespanha et al., 2007,
Heemels et al., 2009] is a wide class of physical systems
controlled or interconnected through a network. The net-
work has an important influence on the overall systems be-
havior by inducing delays, data loss and other constraints,
like data and transmission channels with finite capacity. It
is well-known that the network may deteriorate the system
performance, so it should be considered in the analysis and
the controller design.

Remote control of processes through wireless networks
(Fig. 1) is a very important problem. In such a set-up, the
controller receives data from the sensors through a network
and sends back the control input. Such a problem has been
widely studied in the literature, for instance in [Yu et al.,
2004, Yue et al., 2004, Naghshtabrizi and Hespanha, 2006,
Hespanha et al., 2007, Cloosterman et al., 2009, Heemels
et al., 2009].

In this paper, the stability and L2-gain analysis of lin-
ear systems remotely controlled by a state-feedback con-
troller is considered. From the nominal expression of the
sampled-data control law, the network effects are suc-
cessively added to the control law in order to build an
accurate model for the closed-loop system. It turns out
that the control law behaves as if the ’sampling’ was
asynchronous and bounded from above by τmax + (m +
1)Tmax where τmax, m and Tmax are the maximal propa-
gation delay value, the number of consecutive dropouts
and the maximal sampling period of the controller re-
spectively. Problems related to asynchronous sampling
have been studied in several papers with many different
approaches: time-delay systems [Yu et al., 2004, Fridman
et al., 2004], impulsive systems [Naghshtabrizi et al., 2008,

Fig. 1. Networked control system

Seuret, 2009], sampled-data techniques [Mirkin, 2007],
robust techniques [Fujioka, 2009]. Robust techniques in-
volving Integral Quadratic Constraints (IQCs) coupled
with well-posedness techniques will be considered in this
paper. To this aim, the system is then interpreted as
an interconnection of uncertain and dynamical operators
with an implicit algebraic expression. In order to consider
the operators accurately for the stability analysis of the
NCS, IQCs [Rantzer and Megretski, 1997] are employed
to characterize them through their input/output behav-
ior. The stability conditions, expressed as Linear Matrix
Inequalities (LMIs), are then obtained using recent results
on quadratic separation [Goh and Safonov, 1995, Iwasaki
and Hara, 1998, Peaucelle et al., 2007]. Finally, an LMI-
based stabilization result is obtained from a dilation of the
stability conditions.

The paper is structured as follows, Section 2 introduces
preliminary results on quadratic separation, IQCs and
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the closed-loop system expression. Section 3 is devoted
to the stability analysis of the NCS and some illustrative
examples are given. Finally, in Section 4, a solution to the
stabilization problem is derived.

Notations: Throughout the paper, the following nota-
tions are used. The set of Ln

2 consists of all measurable
functions f : R+ → Rn such that the L2 norm ‖f‖L2

=
(

∞∫

0

f∗(t)f(t)dt

)1/2

is finite. When no ambiguity may oc-

cur, the superscript n will be omitted. The truncation
operator PT is defined as PT (f) = fT with fT (t) = f(t)
when t ≤ T and 0 otherwise. The set Ln

2e denotes the
extended set of Ln

2 which consists of the functions whose
time truncation lies in Ln

2 . For two symmetric matrices,
A and B, A ≻ (�) B means that A − B is positive
(semi)definite. M ∈ Sn++ means that the matrix M an
n × n symmetric positive definite matrix. 1n and 0m×n

denote the identity matrix of size n and zero matrix of
size m× n respectively. A⊥ is a full rank matrix spanning
the null-space of A, i.e. AA⊥ = 0. For a square matrix A,
AS stands for the sum A+AT .

2. PRELIMINARIES

2.1 Quadratic separation:

The original NCS in Fig. 1 can be interpreted as the
interconnection in Fig. 2. This section provides a fun-
damental result on quadratic separation, as described in
[Iwasaki and Hara, 1998, Peaucelle et al., 2007, Ariba and
Gouaisbaut, 2009], which will be used as a basis for the
stability analysis.

+

+

zw

w̄

z̄

w − w̄ = ∇z

E(z − z̄) = Aw

Fig. 2. Implicit feedback system.

Consider the feedback system in Fig. 2 where E ∈ Rnc×nz ,
A ∈ Rnc×nw are constant matrices with nw = dim(w),
nz = dim(z) and nc is any integer greater than 0. The
matrix ∇ is an nw×nz matrix of operators. Then we have
the following theorem:

Theorem 1. The interconnected system of Fig. 2 is well-
posed if there exists a symmetric matrix Θ satisfying both
conditions

[ E −A ]
T

⊥
Θ [ E −A ]

⊥
≻ 0 (1)

and

〈

[
1

PT∇

]

uT ,Θ

[
1

PT∇

]

uT 〉 ≤ 0 (2)

for all u ∈ L2e and all T > 0.

Proof : The proof can be found in [Ariba et al., 2008,
Peaucelle et al., 2009]. ♦

The above result considers the well-posedness of the in-
terconnection, that is, that the loop signals w and z are
uniquely defined by the input signals w̄ and z̄. When the
operator ∇ consists of a dynamic operator, for instance
an integral operator, then the interconnection becomes a
dynamical system and in such case, well-posedness can be
made equivalent to stability provided that the structure
of the separator Θ is chosen accordingly. For more details,
see e.g. [Iwasaki and Hara, 1998].

2.2 Networked control system model:

Let us consider the following LTI continuous-time process

ẋ(t) = Ax(t) +Bu(t) + Ev(t)
y(t) = Cx(t) +Du(t) + Fv(t)
x(0) = x0

(3)

where x ∈ Rn, u ∈ Rm, v ∈ Rp, y ∈ Rq and x0 ∈ Rn are
the system state, the control input, the exogenous input,
the controlled output and the initial condition.

Ignoring first the network presence, a sampling-based
control law of the form

u(t) = Kx(tk), t ∈ [tk, tk+1) (4)

is considered where {tk}k∈N is an increasing sequence of
time-instants, with not necessarily constant increments
but bounded from above by Tmax. The time varying
propagation delay τ(t) is assumed to belong to [0, τmax].
It is also assumed that the process is driven by an event-
based system 1 , hence data loss can be easily incorporated
in the control input simply by noting that a dropout will
be reflected in an extension of the holding duration of
the actuator input. This yields the following control input
expression:

u(t) = Kx(tk)
t ∈ [tk + τk, tk+1 + τk+1)

tk+1 − tk ≤ (1 +m)Tmax

τk ∈ [0, τmax]

(5)

where τk = τ(tk), k ∈ N and m is the number of
consecutive dropouts.

Remark 1. To derive the above result, we have exploited
the fact that the controller is static and time-invariant.
In such a case, the network effects on both forward and
backward paths can be merged together as in a one-
channel feedback NCS [Hespanha et al., 2007]. Hence, only
the network effects on one path needs to be considered
(e.g. the forward path) and thus the control law (5) can
be considered without loss of generality. Note that this is
however not the case when a time-varying or a dynamic
controller is considered.

The quantity referred to as the maximum allowable trans-
fer interval (MATI, [Walsh et al., 1999]) denoted by µ and
defined as

µ := (1 +m)Tmax + τmax (6)

is very often used to compare the different methods.
The term communication outage [Henriksson et al., 2009]
is also employed to refer to the time interval during
which sensors data and controller signals do not reach
the controller and the actuator respectively. The set of

1 that is the control input on the process side is updated only when
a new data come, otherwise the previous data is maintained
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admissible communication outages is parameterized by the
MATI as

Sµ := {(m, τ, T ) ∈ N× R+ × R++ : (1 +m)T + τ ≤ µ} .
(7)

Using the complete model for the control input, the closed-
loop system writes

ẋ(t) = Ax(t) +BKx(tk) + Ev(t)
y(t) = Cx(t) +DKx(tk) + Fv(t)
x(0) = x0

t ∈ [tk + τk, tk+1 + τk+1).

(8)

with the conditions (5).

3. STABILITY ANALYSIS

3.1 NCS model:

In order to tackle the problem in the well-posedness
framework, the following transformed equivalent model is
used instead

ẋ(t) = (A+BK)x(t) −BKδ(t) + Ev(t)
y(t) = (C +DK)x(t) −DKδ(t) + Fv(t)
δ(t) = ∆sh[ẋ](t)
x(0) = x0

t ∈ [tk + τk, tk+1 + τk+1)

(9)

where the operator ∆sh(·) is defined as

∆sh[η](t) =

∫ t

tk+τk

η(s)ds, t ∈ [tk + τk, tk+1 + τk+1) (10)

with tk+1 − tk + τk+1 − τk ≤ µ with µ > 0. The signals
involved in the above system can be related through the
dynamical expression

[
x(t)
δ(t)
v(t)

]

︸ ︷︷ ︸

w(t)

=

[
I1n

∆sh1n

∆γ

]

︸ ︷︷ ︸

∇

[
ẋ(t)
ẋ(t)
y(t)

]

︸ ︷︷ ︸

z(t)

, (11)

and the implicit algebraic expression
[

1 0 0

−1 1 0

0 0 1

]

︸ ︷︷ ︸

E

[
ẋ(t)
ẋ(t)
y(t)

]

︸ ︷︷ ︸

z(t)

=

[
A+BK −BK E

0 0 0

C +DK −DK F

]

︸ ︷︷ ︸

A

[
x(t)
δ(t)
v(t)

]

︸ ︷︷ ︸

w(t)

(12)

where I is the integral operator and ∆γ is a virtual
operator characterizing the L2 gain of the transfer v → y
(detailed further).

3.2 Characterization of the operators:

In this section, the IQCs defining the operators involved
in ∇ are derived.

Lemma 2. The integration operator I is characterized by
the IQC:

Π1 := 〈

[
1n

I1n

]

xT ,

[
0 −P

−P 0

] [
1n

I1n

]

xT 〉 ≤ 0.

for all x ∈ Ln
2e and for any matrix P ∈ Sn++.

Proof : Expanding the expression, we get ∀T > 0, ∀x ∈
Ln
2e, (xT = PT (x))

Π1 = −2

∫ +∞

0

xT (t)
TP

∫ t

0

xT (s)dsdt

= −2

∫ +∞

0

d

dt
(IxT )

TP (IxT )dt

= −

∫ T

0

xT
T (s)dsP

∫ T

0

xT (s)ds ≤ 0

♦

Lemma 3. The operator ∆sh can be characterized by the
IQC:

〈

[
1n

∆sh1n

]

xT ,

[

−
4

π2
µ2S1 −S2

−S2 S1

] [
1n

∆sh1n

]

xT 〉 ≤ 0.

for all x ∈ Ln
2e and for any matrices S1, S2 ∈ Sn++.

Proof : Using the same arguments as in [Chen and Francis,
1995, Mirkin, 2007], the L2-induced norm of the operator
∆sh is equal to 2

πµ, where µ is the largest interval of
integration for the operator ∆sh given in (6). Therefore,
for all r ∈ Ln

2 , the inequality

‖∆shr‖
2
L2

≤
4

π2
µ2‖r‖2L2

holds or equivalently there exists S1 ∈ S
n
++ such that

∫ +∞

0

ϕS1
(∆sh[r](t))dt ≤

4

π2
µ2

∫ +∞

0

ϕS1
(r(t))dt

where ϕX(α) = αTXα for any matrices X = XT and
vectors α of appropriate dimensions. Considering now
x(t) ∈ Ln

2e, xT (t) ∈ Ln
2 , we have

∫ +∞

0

{

−ϕS1
(∆sh[xT ](t)) +

4

π2
µ2ϕS1

(xT (t))

}

dt ≥ 0.

(13)
Moreover, the passivity of the operator ∆sh has been
proved in [Fujioka, 2009]. So, for any S2 ∈ S

n
++ we have

∫ ∞

0

rT (t)S2∆sh[r](t)dt ≥ 0.

for all r ∈ L2. As previously, for all x(t) ∈ Ln
2e,

∫ ∞

0

xT
T (t)S2∆sh[xT ](t)dt ≥ 0. (14)

Finally, the sum of the inequalities (13) and (14) can be
easily arranged as the result of the lemma. ♦

Lemma 4. The operator ∆γ , which has an L2-induced
norm equal to γ−1, is characterized by the IQC:

〈

[
1r

∆γ

]

xT ,

[
−η1q 0

0 1r

] [
1q

∆γ

]

xT 〉 ≤ 0,

for all x ∈ Lq
2e where η = γ−2.

The role of the operator ∆γ is to close a virtual loop
between the performance output and the exogenous input
of the system to be analyzed. The virtual loop block has
L2-gain γ−1. When the gain γ−1 is too large, stability is
lost. Hence, the goal is to find the maximal γ−1 for which
stability is preserved. The inverse of this value coincides
with the actual L2-gain of the system.

3.3 Main result:

Theorem 5. The system (8) is asymptotically stable for all
(m, τ, T ) ∈ Sµ if there exist matrices P, S1, S2 ∈ Sn++ and
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a scalar η > 0 such that the LMI

[ E −A ]
T

⊥
Θ [ E −A ]

⊥
≺ 0 (15)

holds where E ,A are defined in (12) and

Θ =











0 0 0 −P 0 0

0 −
4

π2
µ2S1 0 0 −S2 0

0 0 −η1q 0 0 0

0 0 0

∗ 0 S1 0

0 0 1r











. (16)

Moreover, the closed-loop system satisfies ||y||L2
≤

√

1/η||v||L2
.

Proof : The result is based on Theorem 1 applied to
the system (11)–(12) using Lemmas 2–4. It is easy to see
that by inserting (16) into (1) and (2) and using Lemmas
2–4, then the system is well-posed if (15) is satisfied.
The stability of the system follows from well-posedness
according to Lemma 4, see e.g. Iwasaki and Hara [1998].
Finally, the L2-gain is guaranteed from Lemma 4. The
proof is complete. ♦

Remark 2. Extensions to robust analysis with respect to
parametric uncertainties is possible [Peaucelle et al., 2007].

3.4 Numerical examples:

Example 1: Let us consider the system

ẋ(t) =

[
−0.8 −0.01
1 0.1

]

x(t) +

[
0.4
0.1

]

Fx(tk)

F = [−2.0348 −1.8108 ] .
(17)

It is determined by eigenvalues analysis that the maximal
constant sampling period that preserves stability is equal
to 2.0142 and provides an upper bound on the maximal
varying sampling period. The results obtained using The-
orem 5 are compared to [Tang et al., 2008] and those
reported in [Hespanha et al., 2007], namely [Yu et al., 2004,
Yue et al., 2004]. Fig. 3 shows the maximal allowable sam-
pling period Tmax for a given maximal value of the delay
τmax (when no dropout occurs). The determined stability
region Sµ for (17) assessed by the different approaches
is the surface below the corresponding line . This shows
that our approach gives tighter bounds than the previous
results.

Assume now the delay τ(t) ∈ [0, 0.43] and dropouts
may occur. The maximal number of consecutive dropouts
is depicted in Fig. 4 and, as expected, the smaller the
maximal sampling period is, the larger is the number of
admissible consecutive dropouts.

Example 2: The following system is considered:

ẋ(t) =

[
0 1
1 0

]

x(t) +

[
0
1

]

[−1.006 −1.006 ]x(tk). (18)

whose maximal admissible constant sampling period is
5.8117.

The results are compared to [Yu et al., 2004, Yue et al.,
2004, Tang et al., 2008, Naghshtabrizi and Hespanha,
2006]. In Table 1, the corresponding MATIs are given and
we can see that the proposed technique leads to better
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Fig. 3. Stability regions of (17) using different approaches
(when no dropout occurs).
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Fig. 4. Stability regions in term of number of consecu-
tive dropouts for system (17) with a maximal delay
τmax = 430ms.

results both in terms of efficiency and computational
complexity.

4. SYNTHESIS

This section is devoted to the stabilization of NCS via
state-feedback. A dilated LMI is devised from (15)-(16) in
order to make the stabilization problem tractable. This is
stated in the following theorem:

Theorem 6. There exists a matrix K ∈ Rm×n such that
the closed-loop system (8) is asymptotically stable for
all (m, τ, T ) ∈ Sµ if there exist matrices P, S1 ∈ Sn++,
X ∈ Rn×n, U ∈ Rm×n and a scalar γ > 0 such that the
LMI












−XS P +A′
cl −BU E 0 X αS1

⋆ −P 0 0 C′
cl
T

0 0

⋆ ⋆ −S1 0 −(DU)T 0 0

⋆ ⋆ ⋆ −γI FT
0 0

⋆ ⋆ ⋆ ⋆ −γI 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −P −αS1

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −S1













≺ 0

(19)
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Table 1.

µ no. of var. for n = 2

[Yu et al., 2004] unfeasible 4
n(n+1)

2
12

[Yue et al., 2004] 0.970 2
n(n+1)

2
+ 6n2 30

[Tang et al., 2008] 0.995 4
n(n+1)

2
+ 16n2 76

[Naghshtabrizi and Hespanha, 2006] (without delay) 1.272 7
n(n+1)

2
+ 16n2 85

Theorem 5 1.561 3
n(n+1)

2
+ 1 10

holds with A′
cl = AX+BU , C′

cl = CX+DU and α = µ
π

2
.

Furthermore, the closed-loop system controlled with gain
K = UX−1 satisfies ||y||L2

≤ γ||v||L2
.

Proof : The proof is based on the projection lemma
[Gahinet and Apkarian, 1994] similarly as in [Tuan et al.,
2003, Briat, 2008, Briat et al., 2009]. Since it relies on
standard but tedious algebraic manipulations, the proof is
only sketched. Denote the matrix (19) by Ω. A congruence
transformation with respect to 2 C := diag(I3⊗Y, I, I, I2⊗
Y ), Y = X−1 yields

Ω′ = CTΩC
= CT

[
Ω|Y=0 + UTY V + (UTY V )T

]
C

(20)

where
U = [1 0 0 0 0 0 0] ,
V = [−1 Acl −BK E 0 1 0] ,

with Acl = A+BK andK = UY −1. The projection lemma
implies

UT
⊥ [Ω′|Y =0]U⊥ ≺ 0, (21)

V T
⊥ [Ω′|Y=0]V⊥ ≺ 0. (22)

So, assuming that (19) holds then so do (21) and (22).
After some manipulations, it can be shown that (22) is
equivalent to (15) with S2 = 0 (using Schur complements)
and thus, stability follows together with the L2-gain prop-
erty ||y||L2

≤ γ||v||L2
. ♦

Example 1. Let us consider the unstable open-loop system

ẋ(t) =

[
−0.8 −0.01
1 0.1

]

x(t) +

[
0.4
0.1

]

u(t) +

[
1
0

]

v(t)

y(t) = x1(t)
(23)

Since Theorem 6 provides an LMI condition for controller
design, only a comparison with other results involving
LMIs can be considered. Techniques based on LMIs with
pre-tuning terms cannot be compared immediately since
their complexity is higher due to the necessity of finding
optimal pre-tuning terms, making the overall problem
nonlinear.

In Yu et al. [2004], it is shown that the system is stabi-
lizable provided that µ ≤ 0.6011. Using Theorem 6, it is
shown that the system is still stabilizable for µ ≤ 3.64826
with a controller gain K = [−0.3482 −0.3097]. When the
closed-loop system stability is checked using Theorem 5,
we find that the system remains stable if µ ≤ 9.19286
showing that, as usual, stabilization results are more con-
servative than stability ones. In Fig. 5, the L2 norm of the
closed-loop system is plotted with respect to the MATI µ.

2 where ⊗ denotes the Kronecker product

0 2 4 6 8
1

2

3

4
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7
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L
2
 g

a
in

Fig. 5. L2-gain of the controlled system (23) with respect
to the MATI
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