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a b s t r a c t

Motivated by the development and deployment of large-scale dynamical systems, often comprised of
geographically distributed smaller subsystems, we address the problem of verifying their controllability
in a distributed manner. Specifically, we study controllability in the structural system theoretic sense,
structural controllability, in which rather than focusing on a specific numerical system realization, we
provide guarantees for equivalence classes of linear time-invariant systems on the basis of their structural
sparsity patterns, i.e., the location of zero/nonzero entries in the plant matrices. Towards this goal,
we first provide several necessary and/or sufficient conditions that ensure that the overall system is
structurally controllable on the basis of the subsystems’ structural pattern and their interconnections.
The proposed verification criteria are shown to be efficiently implementable (i.e., with polynomial time-
complexity in the number of the state variables and inputs) in two important subclasses of interconnected
dynamical systems: similar (where every subsystem has the same structure) and serial (where every
subsystem outputs to at most one other subsystem). Secondly, we provide an iterative distributed
algorithm to verify structural controllability for general interconnected dynamical system, i.e., it is based
on communication among (physically) interconnected subsystems, and requires only local model and
interconnection knowledge at each subsystem.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years we have witnessed an explosion in the use
of large-scale dynamical systems, notably, those with a modular
structure (Davison, 1977; Davison&Özgüner, 1983; Özgüner &He-
mani, 1985), such as content delivery networks, social networks,
robot swarms, and smart grids. Such systems, often geographi-
cally distributed, are comprised of smaller subsystems (which we
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may refer to as agents), and a typical concern is ensuring that the
system, as a whole, performs as intended. More than often, when
analyzing these interconnected dynamical systems, which in this
paper we consider to consist of continuous linear-time invariant
(LTI) subsystems,wedonot know the exact parameters of the plant
matrices. Therefore, we focus on the zero/nonzero pattern of the
system’s plant, which we refer to as sparsity pattern, and we focus
on structural counterpart of controllability, i.e., structural control-
lability (Dion, Commault, & der Woude, 2003).

It is worthwhile noting that these agents may be homogeneous
or heterogeneous, from its structure point of view.When the agents
are homogeneous, their plants and connections (when used) have
the same sparsity pattern and the system is referred to as a similar
system. Otherwise, the agents are heterogeneous and two possible
scenarios are conceivable: (i) an agent may receive information
from (possibly several) other agents but it only transmits to
one other agent, the overall system is referred to as serial, and
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commonly arises in peer-to-peer communication schemes; and
(ii) the communications between agents can be arbitrary, which
commonly arise in broadcast communication setups. All the above
subclasses of interconnected dynamical systems are of interest and
explored in detail in this paper. More precisely, we provide several
necessary and/or sufficient conditions to ensure key properties of
the system, which can be verified resorting to efficient (i.e., with
polynomial time complexity in the number of state variables)
algorithms.

In some applications, the problem of composability is particu-
larly relevant. Consider, for example, a swarm of robots possessing
similar structure where the communication topology may change
over time, or where robots may join or leave the swarm over time.
Then, the existence of necessary and/or sufficient conditions on the
structure and interconnection between these agents contribute to
controllability-by-design schemes, i.e., we ensure that by inserting
an agent into the interconnected dynamical system, we obtain a
controllable dynamical system. Consequently, we can specify with
which agents an agent should interact with such that those condi-
tions hold.

A swarm of robots can also be composed by a variety of
heterogeneous agents in which case controllability-by-design is
also important, yet due to constraints on the communication
range, the interaction between agents is merely local, even if
some additional information is known. Therefore, in the context
of serial systems we can equip each subsystem with the capability
of inferring if the entire system is structurally controllable, i.e., we
provide distributed algorithms that rely only on the interaction
between a subsystem and its neighbors, where information about
their structure may be shared. In particular, if we equip the robots
in the swarm with actuation capabilities that can be activated
when the interconnected dynamical system is not structurally
controllable, we can render this interconnected dynamical system
structurally controllable.

Nonetheless, imposing a priori knowledge of the structure of
the interconnections in the system (for instance, whether it is a
serial system) can be restrictive, so distributed algorithms to verify
structural controllability of general interconnected dynamical
systems are in need. Hereafter, we provide such an algorithm: It
requires the interaction between a subsystem and its neighbors,
but it does not require to share the structure of the subsystems
involved. Instead, it requires only partial information about
its structure, which leads to a certain level of privacy of the
intervenients in the communication. The proposed scheme is also
particularly suitable to other applications such as the smart grid
of the future, that consists of entities described by subsystems
deployed over large distances; in particular, notice that in these
cases, the different entitiesmay not bewilling to share information
about their structure due to security or privacy reasons.
Related Work: Structural controllability was introduced by Lin
(1974) in the context of single-input single-output (SISO) systems,
and extended to multi-input multi-output (MIMO) systems by
Shields and Pearson (1976). A recent survey of the results in
structural systems theory, where several necessary and sufficient
conditions are presented, can be found in Dion et al. (2003).

In this paper, we focus on the composability aspects that en-
sure structural controllability. In other words, we are interested
in understanding how the connection between different dynam-
ical subsystems enables or jeopardizes the structural controllabil-
ity of the overall system. The presented problem statement fits the
general framework presented in Anderson and Hong (1982). Nev-
ertheless, the verification procedures proposed in Anderson and
Hong (1982) based on matrix nets lead to a computational burden
which increases exponentially with the dimension of the problem.
Alternatively, in Davison (1977) an efficient method is proposed
that takes into account the whole system instead of local prop-
erties (i.e., the components of the system and their interconnec-
tions), however this method does not apply to an arbitrary system.
More precisely, it is assumed that when connected, the state space
digraph (to be defined later) is spanned by a disjoint union of cy-
cles, which is called a rank constraint. In contrast, in Li, Xi, and
Zhang (1996) and Rech and Perret (1991), the authors have pre-
sented results on the structural controllability of interconnected
dynamical systems, by focusing on the cascade interconnection of
system structures that ensure the structural controllability of the
interconnected dynamical system. Nevertheless, these structures
are not unique, and the interconnection of these is established as-
suming such connectible structures are given, therefore, no prac-
tical criteria to compute the structures and verify the results are
given. More recently, in Blackhall and Hill (2010) similar results
were obtained by exploring which variables may belong to a struc-
ture and referred to as controllable state variable. Thus, similarly to
Li et al. (1996) and Rech and Perret (1991), the results depend on
the identified structures, but no method to systematically identify
these structures is provided. In Yang and Zhang (1995) the study is
conducted assuming that all the subsystems except a central sub-
system, which is allowed to communicate with every other sub-
system, have the same dynamic structure, and the interconnection
between the several subsystems also has the same structure (even
though they may not be used). This, study considers the impact of
local interactions into the system structural controllability, which
results can be obtained with the solution proposed hereafter.

In Pequito, Kar, and Aguiar (2016a), we studied the problem
of determining the sparsest input matrix to ensure structural
controllability in a centralized fashion. Furthermore, polynomial
algorithms with computational complexity O(n3) were provided
to both problems, where n is the number of state variables. In
Pequito, Kar, and Aguiar (2015), we studied the setting where
the selection of inputs is constrained to a given collection, and
shown to be NP-hard. Finally, in Pequito, Kar, and Aguiar (2016b),
the problem in Pequito et al. (2016a) was further extended to
determining the inputmatrix incurring in theminimum cost when
the state variables actuated incur in different costs while ensuring
structural controllability. Furthermore, procedures with O(nω)
computational complexity were provided, where ω < 2.373
is the lowest known exponent associated with the complexity
of multiplying two n × n matrices. All these contrasts with the
problem addressed in the current paper in the sense that we aim to
verify structural controllability properties in a distributed fashion.
In particular, it requires identifying specific network conditions on
thenetwork structure underwhichwe canuse efficient algorithms,
i.e., polynomial in the dimension of the state space, or provide
distributed algorithms suitable to address the proposed problem.

On the other hand, composability aspects regarding control-
lability have been heavily studied by several authors, see for in-
stance, Chen and Desoer (1967), Davison and Wang (1975), Wang
and Davison (1973), Wolovich and Hwang (1974), Yonemura and
Ito (1972) and Zhou (2015). Briefly, all these studies resort to the
well known Popov–Belevitch–Hautus (PBH) eigenvalue controlla-
bility criterion for LTI systems (Hespanha, 2009). We notice that
this criterion requires the knowledge of the overall system to in-
fer its controllability. The reason is closely related with the loss
of degrees of freedom imposed by interconnected dynamical sys-
tems, as well as conservation laws in general, that reflects in the
decrease of the rank of the system’s dynamics matrix when com-
pared with the sum of the rank of the dynamics matrices of each
subsystem. Consequently, even if all subsystems are controllable,
their interconnection may not be. Notwithstanding, the same does
not happenwhen dealingwith structural systems, where if all sub-
systems are structurally controllable, then the overall system is
structurally controllable. So, while not guaranteeing that a system
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is controllable, we can regard these as necessary conditions for
controllability.
Main Contributions: The main contributions of this paper are
threefold:

(i) we provide sufficient conditions for similar systems to be
structurally controllable. More precisely, these rely only on
the structure of the subsystem and interconnection between
subsystems. A distributed algorithm is proposed, that can
verify these conditions in polynomial time;

(ii) we provide sufficient conditions for serial systems to be
structurally controllable. A distributed algorithm to verify
these conditions is provided. It requires only the knowledge
of the subsystem and its neighbors’ structure, as well as its
interconnections. This algorithm requires only the capability
of a subsystem to communicate with its neighbors, and
has computational complexity equal to O


n3
S


, where nS

corresponds to the total number of state variables and inputs
present in a subsystem and its neighbors; and

(iii) we provide a distributed algorithm to verify necessary and
sufficient conditions to ensure structural controllability for
any interconnected dynamical system that consists of LTI
subsystems. This algorithm requires only the capability of a
subsystem to communicate with its neighbors, have access to
its own structure and partial information regarding decisions
performed by its neighbors that do not require sharing the
structure of the neighboring agents.

The rest of this paper is organized as follows. In Section 2 we
formally describe the problem statement. Section 3 introduces
some concepts in structural systems theory, that will be used
throughout the remainder of the paper. Themain contributions are
presented in Section 4, and in Section 5 we provide examples that
illustrate the main findings. Finally, Section 6 concludes the paper
and discusses avenues for further research.

2. Problem statement

Consider r linear time-invariant (LTI) dynamical systems
described by

ẋi(t) = Aixi(t)+ Biui(t), i = 1, . . . , r,

where xi ∈ Rni is the state, and ui ∈ Rpi the input. The dynamical
system can be described by the pair (Ai, Bi), where Ai ∈ Rni×ni is
the dynamicmatrix of subsystem i and Bi ∈ Rni×pi its input matrix.
By considering the interconnection from subsystem i to subsystem
j for all possible subsystems we obtain the interconnected dynam-
ical system described as follows:

ẋ(t) =


A1 E1,2 · · · E1,r
E2,1 A2 · · · E2,r
...

. . .
. . .

...
Er,1 · · · Er,r−1 Ar


  

A

x(t)

+


B1 0 · · · 0
0 B2 · · · 0
...

. . .
. . .

...
0 0 · · · Br


  

B

u(t) (1)

where the state is given by x = [xᵀ
1 . . . xᵀ

r ]
ᵀ
∈ Rn, with n =r

i=1 ni, and the input given by u = [uᵀ
1 . . . uᵀ

r ]
ᵀ
∈ Rp, with

p =
r

i=1 pi. In addition, Ei,j ∈ Rni×nj is referred to as the connec-
tion matrix from the jth subsystem to the ith subsystem. Further-
more, we denote the system (1) by the matrix pair (A, B), denoting
the ith subsystem, i = 1, . . . , r of (1) by the matrix pair (Ai, Bi).
Finally, we call those subsystems (Aj, Bj), with j = 1, . . . , r such
that Ej,i ≠ 0, the outgoing neighbors of the ith subsystem, and those
that Ei,j ≠ 0 the incoming neighbors of the ith subsystem; we refer
to them collectively as the neighbors of the ith subsystem.

Now, consider the sparsity pattern of matrix pair (A, B) which
we denote by the structural system (Ā, B̄); similarly, we denote
by (Āi, B̄i) the structural pair of matrices associated with (Ai, Bi),
and Ēi,j the sparsity pattern of Ej,i. Then, a structurally controllable
system is defined as follows (Dion et al., 2003).

Definition 1. Given a structural system (Ā, B̄), we say that it is
structurally controllable if and only if, there exists at least one
control system (A, B) with the same sparsity pattern as (Ā, B̄)
(i.e. Ai,j = 0 if Āi,j = 0 and Bi,k = 0 if B̄l,k = 0) which is
controllable. �

It can be seen, from density arguments, that if (Ā, B̄) is struc-
turally controllable, then almost all control systems (A, B)with the
same sparsity as (Ā, B̄) are structurally controllable (Dion et al.,
2003). We say that a control system (A, B) is structurally control-
lable if the associated structural system (Ā, B̄) is structurally con-
trollable.

The problem addressed in the current paper can be posed as
follows.

Problem. Given a collection of control systems (Ai, Bi), i =
1, . . . , r , and the interconnection from the subsystem i to its
neighbors, i.e., (Aj, Bj, Ej,i) for all j ≠ i, design a distributed
procedure to determine if the interconnected control system (A, B)
given in (1) is structurally controllable. ⃝

Furthermore, note that in a non-structural setting local prop-
erties are not enough to guarantee controllability, since the con-
nection to other subsystems may lead to parameter cancellation
(Davison & Wang, 1975; Wang & Davison, 1973); therefore, the
approach presented hereafter allows us to obtain only necessary
conditions for controllability.

3. Preliminaries and terminology

In this section, we review some of the concepts used to
analyze the problem of structural controllability of interconnected
dynamical systems, which illustrations can be found in Pequito
et al. (2016a).

In order to perform structural analysis efficiently, it is custom-
ary to associate to (1) a directed graph, or digraph D = (V, E), in
which V denotes the set of vertices and E the set of edges, where
(vj, vi) represents an edge from the vertex vj to the vertex vi. To this
end, let Ā ∈ {0, 1}n×n and B̄ ∈ {0, 1}n×p be the binarymatrices that
represent the sparsity patterns of A and B as in (1), respectively.
Denote by X = {x1, . . . , xn} and U = {u1, . . . , up} the sets of state
and input vertices, respectively, and by EX,X = {(xi, xj) : Āji ≠ 0},
EU,X = {(uj, xi) : B̄ij ≠ 0}, the sets of edges between the vertex
sets in subscript. Wemay then introduce the state digraph D(Ā) =
(X, EX,X) and the systemdigraphD(Ā, B̄) = (X∪U, EX,X∪EU,X).
Note that in the digraph D(Ā, B̄), the input vertices representing
the zero columns of B̄ correspond to isolated vertices. As such,
the number of effective inputs, i.e., the inputs which actually ex-
ert control, is equal to the number of nonzero columns of B̄, or, in
the digraph representation, the number of input vertices that are
connected to at least one state vertex through an edge in EU,X.

A directed path from the vertex v1 to vk is a sequence of edges
{(v1, v2), (v2, v3), . . . , (vk−1, vk)}. If all the vertices in a directed
path are distinct, then the path is said to be an elementary path. A
cycle is an elementary path from v1 to vk, together with an edge
from vk to v1.
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Given a digraph D = (V, E), we say that D ′ = (V ′, E ′) is a
subgraph of D if it is a digraph with V ′ ⊆ V and E ′ ⊆ E , which
we denote by D ′ ⊆ D . Furthermore, we say that D ′ spans D if
V ′ = V .

We also require the following graph-theoretic notions (Cormen,
Stein, Rivest, & Leiserson, 2001). A digraphD is strongly connected
if there exists a directed path between any two vertices. A strongly
connected component (SCC) is a subgraph DS = (VS, ES) of D such
that for every u, v ∈ VS there exist paths from u to v and from v to
u and is maximal with this property (i.e., any subgraph of D that
strictly contains DS is not strongly connected).

Definition 2. An SCC is said to be linked if it has at least one
incoming or outgoing edge from another SCC. In particular, an SCC
is non-top linked if it has no incoming edges to its vertices from the
vertices of another SCC. �

Furthermore, given a digraph D = (V, E), we say that D is
a weakly connected digraph if (V, E ∪ Eᵀ) is strongly connected,
where Eᵀ

≡ {(v′, v) : (v, v′) ∈ E}.
For any digraph D = (V, E) and any two sets S1, S2 ⊂ V we

define the bipartite graph B(S1, S2, ES1,S2) where we call S1 the
set of left vertices, and S2 the set of right vertices; and the edge set
ES1,S2 = E ∩ (S1 × S2). We call the bipartite graph B(V, V, E)
the bipartite graph associated with D(V, E). In the sequel we will
make use of the state bipartite graph, B(Ā) ≡ B(X, X, EX,X),
which is the bipartite graph associated with the state digraph
D(Ā) = (X, EX,X), and the system bipartite graph B(Ā, B̄) =
B(U ∪X, X, EX,X ∪ EU,X).

Given a bipartite graph B(S1, S2, ES1,S2), a matching M
corresponds to a subset of edges in ES1,S2 so that no two edges have
a vertex in common, i.e., given edges e = (s1, s2) and e′ = (s′1, s

′

2)
with s1, s′1 ∈ S1 and s2, s′2 ∈ S2, e, e′ ∈ M only if s1 ≠ s′1 and
s2 ≠ s′2. Also, maximummatchingM∗ is a matchingM that has the
largest number of edges among all possible matchings.

Furthermore, it is possible to assign a weight to the edges in a
bipartite graph, say c(e) (where c is a function from ES1,S2 to R+).
We thus obtain a weighted bipartite graph, and can introduce the
concept of minimum weight maximum assignment problem. This
problem consists in that of determining a maximum matching
whose overall weight is as small as possible, i.e., a matching Mc

such that

Mc
= arg min

M∈M


e∈M

c(e),

whereM is the set of all maximummatchings. This problem can be
efficiently solved using the Hungarian algorithm (Munkres, 1957),
with complexity of O


max{|S1|, |S2|}

3

. We call the vertices in

S1 and S2 belonging to an edge in M∗, the matched vertices
with respect to (w.r.t.) M∗, otherwise, we call them unmatched
vertices. It is worth noticing that there may exist more than one
maximummatching. For ease of referencing, in the sequel, the term
right-unmatched vertices, with respect to B(S1, S2, ES1,S2) and a
matchingM , not necessarily maximum, will refer to those vertices
in S2 that do not belong to an edge in M∗, dually a vertex from S1
that does not belong to an edge in M∗ is called a left-unmatched
vertex.

Now, we can interpret a maximum matching of a bipartite
graph associated to a digraph, at the level of the digraph as follows
(Pequito et al., 2016a).

Lemma 1 (Maximum Matching Decomposition). Consider the di-
graph D = (V, E) and let M∗ be a maximum matching associated
with the bipartite graphB(V, V, E). Then, the digraphD = (V,M∗)
comprises a disjoint union of cycles and elementary paths (by defi-
nition an isolated vertex is regarded as an elementary path with no
edges), beginning in the right-unmatched vertices and ending in the
left-unmatched vertices of M∗, that span D . Moreover, such a de-
composition isminimal, in the sense that no other spanning subgraph
decomposition of D(Ā) into elementary paths and cycles contains
strictly fewer elementary paths. �

In addition, to make comparisons with previous work (namely,
Li et al., 1996 and Rech & Perret, 1991), we need the following
definition (Lin, 1974).

Definition 3. Given a digraph D , an elementary path in D , also
called a stem, is a cactus. Given a cactus G = (VG, EG) ⊆ D , and
a cycle C = (VC, EC) ⊆ D , such that G and C have no vertices in
common, and there is an edge from a vertex in G to a vertex in C;
then G ∪ C = (VG ∪ VC, EG ∪ EC) is a cactus. �

Particularly, in the case where D = D(Ā, B̄), a cactus G
in D is called an input cactus if the stem starts on an input
vertex. Furthermore, we note that the decomposition in disjoint
elementary paths and cycles, stated in Lemma 1, can be used to
determine a spanning of the digraph in disjoint cacti (Pequito et al.,
2016a).

When dealing with interconnected dynamical systems, the
structure of the connection between the subsystems will create
connections between the SCCs of different subsystem digraphs.
This, in turn, makes it difficult to identify the SCCs of the
system digraph of the overall system by analyzing the SCCs of
each subsystem digraph separately and the connection to their
neighbors. Hence, we introduce the concept of reachability (Dion
et al., 2003). We thus say that a state vertex x in a system digraph
is input-reachable or input-reached if there exists a path from an
input vertex to it.

All of these constructions can be used to verify the structural
controllability of an LTI system by analyzing the associated graphs,
as formally stated in the following result (Dion et al., 2003; Pequito
et al., 2016a).

Theorem 1. For LTI systems described by (1), the following state-
ments are equivalent:

(1) The corresponding structured linear system (Ā, B̄) is structurally
controllable;

(2) The digraphD(Ā, B̄) is spanned by a disjoint union of input cacti;
(3i) The non-top linked SCCs of the system digraph D(Ā, B̄) are

comprised of input vertices, and
(3ii) there is a matching of the system bipartite graph B(Ā, B̄)

without right-unmatched vertices;
(4i) Every state vertex is input-reachable, and
(4ii) there is a matching of the system bipartite graph B(Ā, B̄)

without right-unmatched vertices. �

4. Main results

We begin this section by providing sufficient conditions for an
interconnected dynamical system to be structurally controllable
in the case where all the subsystems have the same structure
(Theorems 2 and 3).We then focus onmore general interconnected
dynamical systems, called serial systems, and provide sufficient
conditions for their structural controllability (Lemma 2), as well
as an efficient distributed algorithm (Algorithm 1) to verify these
conditions which has its correctness and complexity proven in
Theorem 4. In light of these conditions, we explain why previous
results in this line (Rech & Perret, 1991) presented conditions
that are only sufficient instead of necessary and sufficient (Fig. 2).
Finally, we end this section by providing an efficient distributed
algorithm (Algorithm 3) to verify the structural controllability
of an arbitrary interconnected dynamical system, which has
its correctness and complexity proven in Theorem 6. In order
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to perform this verification, each subsystem has to perform
calculations using the information about itself and its neighbors.
Furthermore, the subsystems must be able to communicate with
each of their neighbors.

Often it is the case that the interconnected dynamical systems
under analysis are comprised of subsystems that are similar
among themselves. So, we begin by making this idea precise, and
providing conditions to ensure structural controllability of such
systems.

Definition 4. Let Ē ∈ {0, 1}r×r , Ā′, H̄ ∈ {0, 1}n×n, B̄′ ∈ {0, 1}n×p,
be matrices with the restriction that Ēi,i = 0 (i = 1, . . . , r).
Then, we denote by (Ā′, B̄′, H̄, Ē ′) the structural system (Ā, B̄), with
Ā = (Ir ⊗ Ā′)∨ (Ē⊗ H̄) and B̄ = Ir ⊗ B̄′, where∨ is the entry-wise
logic or-operation. We call such a system composed of r similar
subsystems, or a similar system for short. �

Remark 1. Note that in the case of similar systems, H̄ is the struc-
tural matrix modeling the interactions between each subsystem
and its neighbors, all of which have the same structure.

Definition 5. Let (Ā, B̄) be the structural matrices associated
with the interconnected dynamical system in (1), we define the
condensed graph of the system as being the digraph D∗(Ā) ≡
D(A, E), where ai ∈ A ≡ {a1, . . . , ar} is a vertex representing the
ith subsystem, and (ai, aj) ∈ E ≡ {(ai, aj)|Ej,i ≠ 0} a directed edge
representing a communication from subsystem j to subsystem i.
Moreover, if there is no directed edge ending in a vertex, this vertex
is referred to as a source. �

Note that in the case that a system (Ā, B̄) is composed of r
similar systems and parametrized by matrices (Ā′, B̄′, H̄, Ē) the
condensed graph D∗(Ā) is the same as the digraph D(Ē). Now, we
proceed to verify structural controllability of these systems when
the subsystems are not structurally controllable by themselves.

Theorem 2. Let the system (Ā, B̄) be composed of r similar
components, and parametrized by (Ā′, B̄′, H̄ ′, Ē), where (Ā′, B̄′) is not
structurally controllable, and B(Ā′, B̄) has a matching without right-
unmatched vertices. The pair (Ā, B̄) is structurally controllable if and
only if (Ā′∨H̄, B̄′) is structurally controllable and the condensed graph
D∗(Ā) has no sources. �

Proof. To prove the equivalence, we begin by proving that the
conditions are sufficient by contrapositive; subsequently,weprove
directly that the conditions are also necessary.

Thus, we begin by noting that, since (Ā′, B̄′) is not structurally
controllable despite B(Ā′, B̄′) having a maximum matching
without right-unmatched vertices, it follows, from Theorem 1-
(4), that D(Ā′, B̄′) has a vertex which is not reachable from any
input vertex. So assume that D∗(Ā) has a source, this implies
that there is a subsystem (Ā′j, B̄

′

j) with no incoming edges from
other subsystems, and so the overall system digraph D(Ā, B̄) has a
state vertex without a path from any input vertex to it, and so, by
Theorem 1-(4), (Ā, B̄) is not structurally controllable. Furthermore,
(Ā′ ∨ H̄, B̄′) is not structurally controllable. Since B(Ā′, B̄′) has a
matchingwithout right-unmatched vertices, so doesB(Ā′∨ H̄, B̄′),
which means, by Theorem 1-(4) that, D(Ā′ ∨ H̄, B̄′) must have a
state vertex which is not reachable from any input vertex. This
implies that the corresponding state vertex is not reachable from
an input vertex in any of the subsystems (since a path from an
input vertex in the overall system translates into one such path in
D(Ā′ ∨ H̄, B̄′)).

Finally, assume that (Ā′ ∨ H̄, B̄′) is structurally controllable and
that D∗(Ā) has no sources, then for each state vertex, there is a
path from an input vertex to it, which implies, by Theorem 1-(4),
that (Ā, B̄) is structurally controllable. �
In the next result, we relax the assumptions from Theorem 2,
about the structure of the dynamics of the subsystems. Thus,
allowing for applications in the design of interconnections
between subsystems that may fail to meet these criteria.

Theorem 3. Given an interconnected dynamical system (Ā, B̄) com-
posed of r similar components, and parametrized by (Ā′, B̄′, H̄, Ē),
where (Ā′, B̄′) is not structurally controllable, then (Ā, B̄) is struc-
turally controllable if both (Ā′∨ H̄, B̄′) is structurally controllable and
D∗(Ā) is spanned by cycles. �

Proof. First, notice that if the digraph D∗(Ā) is spanned by cycles,
every vertex in it is within a cycle, and in particular means that
D∗(Ā) has no sources. Consequently, the method of proof of
Theorem 2 is applicable to show that every state vertex has a path
from an input vertex to it, so all that remains to show is that
the B(Ā, B̄) has no right-unmatched state vertices with respect to
some maximum matching. To this end, we first assume (without
loss of generality) that D∗(Ā) has one spanning cycle, and that the
subsystems (Ā′1, B̄

′

1), . . . , (Ā
′
r , B̄
′
r) are ordered in such a way that

Ēi+1,i = 1 for i = 1, . . . , r − 1, and Ē1,r = 1.
Now, denote the state and input vertices of the ith subsystem

by xik with k = 1, . . . , n and ui
l with l = 1, . . . ,m, respectively. In

addition, let M be a maximum matching of B(Ā′ ∨ H̄, B̄′) without
right-unmatched state vertices, thenwe can partitionM ′ into three
matchingsM ′B,M

′

A,M
′

H comprising, respectively, the edges ofM ′ of
the form (ul, xk), those of the form (xl, xk) where Āk,l = 1, and the
remaining ones, that are of the form (xl, xk) where Āk,l = 0 and
Hk,l = 1. Finally, consider the matching M of B(Ā, B̄) comprising
the edges:
• (ui

k, x
i
l), if (uk, xl) is in M ′B,

• (xik, x
i
l), if (xk, xl) is inM ′A,

• (xrk, x
1
l ), if (xj, xl) is in M ′H ,

• (xik, x
i+1
l ), if (xj, xl) is inM ′H .

To show that this matching has no right-unmatched vertices,
consider a state vertex xik of B(Ā, B̄), since M ′ has no right-
unmatched vertices, xk is not right-unmatched in B(Ā′, B̄′), and
thus there is an edge (xl, xk) for some l or (ul′ , xk) in M ′, but this
implies that either (xil, x

i
k), (x

i−1
l , xik), or (u

i
l′ , x

i
k) ∈ M (where i−1 =

r when i = 1) from the construction above, thus B(Ā, B̄) has no
right-unmatched vertices w.r.t.M .

Finally, if more than one cycle is necessary to span the
graph D∗(Ā), then the same argument applies to each cycle
individually. �

Remark 2. The conditions in Theorem 3 are not necessary. Indeed,
consider the example in Fig. 1-(b)which is shown to be structurally
controllable, yet the condensed graph is not spanned by cycles. �

We now move toward methods of verifying structural control-
lability of interconnected dynamical systems byway of distributed
algorithms. To this end, we begin by introducing a result that will
allow us to infer structural controllability of a family of intercon-
nected dynamical systems that we call serial systems. Later, we
provide a computational method to perform this verification in a
distributed manner, that is, while each subsystem only needs to
have partial information about the system in order to verify if this
is structurally controllable or not.

It is worth noting that in order to make it so that all of the
algorithms in the present paper to work as intended, several
assumptions have to bemade about the subsystems, and how they
communicate. Namely, that each subsystem has a processing unit,
and can send arbitrary messages to its neighboring subsystems; in
addition, each subsystem is aware of the number of subsystems
in the overall system and possesses a unique id, and that the
condensed graph of the system D∗(Ā) is weakly connected.
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Fig. 1. In (a) we provide the digraph D(Ā′, B̄′) of a system that is not structurally
controllable, where we represent in blue the single input vertex. By connecting
three of these systems together as in (b) the system (Ā, B̄) becomes structurally
controllable, as evidenced by the fact the matching M , associated to the path
and cycle decomposition (see Lemma 1) depicted by the red edges, has no right-
unmatched state vertices (since every state vertex has an incoming red edge), and
the fact that every non-top linked SCC is comprised of an input vertex. Finally, in
(c) we show that the condensed graph D∗(Ā) of the system in (b) is not spanned by
cycles, showing that the condition in Theorem3 is not necessary. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Lemma 2. Consider the structural system (Ā, B̄) as in (1) with sub-
systems (Ā1, B̄1), . . . , (Ār , B̄r). Then the system (Ā, B̄) is structurally
controllable if there exist maximum matchings M0, . . . ,Mr of the bi-
partite graphs B(Ā1), . . . , B(Ār) such that the following conditions
hold:

(1) For each subsystem (Āj, B̄j) with j = 1, . . . , r, the non-top linked
SCCs of D(Āj, B̄j) is comprised of input vertices.

(2) the following bipartite graph admits a maximum matching
without right-unmatched vertices

B


r

i=1

UL(Mi),

r
i=1

UR(Mi),

r
i=1


j≠i

EUL(Mj),UR(Mi)


where UL(Mi) and UR(Mi) are the sets of left- and right-
unmatched vertices, respectively, and EUL(Mj),UR(Mi) ⊆ EX,X is
the set of edges from vertices inUL(Mj) to vertices inUR(Mi). �

Proof. First, note that the non-top linked SCCs of D(Ā, B̄) are
comprised of SCCs of the subsystem digraphs D(Āi, B̄i), and that
for one such SCC to be non-top linked, it must contain at least
one non-top linked SCC of one of the D(Āi, B̄i) in it. Therefore,
since every non-top linked SCC of every D(Āi, B̄i) is comprised
of input vertices, and there are no edges from any neighboring
system to input vertices, the non-top linked SCCs of D(Ā, B̄) must
be comprised of input vertices.

Secondly, note that the union of the maximum matchings Mi
of the B(Āi, B̄i) comprises a matching M of B(Ā, B̄). Furthermore,
let M ′ be the matching mentioned in condition (2). Since M ′
is comprised of edges from left-unmatched vertices to right-
unmatched vertices of M , and so M ∪M ′ is a matching of B(Ā, B̄),
and since by hypothesis the matching M ′ has no right-unmatched
vertices, neither does M ∪ M ′. By Theorem 1-(3), this implies that
the system is structurally controllable. �

Note that using Lemma 2 we conclude that the system from
Fig. 2-(a) is structurally controllable, yet but using the character-
ization in Rech and Perret (1991), it is not possible to obtain the
same conclusion. Furthermore, Lemma 2 provides only a sufficient
condition for structural controllability. Nonetheless, these condi-
tions can be verified in a distributed manner in the class of inter-
connected dynamical systems formally introduced next.

Definition 6. We say that an interconnected dynamical system
(Ā, B̄) as in (1) is a serial system if each vertex of the condensed
graph D∗(Ā) has at most one outgoing edge. �
Fig. 2. In (a), we present the digraph associated to an interconnected dynamical
system, where the different subsystems are represented inside the dashed boxes.
Recall the definition of cactus, it can be readily be seen that the digraph D(Ā, B̄)
is spanned by the input cactus, depicted by the red edges, rendering the structural
system (Ā, B̄) structurally controllable by Theorem 1-(2). In (b), however, we depict
possible cacti that span each of the subsystem digraphs. Since a spanning cactus
for D(Ā2, B̄2) has to include a stem comprising at least a vertex, neither of the
cacti spanning D(Ā1, B̄1) and D(Ā2, B̄2) can contain any cycles, and there is no
way of prolonging the stem that spans D(Ā1, B̄1) to include a stem spanning
D(Ā2, B̄2). This shows that the conditions proposed in Rech and Perret (1991) are
not necessary. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 3. Example of a possible condensed graph for a serial system, where each
vertex represents a subsystem, and each directed edge a non-zero connection
matrix, see Definition 6.

Although serial systems seem a restrictive class of systems,
they may exhibit a rich structure as exemplified in Fig. 3.
Furthermore, as stated before, serial systems enable us to verify
the sufficient conditions for structural controllability in Lemma 2,
in a distributed manner. Thus, in Algorithm 1 we present the
procedure that each agent deploys in order to verify the conditions
in Lemma 2.

Before introducing Algorithm 1, we explain the functions that
are used throughout the algorithm. All these functions should be
able to be applied by the ith subsystem, Send(x, j) sends the value
of the variable x to the jth subsystem, while Rcv(j) makes the sys-
tem wait to receive a message from the jth subsystem and sub-
sequently reads this message. Note that both these functions can
only be appliedwhen systems i and j communicatewith each other.
For communication to be successful, we assume that the systems
perform these steps synchronously (i.e. theywait for the responses
of their neighbors). Finally, the procedureMinWtMaxMatch(c,G)
calculates the minimum weight maximummatching on the graph
G using to this end, the cost function c , and boolean expressions
contained in square brackets get evaluated (to True or False).

Remark 3. Note that Algorithm 1 can be easily adapted to cover
the casewhere each subsystem only has one incoming neighbor. In
this case, instead of consideringBi as the bipartite graph associated
to the ith subsystem and all its incoming neighbors, we use the
outgoing neighbors instead. �

The next result concerns the correctness and complexity of
Algorithm 1.

Theorem 4. Algorithm 1 is correct, i.e., it verifies the sufficient
conditions given in Lemma 2 for an arbitrary serial system. Moreover,
it has computational complexity O


maxi=1,...,r N3

i


, with Ni = mi +
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Algorithm 1 Distributed algorithm to verify sufficient conditions
given in Lemma 2, for an arbitrary serial system.

1: procedure SeqStrtCtl(Āi, B̄i, r, Ēi,j ≠ 0)
◃ r = total number of subsystems, Ēi,j = connection matrices

2: nghI(i)← {j : Ēi,j ≠ 0}
3: nghO(i)← {j : Ēj,i ≠ 0}
4: nghbs(i)← nghI(i) ∪ nghO(i)

◃ send the dynamic matrix to (the unique) outgoing
neighbor

5: for all j ∈ nghO(i) do
6: Send(Āi, j)
7: end for

◃ receive the dynamic matrix of the incoming neighbors
j ∈ nghI(i)

8: for all j ∈ nghI(i) do ◃ nghI(i) = {j1, . . . , jl}
9: Āj ← Rcv(j)

10: end for

11: Ā′i ←


Āi Ēi,j1 . . . Ēi,jl
0 Āj1 . . . 0
...

...
. . .

...

0 0 . . . Ājl


12: B̄′i ←


B̄ᵀ
i , 0, . . . , 0

ᵀ
13: Bi ← B(Ā′i, B̄

′

i)
14: function ci(y, xk,) ◃ define the weight function
15: if y = xj, and k, j ≤ ni or k, j > ni then

return 1
16: else

return 2
17: end if
18: end function
19: Mi ← MinWtMaxMatch(ci, Bi)
20: UR(Mi)← {xj : xj right-unmatched w.r.t.Mi and j ≤ ni}

21: N ← {state vertices in non-top linked SCC of D(Āi, B̄i)}
22: mchd(i)← [UR(Mi) == ∅]
23: rchd(i)← [N == ∅]

◃ check if the whole system can be structurally controllable
according to whether the conditions are satisfied in the
current system or not

24: ctld(i)← rchd(i) ∧ mchd(i)
25: for k = 1, . . . , r do
26: for all j ∈ nghbs(i) do

Send(ctld(i), j)
ctld(j)← Rcv(j)

27: end for
◃ reconsider the answer in light of the values from the
neighbors current answer

28: ctld(i)← ctld(i)


j∈nghbs(i)
ctld(j)

29: end for
◃ return True if the system is structurally controllable and
False otherwise

30: return ctld(i)
31: end procedure


j∈Ii∪{i}

nj, where mi and ni are the dimensions of the input and
state space for the ith subsystem, and Ii ⊆ {1, . . . , r} is the set of
subsystems which output to the ith subsystem. �

Proof. To prove the correctness of Algorithm1,we start by proving
the claim that a minimum weight maximum matching M of Bi
w.r.t. the weight-function ci defined in step 14 induces maximum
matchings on B(Āi), as well as on B(Āj) for any subsystem
(Āj, B̄j)with nonzero connectionmatrix Ēi,j: letMi be thematching
resulting from restricting M to the edges of B(Āi), and in order to
derive a contradiction, assume thatMi is not amaximummatching
of B(Āi). As a direct consequence of Berge’s theorem (see for
example Theorem 1 in Berge, 1957) the set of right-unmatched
vertices of any matching contains the right-unmatched vertices
of some maximum matching, so let M ′i be a maximum matching
such that UR(M ′i ) ⊆ UR(Mi). Furthermore, let Si ⊆ M be the
set of edges from a vertex not in Xi to a vertex in Xi, and let
S ′i be those edges in Si that end in some vertex in UR(M ′i ). Now,
(M \ (Mi ∪ Si))∪M ′i ∪ S

′

i is a matching of Bi with the same number
of edges as M (since it has the same number of right-unmatched
vertices) and with an overall weight lower than that of M (since
by hypothesis S ′i ( Si), which contradicts the fact that M is a
minimumweight maximummatching. The same argument works
for the matching Mj of B(Āj) with j ≠ i, replacing left-unmatched
vertices with right-unmatched vertices.

Now, since (Ā, B̄) is a serial system, there is at most one
k ≠ i with nonzero matrix Ek,i. Therefore, we let M ′ and M ′′ be
the maximum matchings of B(Āi) resulting from the maximum
matchings ofBi andBk, respectively. Then, by Lemma 4 in Pequito
et al. (2016a), there exists a maximum matching M that has
as left-unmatched vertices those of M ′′ and as right-unmatched
vertices those ofM ′. Subsequently, we only need to check for each
subsystem that there is a minimum weight maximum matching
of Bi (w.r.t. the weight function wi) that has no right-unmatched
state vertices. Thus, in Algorithm 1, we set up the necessary
structures until step 14.

Now, in step 19 the ith subsystem computes the maximum
matching Mi of Bi, and in step 20 the system calculates the
associated set of right-unmatched vertices. Next, in step 21 the
subsystem calculates the set of state vertices in a non-top linked
SCC of D(Āi, B̄i), and in steps 22 and 23, it verifies the existence
of right-unmatched state vertices of the ith subsystem w.r.t. the
matching Mi, and the existence of in a non-top linked SCC of
D(Āi, B̄i). Finally the subsystem decides if the whole system is
structurally controllable or not in steps 24–29. More precisely,
after an initial guess has been made and stored in ctld(i), the
subsystemupdates this variablewith the corresponding variable of
its neighbors, and repeats this r times. Note that after k iterations
of the steps 26–29 the subsystem has updated ctld(i) with the
corresponding values of all subsystems at k edges of distance from
it. Since the condensed graph of the systems is weakly connected,
the communication between subsystems is undirected, and there
are only r subsystems, ctld(i) = True if and only if all subsystems
had initially ctld(j) = True. Finally, in step 30 the subsystem
returns the value True or False depending on whether or not the
system satisfies the conditions of Lemma 2.

Lastly, the complexity of Algorithm 1 is computed as follows:
since all of the steps have linear complexity except determining the
minimum weight maximum matching of Bi in step 19, for which
the Hungarian algorithm can be used with complexity O


|Ni|

3

,

with Ni = pi +


j∈Ii∪{i}
nj, Āi ∈ {0, 1}ni×ni and B̄i ∈ {0, 1}ni×pi and

Ii ⊆ {1, . . . , r} is the set of indexes of subsystems incoming to the
ith subsystem (Munkres, 1957). This procedure has to be applied
to each of the r subsystems, which implies that the complexity of
the algorithm becomes O


maxi=1,...,r N3

i


. �

Remark 4. Note that if the systemwere not serial then there could
be a subsystem, with kth system that outputs to both the i– and
jth subsystems. This could mean that when computing maximum
matchings ofBi andBj separately we couldmatch the state vertex
of the kth subsystem to two different state vertices, one of the ith
subsystem and one of the jth subsystem. Furthermore, note that if
there is a subsystemwith incoming edges fromevery other system,
the algorithm will calculate a maximummatching in a centralized
manner.
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Now we move toward distributed algorithms that are able
to verify structural controllability of interconnected dynamical
systems at large. In this case, each subsystem is required to share
only partial information about its structure with its neighbors.
This algorithm, however, has a higher computational complexity
than Algorithm 1. In order to infer structural controllability, we
employ Theorem 1-(4), and begin by presenting an algorithm to
verify if each of the state vertices in the digraph associated to an
interconnected dynamical system as in (1) has a path from an input
vertex to it.

Algorithm 2 Distributed algorithm to verify condition (4i) of
Theorem 1.
1: procedure Reached(Āi, B̄i, Ēi,k ≠ 0, Ēk,i ≠ 0, r)
2: nghI(i)← {j : Ēi,j ≠ 0}
3: nghO(i)← {j : Ēj,i ≠ 0}
4: nghbs(i)← nghI(i) ∪ nghO(i)
5: Ni ← #{SCCs of D(Āi)}
6: SCCs(i)← {(i,Ni)}

◃ the subsystems communicate with each other to learn
how many SCCs each subsystem has, in order to find the
necessary number of communication steps

7: for k = 1, . . . , r do
8: for all j ∈ nghbs(i) do
9: Send(SCCs(i), j)

10: SCCs(j)← Rcv(j)
11: SCCs(i)← SCCs(i) ∪ SCCs(j)
12: end for
13: end for
14: N ←

r
j=1 SCCs(j)

15: rchd(i)← {} ◃ list of input-reached vertices
◃ add the vertices with incoming edges from input vertices

16: for j = 1, . . . , ni do
17: if ∃k : (B̄i)j,k = 1 then
18: AddTo(xj, rchd(i))
19: end if
20: end for
21: for k = 1, . . . ,N do

◃ transmit to outgoing neighbors which vertices that
communicate with them have been input reached

22: for all j ∈ nghO(i) do
◃M•,l is the l–th column ofM

23: Send({xl : (i, xl) ∈ rchd(i) and (Ēj,i)•,l ≠ 0}, j)
24: end for

◃ add vertices reached from the neighbors’ input
reached vertices

25: for all j ∈ nghI(i) do
26: avail(j)← Rcv(j)
27: rchd(i) ← rchd(i) ∪ {xt : (Ēi,j)t,l = 1, xl ∈

avail(j)}
28: end for

◃ verify which vertices are reachable from the inputs by
using k edges between subsystems steps

29: for l = 1, . . . , ni do
30: rchd(i)← rchd(i)∪{xt : (Āi)t,s = 1, xs ∈ rchd(i)}
31: end for
32: end for

◃ return True if every state vertex the i–th subsystem
digraph is input-reached, and False otherwise

33: return [#rchd(i) == ni]

34: end procedure

Theorem 5. Algorithm 2 is correct (i.e., it returns True if and
only if every state vertex in the ith subsystem digraph is input-
reached). Furthermore, Algorithm 2 has complexity O


max


r2,Nr,
N maxi=1,...,r ni


, where ni is the dimension of the state space of the
ith subsystem, and N =

r
i=1 ni, where ki is the number of SCCs in

the ith subsystem digraph. �

Proof. Note that, since each subsystem can establish two-way
communication with its neighbors, the communication graph is
strongly connected, and thus the instructions in steps 7–13 only
need to be executed (at most) r times in order to receive all pairs
(id,#SCCs) in the system. Subsequently the total numberN of SCCs
can be computed in step 14.

Now, assume that each subsystem has a strongly connected
state digraph D(Āi). Then, if the system has an input vertex, i.e., if
B̄i ≠ 0, each of the state vertices of the ith subsystem is added to
rchd(i) in the first iteration of the for-loop in steps 21–31, namely
in the for-loop 29–31. Furthermore, note that in the case where
each subsystem has a strongly connected system digraph, N = r ,
and a path from an input vertex to a state vertex contains at most
r edges between different subsystem digraphs. Therefore, in this
case, after N iterations of steps 21–31 all vertices that may be
reached by a path froman input vertex have been added torchd(i).

Alternatively, if the ith subsystem is not strongly connected,
then, assume, without loss of generality, that Āi is a block matrix,
with submatrices Ā1

i , . . . , Ā
l
i along the diagonal so thatD(Ā1

i ), . . . ,

D(Āl
i) are strongly connected. Furthermore, let B̄1

i , . . . , B̄
l
i be the

restriction of B̄i to the lines in used by Ā1
i , . . . , Ā

l
i respectively. Then,

consider the interconnected dynamical comprising, instead of the
ith subsystem (Āi, B̄i), the subsystems (Ā1

i , B̄
1
i ), . . . , (Ā

l
i, B̄

l
i) con-

nected amongst them and to other subsystems according to Āi. By
applying this procedure to every subsystem whose state digraph
is not strongly connected, we obtain an interconnected dynam-
ical system, where each subsystem has a strongly connected di-
graph. Note also, that we did not change the state digraph of the
overall system, thus a state vertex in the overall system digraph
is input-reached if and only if it was input-reached in the original
system digraph. Now, since this the number of SCCs in all subsys-
tems of the original system digraph of this system isN subsystems,
from the previous paragraph we conclude that after N iterations of
steps 21–31, every state vertex in D(Āi) that is input-reached in
D(Ā, B̄) has been added to rchd(i).

Thus, we have proven that for any interconnected dynamical
system, every state vertex of D(Āi) has a path from some input
vertex in the overall system if and only if #rchd(i) = ni.

Finally, we analyze the complexity of Algorithm 2. We be-
gin by noting that the SCCs of D(Āi) can be computed in O (ni).
Now, each of the steps in the for-loop 7–13 can be executed in
constant time, which implies that the for-loop incurs in com-
plexity O


r#nghbs(i)


which is bounded by O


r2

. Furthermore,

the steps 22-24 and 25–28 can be executed in constant com-
plexity, thus these loops incur in complexity O


#nghO(i)


and

O

#nghI(i)


, respectively. Finally, the for-loop in steps 29–31,

incurs in linear complexity (on the number, ni, of state vari-
ables). So in conclusion, the complexity of Algorithm 2 becomes
O

max


r2,Nr,N maxi=1,...,r ni


. �

Next, we present a distributed algorithm to verify structural
controllability when the subsystems only have access to neighbor-
ing subsystems. Briefly, the algorithm consists in verifying both
conditions (4i) and (4ii) of Theorem 1 in a distributed manner.
Condition (4i) of Theorem 1, can be verified by applying Algo-
rithm 2. On the other hand, Theorem 1-(4ii) requires one to com-
pute a maximum matching in a distributed manner. This can be
achieved by reducing the problem of finding a maximum match-
ing to that of computing a maximum flow (Ahuja, Magnanti, & Or-
lin, 1993). However, since we only need to detect the existence of
right-unmatched vertices, we only need to compute a maximum
preflow (which corresponds to a flow, where the flow on the in-
coming edges need not be equal to the flow on the outgoing edges
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of each vertex). To this end, we employ the distributed algorithm
provided in Shekhovtsov andHlaváč (2013). In order to achieve this
reduction, one first takes the overall system bipartite graph and
provides an orientation to each edge, from left-vertex to right-
vertex; then one adds two extra vertices, called source and sink; fi-
nally one adds an edge from the source to each of the left-vertices
of the bipartite graph, and from each of the right-vertices to the
sink and assigns to each vertex a capacity of 1 (Ahuja et al., 1993).
The computation of the maximum flow is then done distributedly,
where each subsystemworks tomaximize the flow from the source
to the sink within a region of the graph comprising the subsystems
bipartite graph, the source and the sink (note that the source and
sink lie in all regions, which does not impair the distribution of the
algorithm, since the systems need not keep track of the excess on
the source or the sink), and any vertices in other subsystems to
which the system is connected. This is achieved through a push-
relabel algorithm, briefly described as follows: each of the vertices
in a region keeps track of an excess (which corresponds to the dif-
ference between the incoming and outgoing flow), and a label or
height. The excess is then pushed from higher labels to lower la-
bels increasing the flow through the edges between them until it
reaches the sink, or the boundary. Once this is achieved, the ex-
cess accumulated in the boundary is passed to the corresponding
neighboring region, and the iterations begin again. However, the
existence of boundary vertices limits the parallelization, as two in-
stantiations of the algorithm can only (in general) be computed si-
multaneously, if the regions do not share vertices other than the
source or the sink.

From this point onwards we refer to the individual instances
of the parallel region discharge algorithm presented in Shekhovtsov
and Hlaváč (2013) as PRD. Furthermore, we assume PRD considers
the following parameters: the digraph on which it operates, the
capacity function, and the neighbors with which it shares vertices
other than the source or the sink. Also, PRD returns a maximal
preflow on the digraph.

Theorem 6. Algorithm 3 is correct, i.e., it verifies (4) of Theorem 1.
Furthermore, it has a computational complexity of

O


max{r2,Nr,N max

i=1,...,r
ni, rβ2 max

i=1,...,r
n3
i }


where β is the number of boundary vertices, and the remaining
variables are the same as described in Theorem 5. �

Proof. In order to verify the correctness of Algorithm 3, we
have to check if both conditions (4i) and (4ii) of Theorem 1 are
verified. Furthermore, in order to perform this verification in a
distributed manner, each subsystem must verify that all vertices
in its digraph are input-reached in D(Ā, B̄), which is done by
employing Algorithm 2 in step 5; and that none of its state vertices
are right-unmatched w.r.t. some maximum matching of B(Ā, B̄).
Once this has been achieved, it was already argued in the proof of
Theorem 4, that the for loop in steps 25–31 determines if these
conditions are violated in any of the subsystems.

Now, to verify that Algorithm 3 determines if there are right-
unmatched vertices in the ith subsystem, we note that in steps
6–21 we generate the digraph D comprising the right- and left-
vertices of the ith subsystem bipartite graph, and the boundary
vertices of the ith region according to the precepts in Shekhovtsov
and Hlaváč (2013). Once the digraph D is computed, we apply
PRD to it in step 22, thus obtaining a preflow from source to sink
on D which is maximum amongst preflows on the whole graph.
By the guarantees provided in Shekhovtsov and Hlaváč (2013),
together with the equivalence between the maximum matching
and maximum flow problems, presented in Ahuja et al. (1993) we
guarantee that


e∈Et f (e) is equal to the number of right-matched
Algorithm 3 Distributed algorithm to verify condition (4) of
Theorem 1.
1: procedure Controlled(Āi, B̄i, Ēi,k ≠ 0, Ēk,i ≠ 0, r)
2: nghI(i)← {j : Ēi,j ≠ 0}
3: nghO(i)← {j : Ēj,i ≠ 0}
4: nghbs(i)← nghI(i) ∪ nghO(i)

◃ verify if every state vertex is input-reached by deploying
Algorithm 2

5: rchd(i)← Reached(Āi, B̄i, Ēi,k ≠ 0, Ēk,i ≠ 0, r)
◃ we set up the graph for applying the Parallel region
discharge, where s and t correspond to the source and
sink, respectively, the x and u vertices correspond to state
and input vertices. The upper index i is the index of the
subsystem they belong to, and the upper index R and L
indicate if they are right or left vertices

6: Vi ← {s, t} ∪ {x
i,L
k , xi,Rk }

ni
k=1 ∪ {u

i
k}

mi
k=1

7: Ei,i ← {(x
i,L
j , xi,Rj′ ) : (Āi)j′,j = 1} ∪ {(ui

j, x
i,R
j′ ) : (B̄i)j′,j = 1}

8: for all j ∈ nghbs(i) do
9: Vi,j ← {x

j,R
k : (Ēj,i)k,• ≠ 0}

10: Ei,j ← {(x
i,L
l , xj,Rk ) : (Ēj,i)k,l = 1}

11: Vj,i ← {x
j,L
k : (Ēj,i)•,k ≠ 0}

12: Ej,i ← {(x
j,L
k , xi,Rl ) : (Ēi,j)l,k = 1}

13: end for
14: Es ← {s} × {x

i,L
k }

ni
k=1

15: Et ← {x
i,R
k }

ni
k=1 × {t}

16: E ← Es ∪ Et ∪ Ei,i ∪


j∈nghbs(i)
(Ej,i ∪ Ej,i)

17: V ← Vi ∪


j∈nghbs(i)
(Vj,i ∪ Vi,j)

18: D ← (V, E)
19: function c(e ∈ Ei)
20: return 1 ◃ all edges have unitary capacity
21: end function

◃ Deploy a Parallel Region Discharge algorithm to obtain a
preflow f on D , with capacity function c

22: f ← PRD(D, c, nghbs(i))
23: mchd(i)← [


e∈Et

f (e) == ni]

◃ check if the whole system can be structurally controllable
according to whether the conditions are satisfied in the
current system or not

24: ctld(i)← rchd(i) ∧ mchd(i)
25: for k = 1, . . . , r do

◃ reconsider the controllability of the overall system, in
light of the data received from the neighbors

26: for all j ∈ nghbs(i) do
27: Send(ctld(i), j)
28: ctld(j)← Rcv(j)
29: ctld(i)← ctld(i) ∧ ctld(j)
30: end for
31: end for
32: return ctld(i)

◃ return True if the system is structurally controllable and
False otherwise

33: end procedure

vertices in amaximummatching of the systembipartite graph, that
are state vertices of the ith subsystem. So, by comparing


e∈Et f (e)

with ni in step 23, we are able to infer if there are right-unmatched
vertices in the ith subsystem w.r.t. some maximum matching
B(Ā, B̄). Thus the algorithm returns True if and only if every state
vertex of the system digraph is input-reached, and there are no
right unmatched vertices in the system bipartite graph.
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Now, since all of the steps of the algorithm have linear com-
plexity except for step 5 and step 22, the complexity of Algo-
rithm 3 is given by the maximum of these. Knowing that step 5
has a complexity of O


max


r2,Nr,N maxi=1,...,r ni


(see Theo-

rem 6, where N is the number of SCCs on each of the subsystems),
all that remains to infer is the complexity of step 22. This algo-
rithm, as described in Shekhovtsov and Hlaváč (2013), iteratively
performs a push-relabel procedure, followed by pushing the ac-
cumulated excess in the boundary to a neighboring system. The
push-relabel algorithm has complexity O


n3
i


(Ahuja, Kodialam,

Mishra, & Orlin, 1997; Goldberg, 2008), and the necessary itera-
tions of the region discharge that each subsystem has to complete,
can be bounded by β2 where β is the number of boundary ver-
tices in the whole system bipartite graph (that is, the number of
vertices in the bipartite graph that have to be shared by several
subsystems). Also, in the worst-case scenario where each of the
subsystems is connected to every other subsystem, the region dis-
charge steps have to be executed sequentially. So, the complexity
of step 22 is given by O


rβ2 maxi=1,...,r n3

i


, resulting in an overall

complexity of O

max


r2,Nr,N maxi=1,...,r


ni, rβ2n3

i


. �

Remark 5. The computational complexity of Algorithm 4 is dom-
inated by the PRD, since Algorithm 2, which is required to assess
reachability in a distributed fashion, has lower computational com-
plexity. In particular, if the network is connected, then ni > 0
and rβ2n3

i > ni for each subsystem i, where 0 < r ≤ β . Sub-
sequently, the computational complexity of the PRD algorithm re-
duces to O


Nrβ2 maxi=1,...,r n3

i


. �

5. Illustrative examples

Now, we provide a small example of how Algorithm 3 (and Al-
gorithm 2, which is required as a subroutine) runs on the intercon-
nected dynamical system depicted in Fig. 4-1. In particular, we aim
to emphasize the distributed nature of Algorithm 3.

In Fig. 4-1, we present the digraph associated to an intercon-
nected dynamical system comprising four subsystems. Since only
subsystem (Ā1, B̄1) has an input vertex, it readily follows from
Theorem 1 that none of the other subsystems can be structurally
controllable. Now, we employ Algorithm 3 to verify the structural
controllability of the interconnected dynamical system. After
the initialization steps are completed, we use Algorithm 2, the
iterations of which can be seen in Fig. 4-2 to Fig. 4-8: in each
iteration (even-labeled subfigures) new vertices are seen to be
input-reached (the targets of the green edges), and in each com-
munication step (odd-labeled subfigures) the subsystems commu-
nicate to its outgoing neighbors which of their vertices are reached
after the iteration has been completed. As can be seen in Fig. 4-8,
all vertices have been reached after four iterations, which in this
case, corresponds to the number of SCCs in all subsystems.

In Fig. 5,we consider an example of a run of the region discharge
algorithm running on the bipartite graph associated to the digraph
in Fig. 4-1. In this example, we begin applying PRD in step 1 by
initializing the labels at 2 for each left-vertex, and at 1 for each
right-vertex; we also saturate all edges from the source, which
makes it so that all of the left-vertices start with an excess of 1.
By successive pushing and relabeling, we reach the configuration
in 2 where all the excess has either been pushed to the sink (and
thus the corresponding right-vertex is presented in red) or to the
boundary of the region. In step 3, we discharge the excess from
the boundary into the adjacent regions so that, for example, the
right-vertex x3 in each of the regions has now an excess of 1.
Finally, by applying push-relabel again in each of the regions, we
reach step 4 where all the edges from right-vertices to the sink
have been saturated (and are thus displayed in red) showing that
Fig. 4. Example of the procedure of Algorithm 2 applied to the system digraph
presented in Fig. 4-1, comprising 4 different subsystems (depicted inside of the
dashed boxes), only one of which has an input edge (labeled u1). In each subfigure,
the blue edges represent those that comprised a path from an input vertex, and
the green edges denote those that were added in this iteration or communication
step of the algorithm. Finally, the even-labeled subfigures correspond to an iteration
of Algorithm 2, and the odd-labeled ones correspond to a communication step
between subsystems. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

there is a maximum pre-flow saturating all edges to the sink, and
equivalently that there is a maximum matching with no right-
unmatched vertices. So, in combination with the analysis of Fig. 4
we conclude that the interconnected dynamical associated to the
digraph system in Fig. 4-1 is structurally controllable.

Remark 6. The computational complexity of solving the
maximum-flow in a centralized versus the distributed version
implemented by the PRD, whose implementations are available
in Shekhovtsov and Hlaváč (2011a) and discussed in detail in
Shekhovtsov and Hlaváč (2011b). More specifically, it is provided a
trade-off between the CPU time required and the number of nodes
and the number of subsystems with the same number of nodes.
In particular, the PRD takes in average twice the computational
time required by the centralized algorithm to solve themaximum-
flow. Furthermore, we notice that Algorithm2 amounts to a depth-
first search, which performance is essentially the same as the dis-
tributed verification algorithm proposed. �

6. Conclusions and further research

In this paper, we have provided several necessary and/or suf-
ficient conditions to verify structural controllability for intercon-
nected linear time-invariant dynamical systems based on the local
information accessible to each subsystem. Subsequently, we have
provided distributed and efficient (i.e., polynomial in dimension
of the state and input) algorithms to verify a necessary and suffi-
cient condition for structural controllability. The results presented
readily extend to discrete time-invariant interconnected dynami-
cal systems, since the controllability criterion stays the same. Fur-
thermore, by duality between controllability and observability the
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Fig. 5. Example of the PRD algorithm applied to the verification of structural
controllability of the system presented in Fig. 4-1. For convenience of referencing,
the vertices are given labels rather than colors (x4 being the black vertex in each
subsystem and the others can be easily inferred). At the left of each left-vertex and
at the right of each right-vertexwe insert two numbers, the one in green represents
the excess of the corresponding vertex, whereas the red number represents its
label. Edges in red represent those where the capacity has been saturated; and
right-vertices in red represent the ones for which the edge to the sink has been
saturated. Finally, the vertices in blue represent vertices that belong to other
regions, i.e., boundary vertices. In order to simplify, in this, we do not include
boundary vertices from incoming subsystems. Note also, that in this instance, we
can run the algorithm in all regions simultaneously, since by not considering the
incoming edges from other regions in the region graph, we do not allow for flow to
be sent back through these edges. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

results also apply to structural observability verification of dis-
crete/continuous linear time-invariant interconnected dynamical
systems.Whereas the results presented pertain to verify structural
conditions, it would be of interest to address design problems; for
instance, which state variables need to be actuated, or which in-
puts should be used, to ensure a given structural property. On the
other hand, it would be of interest to understand if the conditions
provided could be adapted to the case where some of the entries
in the structure of the subsystems and their interconnections are
known exactly (which corresponds to the case where only some of
the components of the overall system are assumed to be reliable).
Ultimately, such an extension would shed light on the relationship
between structural and non-structural system-theoretic proper-
ties; hence, leading to a better understanding of the resilience and
performance of interconnected dynamical systems.
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