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Abstract— We present an innovations-based prioritization
mechanism to efficiently use network resources for data gath-
ering, without compromising the real-time decision making
capability of the control systems. In the envisioned protocol,
each sensor assigns the Value of Information (VoI) contained
in its current observations for the network as the priority. Tour-
naments are used to compare priorities and assign transmission
slots, like in the CAN bus protocol. By using a rollout strategy,
we derive feasible algorithms for computing the VoI-based
priorities for the case of coupled and decoupled systems. In the
case of decoupled systems, performance guarantees with regard
to the control cost of the VoI-based strategy are identified.
We illustrate the efficiency of the proposed approach on a
platooning example in which the vehicles receive measurements
from multiple sensors.

I. INTRODUCTION

We consider a scenario where multiple sensors commu-

nicate over a shared network to perform estimation and

control tasks. The shared network prevents simultaneous

transmissions from sensors. Prioritising data packets based

on their content can help to ensure delivery of important

packets and provide performance guarantees for control and

estimation. We identify a prioritisation scheme that offers a

significant improvement in performance over other typically

used solutions.

The networked control scenario described above is quite

typical in automotive systems. An automobile contains many

different electronic control units (ECU) for various subsys-

tems, such as antilock braking, cruise control, etc. Each

subsystem communicates with other subsystems, receives

measurements from sensors and transmits control signals

to actuators. The CAN bus standard specifies the protocol

for communication between various components within a

vehicle [1]. Data transmission on the CAN uses a lossless

bit-wise arbitration method to compare the device IDs,

which serve as static priorities, and resolve contention be-

tween components that attempt simultaneous transmissions.

Autonomous vehicles and automated driving solutions are

the next technological leap for automotive systems. These

solutions offer higher reliability and faster reaction time,

while simplifying the task of driving.
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An autonomous vehicle must be capable of sensing its

environment and navigating without human input. In ad-

dition to onboard sensing solutions using Radar, Lidar,

GPS, and computer vision, autonomous vehicles must be

able to receive information from infrastructure nodes and

other vehicles in the vicinity. An important challenge is to

incorporate the profusion of data sources in to the CAN

bus. Dynamic or state-based priorities are likely to play an

important role in ensuring efficient use of the CAN bus.

The idea of using the state or measurement of a physical

system to determine channel access has been prevalent for

some time now [2]–[4]. The deviation in the state from

the nominal value was used to determine a priority in

Try-Once-Discard (TOD) [2]. Maximum error first is the

prioritization principle used in TOD, to guarantee input-to-

state stability for deterministic systems with disturbances.

The implementation of the original idea was centralized,

and required a network coordinator to collect and compare

errors from the various physical processes in the network.

Distributed implementations of this algorithm and the effect

of packet losses have been studied in [5] and [6]. A similar

approach has been used in [7] to identify a dynamic utiliza-

tion policy for the Time Division Multiple Access (TDMA)

slots of the IEEE 802.15.4 protocol. An alternate approach

for stochastic systems over a network was presented and

analyzed in [8] for decoupled systems. Other works study

the stochastic stability of controlling decoupled systems with

error-dependent randomized priorities [9], [10]. While the

priority mechanism has been heuristically chosen in [8]–[10],

our formulation of the priority assignment is based on the

framework of VoI, which allows for a systematic and analytic

approach to compare with centralized decision policies.

Our main contribution is the systematic development of

an innovations-based priority scheme for scheduling multiple

sensor data over a CAN-like networked control system. We

introduce a specific variant of VoI for calculating prior-

ities. The concept of VoI is well-known in information

analysis and optimal decision making, and is defined as the

price a decision maker is willing to pay to utilize certain

information [11]. It is extensively applied in the area of

information economics [12], [13] and in the field of health

care for determining diagnostic value [14]. Closer to our

work, VoI is also used in the problem of sensor selection

for data fusion [15]–[17]. While the typical VoI formulation

presumes knowledge of only the statistics of the information,

the novelty of our approach is that each sensor takes the

current measurement into account when computing the VoI.

Inspired by [18], we use a rollout strategy, which assumes
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Fig. 1. Multi-sensor networked control system over CAN-like bus. Sensor
Sj , 1 ≤ j ≤ M transmit data according to the triggering variable δj,k . The
augmented measurement vector zk is used for updating the state estimate
x̂c,k at the observer.

that the future transmission schedule is predetermined by a

baseline heuristic [19], in order to keep the determination

of the VoI feasible. For decoupled systems, we show that

the VoI-based priority takes the form of a weighted squared

innovation at each sensor, where the weighting matrix can be

determined recursively. Moreover, we show that the proposed

scheme is identical to the optimal centralized scheduling rule

based on the rollout strategy. Thus, we have a performance

guarantee for the prioritization scheme: the control cost is

upper bounded by the cost obtained by the baseline schedule

used in the rollout strategy. We also highlight how these

results can be extended to the coupled case of a first-order

system through a suitable approximation of the VoI.

The rest of this paper is organized as follows. In Sec-

tion II, we formulate the problem and introduce the priority

assignment scheme. The properties of the priority scheme

are analyzed in Section III for decoupled systems, and in

Section IV for coupled systems. In Section V, we illustrate

the efficiency of the proposed innovations-based strategy on

a cruise control problem in platoons.

II. PROBLEM FORMULATION

Our problem formulation is divided into four parts in

Sections II-A–II-D, which describe the model of the phys-

ical process and the sensors, the priority-based transmis-

sion scheme over a CAN-like network, the controller and

observer, and our novel approach to synthesize priorities,

respectively. An overview of the networked control system

is given in Fig. 1.

A. Multiple sensor LQG framework

We consider a set of M sensors, indexed by j, 1 ≤ j ≤ M
that generate measurements yj,k. The plant state evolves as

per the law

xk+1 = Axk +Buk + wk

where the state xk ∈ R
n and the control uk ∈ R

p. The initial

value of the state x0 is assumed to be zero mean Gaussian

with covariance R0. The process noise wk is assumed to be

an independent and identically distributed (i.i.d.) zero-mean

Gaussian with covariance Rw. The measurements yj,k are

given by

yj,k = Cjxk + vj,k

with yj,k ∈ R
mj and Cj ∈ R

mj×n. The measurement noise

vj,k is also assumed to be an i.i.d. zero-mean Gaussian

sequence with covariance Rv,j . We assume that all the

primitive random variables, i.e., x0, wk and vj,k, are mutually

independent.

We aim to minimize the finite horizon cost

JC = E

[

xT

NQNxN +

N−1
∑

k=0

xT

kQ1xk + uT

kQ2uk

]

(1)

with Q1 ∈ R
n×n, Q2 ∈ R

p×p, and QN ∈ R
n×n being

positive definite matrices.

B. Priority-based transmission

Each sensor assigns a priority to its available data. Tourna-

ments are then performed to determine which sensors get to

transmit in the NT available tournament slots, and in which

order, based on the assigned priorities.

Let δj,k ∈ {0, 1} denote the channel access outcome of

the jth sensor. It is defined as

δj,k =

{

1 node j wins any of the NT tournaments

0 otherwise.

Furthermore, let us define the last time sensor j transmitted

data to the observer as

τj,k = max{ℓ | δj,ℓ = 1 ∧ ℓ < k} (2)

with τj,k = −1 when no transmissions of sensor j have

occurred yet. Let the vector sk ∈ {1, . . . ,M}NT denote the

indices of the sensors that obtain a transmission slot and zk
denote the data received by the central observer at time k.

The data to be transmitted by each sensor will be defined in

the following sections.

C. Control and filtering structure

The controller uses the certainty equivalent law

uk = −Lkx̂c,k (3)

where x̂c,k is an estimate of xk, Lk =
(

Q2 +BTΞk+1B
)−1

BTΞk+1A and Ξk is the standard

solution to the finite horizon Riccati equation. The observer

is based on a Kalman filter that uses the received information

zk and sk. Its exact form will be introduced in the following

sections.

4164



The cost function in (1) can be rewritten as

JC =E[xT

0Ξ0x0] +E[

N−1
∑

k=0

wT

kΞk+1wk]

+E[

N−1
∑

k=0

(uk + Lkxk)
TΓ̂k(uk + Lkxk)].

(4)

with Γ̂k = BTΞk+1B+Q2, k ∈ {0, . . . , N −1} (see lemma

6.1 of chapter 8 in [20]). By using the certainty equivalent

law (3) and by noting that the first and second terms in (4)

are constant, we can restrict our attention to the minimization

of the following weighted mean square error cost

J =E

[

N−1
∑

k=0

(xk − x̂c,k)
TΓk(xk − x̂c,k)

]

(5)

with Γk = LT

k (B
TΞk+1B +Q2)Lk, k ∈ {0, . . . , N − 1}.

D. Synthesis of priorities

Our priority assignment scheme aims to minimize the

cost J in (5), through the use of two complementary

concepts: VoI and rollout algorithms. The priorities are

determined based on the VoI associated with each sensor’s

information. In our scenario, the VoI is defined as the

improvement in the cost J due to transmitting a sensor’s

data as against not transmitting it. A distinct feature in our

approach is that each sensor computes the VoI based on

its own information structure, which varies based on the

scenario considered. In the decoupled case, it is sufficient

to keep track of its own measurements and the transmission

sequence, whereas in the coupled case, previously transmit-

ted data from other sensors is also required.

A full computation of the VoI in this problem setting is a

difficult task, in general, because scheduling choices must be

made for the entire horizon, and not just for the current time

instant. Furthermore, scheduling choices made using sensors’

local information lead to complex cost-to-go functions and

impede tractability. Thus, we use a rollout strategy, which

assumes that future scheduling decisions are predetermined

by a baseline heuristic, to simplify computation of the VoI

[19].

In particular for decoupled subsystems, the advantages of

using this suboptimal strategy are: (i) it gives us a means

to circumvent the curse of dimensionality as the VoI can be

computed explicitly, (ii) it allows us to obtain performance

guarantees with respect to the baseline schedule, (iii) it

enables us to determine distributed prioritization schemes,

which are generally difficult to design in the dynamic pro-

gramming framework.

The VoI of sensor j is defined as the difference between

the cost-to-go when no sensors transmit at time k and when

sensor j transmits at time k. In both cases, we assume that a

baseline schedule {s̄k+1, . . . , s̄N−1} is used in future steps.

The cost-to-go functions are computed based on the available

information structure Ij,k at the sensor j to be defined in

the subsequent sections. Therefore, the VoI ∆j at time k is

defined as

∆j =E[

N−1
∑

ℓ=k

(xℓ − x̂c,ℓ)
TΓℓ(xℓ − x̂c,ℓ)|Ij,k, sk = ∅]

−E[
N−1
∑

ℓ=k

(xℓ − x̂c,ℓ)
TΓℓ(xℓ − x̂c,ℓ)|Ij,k, sk = j].

(6)

III. ANALYSIS OF DECOUPLED SYSTEMS

For M decoupled systems, we establish a link between

the VoI-based priority assignment and the optimal scheduling

policy minimizing cost J in (5). This enables us to specify

a performance guarantee of the VoI strategy obtained at the

end of this section.

A. Model assumptions

We consider M isolated dynamical subsystems with ded-

icated sensor and controller

x
(j)
k+1 = A(j)x

(j)
k +B(j)u

(j)
k + w

(j)
k

yj,k = Cjxk + vj,k = C(j)x
(j)
k + vj,k

(7)

with x
(j)
k ∈ R

n(j)

and u
(j)
k ∈ R

p(j)

. The system matrix A
can therefore be written as A = diag[A(1), . . . , A(M)]. The

weighting matrices in the control cost (1), the input matrix B,

and the covariance matrix of the process noise, Rw can also

be similarly written.

Because of the decoupled system structure, the cost func-

tion J defined in (5) can be written as follows

J =E





M
∑

j=1

N−1
∑

k=0

(x
(j)
k − x̂

(j)
k )TΓ

(j)
k (x

(j)
k − x̂

(j)
k )



 (8)

where Γ
(j)
k is positive semidefinite and x̂

(j)
k is the Kalman

estimate of x
(j)
k at time step k attained at the remote observer.

A local Kalman filter at each sensor node keeps track of

x
(j)
k based on the complete observation history at the sensor,

denoted Yj,k = {yj,0, . . . , yj,k}. It computes the estimate

x̃
(j)
k|k = x̃

(j)
k|k−1 +K

(j)
k (yj,k − C(j)x̃

(j)
k|k−1)

P
(j)
k|k = (In(j) −K

(j)
k C(j))P

(j)
k|k−1

x̃
(j)
k+1|k = A(j)x̃

(j)
k|k−1 +B(j)u

(j)
k

P
(j)
k+1|k = A(j)P

(j)
k|k(A

(j))T +R(j)
w

where K
(j)
k = P

(j)
k|k−1(C

(j))T(C(j)P
(j)
k|k−1(C

(j))T +Rv,j)
−1

and x̃0|−1 = 0, P
(j)
0|−1 = R

(j)
0 . When possible, the local

estimate x̃
(j)
k|k is transmitted to the observer. This estimate

summarizes the new information {yj,τj,k , . . . , yj,k}. The

received signal at time k is then defined as

zk =

[

(

x̃
(sk,1)

k|k

)T

· · ·
(

x̃
(sk,M )

k|k

)T
]T

. (9)

The observer for subsystem j can be described as

x̂
(j)
c,k =

{

x̃
(j)
k|k δj,k = 1

x̂
(j)
c,k|k−1 δj,k = 0

(10)
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where x̂
(j)
c,k|k−1 = (A(j) −B(j)L

(j)
k )x̂

(j)
c,k−1 is the linear pre-

diction of the state, x̂
(j)
c,0 = 0 for δj,0 = 0 and L

(j)
k is the

control gain of subsystem j.

B. Computation of priorities

Our measure for the priority of a sensor is based on the

VoI introduced in Section II-D. The decoupled structure of

the system enables us to calculate its value exactly. The infor-

mation structure for computing the VoI is Ij,k = {Yj,k, τj,k}.

Roughly speaking, the last transmission time τj,k from (2)

summarizes all required information on the triggering of

transmissions for sensor j. The information structure can also

be recursively expressed as Ij,k+1 = {Ij,k, yj,k+1, δj,k}.

Because of the fact that data from sensor j is not beneficial

for state estimation in the other subsystems i 6= j, we obtain

the following simplified expression of the VoI based on (6).

∆j =

E[

N−1
∑

ℓ=k

(x
(j)
ℓ − x̂

(j)
c,ℓ)

TΓ
(j)
ℓ (x

(j)
ℓ − x̂

(j)
c,ℓ)|Ij,k, δj,k = 0]

−E[

N−1
∑

ℓ=k

(x
(j)
ℓ − x̂

(j)
c,ℓ)

TΓ
(j)
ℓ (x

(j)
ℓ − x̂

(j)
c,ℓ)|Ij,k, δj,k = 1]

(11)

We implicitly assume that the baseline schedule

{s̄k+1, . . . , s̄N−1} applies in the future, and implies a

transmission outcome of {δ̄j,k+1, . . . , δ̄j,N−1} for sensor j.

The first term of the running cost can be written as

E[(x
(j)
k − x̂

(j)
c,k)

TΓ
(j)
k (x

(j)
k − x̂

(j)
c,k)|Ij,k, δj,k = 0]

= tr
[

Γ
(j)
k E[(x

(j)
k − x̂

(j)
c,k|k−1)(x

(j)
k − x̂

(j)
c,k|k−1)

T|Ij,k]
]

Define, ej,k = x
(j)
k − x̃

(j)
k|k and ẽj,k = x̃

(j)
k|k − x̂

(j)
c,k|k−1.

Then, we have

E[(x
(j)
k − x̂

(j)
c,k|k−1)(x

(j)
k − x̂

(j)
c,k|k−1)

T|Ij,k]

= E[(ej,k + ẽj,k)(ej,k + ẽj,k)
T|Ij,k]

= E[ej,ke
T

j,k|Ij,k] + ẽj,kẽ
T

j,k.

(12)

The last equality holds because E[eTj,k|Ij,k] = 0 and because

ẽj,k is computable for a given Ij,k as per

ẽj,k =

k
∑

n=τj,k+1

(A(j))k−nKj,nỹj,n (13)

where ỹj,n = yj,n − Cj x̃
(j)
n|n−1 is the innovations process of

the local Kalman filter at sensor j. As the first term in the

last line of (12) cancels out the second term in (11), the

VoI with respect to the running cost can be computed by

tr[Γ
(j)
k ẽj,kẽ

T

j,k].
For the running cost of the second term in (11), we obtain

E[(x
(j)
k − x̂

(j)
c,k)

TΓ
(j)
k (x

(j)
k − x̂

(j)
c,k)|Ij,k, δj,k = 1]

= tr
[

Γ
(j)
k P

(j)
k|k

]

Let us now look at the future terms of the cost-to-go func-

tion in (11). The observer in (10) implies that the evolution

of the estimate x̂
(j)
ℓ is independent of previous scheduling

choices, following a transmission at time ℓ. Define the first

transmission time after k of the baseline schedule as

τ̄j,k = min{ℓ | δ̄j,ℓ = 1 ∧ k < ℓ ≤ N − 1},

where we define τ̄j,k = N − 1 if no transmission is to occur

in the future based on the baseline schedule. Then, we only

need to consider cost terms until τ̄j,k in our VoI calculations,

as x̂
(j)
ℓ , τ̄j,k ≤ ℓ ≤ N − 1, will be the same for δj,k = 0 and

for δj,k = 1. Hence, the VoI can be computed as

∆j = tr[

τ̄j,k−1
∑

ℓ=k

Γ
(j)
ℓ P̃ℓ] (14)

where P̃ℓ is recursively given by

P̃k = ẽj,kẽ
T

j,k

P̃ℓ+1 = A(j)P̃ℓ(A
(j))T (15)

for k ≤ ℓ < τ̄j,k with ẽj,k given by (13).

Remark 1: It follows from (14)–(15) that the VoI ∆j at

time k takes the form of a quadratic function of ẽj,k, which

can be defined as the discrepancy between the estimates of

x
(j)
k at the sensor j and the remote observer. The discrep-

ancy ẽj,k is a linear combination of the innovations ỹj,n with

n ∈ {τj,k + 1, . . . , k} given by (13). The VoI need only be

computed k − τ̄j,k steps in the future and therefore allows

for the consideration of large horizons N .

C. Performance guarantee

We provide a performance guarantee for the cost using the

VoI strategy, in comparison to the cost using the baseline

schedule. For this purpose, we introduce the centralized

decision rule that chooses NT sensors using the complete

information Ik = {I1,k, . . . , IM,k}. Though this scheme

violates the imposed restrictions in the information structure

to compute priorities, it is only used to derive a performance

guarantee for the VoI-based prioritization scheme.

A centralized scheduler that aims to minimise cost J in

(8) assuming a rollout strategy with a deterministic baseline

schedule {s̄1, . . . , s̄N−1}, must solve the following problem:

min
sk

E[

M
∑

j=1

N−1
∑

ℓ=k

(x
(j)
ℓ − x̂

(j)
c,ℓ)

TΓ
(j)
ℓ (x

(j)
ℓ − x̂

(j)
c,ℓ)|Ik] (16)

where sk is assumed to be a function of yk and the side in-

formation x̂k|k−1, Pk|k−1. As the systems are decoupled and

we are using a deterministic baseline strategy, measurements

of a sensor i 6= j are independent of variables appearing in

subsystem j. Therefore, the cost in (16) decomposes into

M
∑

j=1

E[
N−1
∑

ℓ=k

(x
(j)
ℓ − x̂

(j)
c,ℓ)

TΓ
(j)
ℓ (x

(j)
ℓ − x̂

(j)
c,ℓ)|Ij,k]. (17)

This implies that each subsystem can evaluate its costs

independently. By selecting the NT measurements that yield

the greatest benefit reflected by the difference of these cost

terms, we obtain the optimal decision rule minimizing the
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cost (8). Hence, this rule coincides with the VoI-based

priority assignment defined in (11). It should be noted that

we implicitly excluded cases in which the VoI is identical

for different subsystems as this occurs with probability zero.

Hence, we have the following intermediate result.

Lemma 1: Let the system be defined as in (7). Then, the

VoI-based priority assignment is an optimal solution to the

minimization problem posed in (16).

Using this result, we provide a performance guarantee for

the VoI-based strategy as stated in the subsequent theorem.

Theorem 1: Let the system be defined as in (7) and let

{s̄1, . . . , s̄N−1} be a baseline scheduler with cost J̄ . Then,

J̄ is an upper bound for the cost resulting from the priority

assignment based on the VoI ∆j defined in (14) using the

rollout strategy with baseline schedule {s̄1, . . . , s̄N−1}.

Proof: Let yk = {y1,k+1, . . . , yM,k+1}. then, the

centralized information structure follows the recursion

Ik+1 = {Ik, yk, sk}.

Let sk = πRO
k (Ik) be the rollout strategy based on the heuris-

tic {s̄1, . . . , s̄N−1}, 0 ≤ k ≤ N − 1. Let the running cost at

time k be defined as

ck(Ik, sk) = E[

M
∑

j=1

(x
(j)
k − x̂

(j)
c,k)

TΓ
(j)
k (x

(j)
k − x̂

(j)
c,k)|Ik, sk].

Define the cost-to-go of the rollout strategy as JRO
k (Ik)

and the cost-to-go of the heuristic as J̄k(Ik) at time k,

respectively. Similar to the result for rollout algorithms with

full-state information in [19], we prove inductively that there

is a cost improvement of the rollout strategy at each time k,

i.e., JRO
k (Ik) ≤ J̄k(Ik).

For k = N , we have JRO
N (IN ) = J̄N (IN ) =

0 as there is no terminal cost in J . Assume that

JRO
k+1(Ik+1) ≤ J̄k+1(Ik+1) for all Ik+1. Then, we have from

(16)

JRO
k (Ik)

= E[ck(Ik, π
RO
k (Ik)) + JRO

k+1({Ik, yk+1, π
RO
k (Ik)})|Ik]

≤ E[ck(Ik, π
RO
k (Ik)) + J̄k+1({Ik, yk+1, π

RO
k (Ik)})|Ik]

≤ E[ck(Ik, s̄k) + J̄k+1({Ik, yk+1, s̄k})|Ik]

= J̄k(Ik)

The first inequality is due to the induction hypothesis, while

the second inequality arises from the fact that πRO
k (Ik) solves

(16). This completes the induction.

As shown in Lemma 1, the centralized decision rule is

identical to using tournaments with the VoI-based priority

assignment in (11). Hence, we conclude the proof.

IV. ANALYSIS OF COUPLED SYSTEMS

We now examine the case of coupled subsystems, and

present an extension of our VoI-based prioritization scheme

for this case.

A. Model assumptions

We consider M sensors, measuring the state of a first-order

system, as described by

xk+1 = axk + buk + wk ,

yj,k = cjxk + vj,k , for 1 ≤ j ≤ M .
(18)

The initial value x0, process noise wk and measurement

noises vj,k are all i.i.d. zero mean Gaussian noise processes

with variances σ2
x0

, σ2
w and σ2

v,j , respectively.

B. Observer design

We present a design for the observer and filters at each

sensor node for a generic transmission scheme that selects

NT out of M sensors for transmission at any time k ≥ 0. As

before, let sk denote the indices of the sensors that transmit

their data to the observer at time k. Each sensor transmits a

local unbiased estimate x̂j,k and thus, the observer receives

zk =
[

x̂T

s1,k,k
· · · x̂T

sNT ,k,k

]T

. It generates the Best Linear

Unbiased Estimate (BLUE) [22], x̂c,k, using

x̂c,k =
∑

j∈sk

αj,kx̂j,k , (19)

where the weights αj,k must satisfy
∑

j∈sk
αj,k = 1 to

ensure an unbiased estimate. The variance of the estimation

error is given by

σ2
c,k = α

T

kPs,kαk , (20)

where αk =
[

α1,k . . . αNT ,k

]T

and Ps,k is

the error covariance matrix corresponding to the

transmitted estimates, with the (i, j)th element given

by (Ps,k)i,j = E[(xk − x̂si,k,k)(xk − x̂sj,k,k)]. The weights

are chosen to minimize the estimation error variance and

we obtain

αk = P−1
s,kU/(U

TP−1
s,kU) , (21)

where U is a vector of ones. The observer transmits its

estimate x̂c,k to all the nodes in the network.

Each sensor runs a local filter to generate an estimate of

the state, using its measurement history {yj,l}kl=0 along with

the information available to the observer. The local filter runs

three updates: a prediction update, an initial filtering update

and a final filtering update. The prediction update results in

the estimate x̂j,k|k−1, as given by

x̂j,k|k−1 = ax̂j,k−1|k−1 + buk−1 , and x̂j,0|−1 = 0 ,

σ2
j,k|k−1 = a2σ2

j,k−1|k−1 + σ2
w .

(22)

Here, x̂j,k−1|k−1 denotes the final filtered estimate from

the previous time step. Next, the sensor node uses its own

measurement yj,k to generate the initial filtered estimate

x̂j,k = x̂j,k|k−1 + κj,kỹj,k ,

σ2
j,k = σ2

j,k|k−1 − κ2
j,kσ

2
ỹ,j,k ,

(23)

where ỹj,k = yj,k − cj x̂j,k|k−1, σ2
ỹ,j,k = c2jσ

2
j,k|k−1 + σ2

v,j

and κj,k = cjσ
2
j,k|k−1/σ

2
ỹ,j,k. This is the estimate that each

sensor node tries to transmit to the rest of the network. Some

succeed and each node receives x̂c,k from the observer. The
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nodes combine it with their own estimates to generate the

BLUE final filtered estimate

x̂j,k|k = βj,kx̂j,k + (1− βj,k)x̂c,k ,

σ2
j,k|k =

[

βj,k 1− βj,k

]

[

σ2
j,k ρjc,k

ρjc,k σ2
c,k

] [

βj,k

1− βj,k

]

,

(24)

where ρjc,k = E[(xk − x̂j,k)(xk − x̂c,k)] =
∑

i∈sk
αi,kρij,k

and ρij,k = E[(xk − x̂i,k)(xk − x̂j,k)]. The weight βj,k is

chosen to minimize σ2
j,k|k and we obtain

βj,k =
σ2
c,k − ρjc,k

σ2
c,k + σ2

j,k − 2ρjc,k
.

An important term used in the above calculations is
ρij,k = E[(xk − x̂i,k)(xk − x̂j,k)], and this can be computed
as follows:

ρij,k = a
2(1− κi,kci)(1− κj,kcj)

(

βi,k−1βj,k−1ρij,k−1

+ (1− βi,k−1)(1− βj,k−1)σ
2
c,k−1

+ βi,k−1(1− βj,k−1)ρic,k−1 + (1− βi,k−1)βj,k−1ρjc,k−1

)

+ (1− κi,kci)(1− κj,kcj)σ
2
w ,

where ρij,0 = (1− κi,0ci)(1− κj,0cj)σ
2
x0

.

To reduce the computational burden on the sensor nodes,

the observer could pre-compute βj,k for all j ∈ {1, . . . ,M}
and transmit this information along with its estimate x̂c,k

to the nodes in the network. Then, the nodes can simply

combine its estimate with the observer’s estimate using (24).

Note that this would require the observer to replicate the

filtering constants σ2
ỹ,j,k, κj,k and σ2

j,k of each sensor node,

and maintain a full cross-covariance matrix of the elements

ρij,k, for every i, j ∈ {1, . . . ,M}.

C. Computation of priorities

We now return to the definition of VoI in (6), and apply

it to a network of coupled subsystems. In this network, the

lack of a transmission can also convey information to other

sensor nodes and the observer, due to the nature of the

scheduling policy. Using this information would render the

innovations process at each sensor node non-Gaussian, and

make this formulation analytically intractable. We overcome

such difficulties by simplifying the information patterns at

the sensor nodes.

There are three important aspects to our VoI formulation

for such a network. Firstly, the information available to

each sensor Ij,k is limited to its local information and the

transmitted information from the rest of the network. Any

side information that can be gleamed from the scheduling

policy is not included. Secondly, at any transmission instant,

the scheduling sequences considered are simply sk = j
or sk = ∅, as in (6). Finally, the future transmission

sequences are obtained from a baseline scheduler. Note that

this VoI formulation requires each sensor node to replicate

the parameters used by the filter at the observer.

V. AUTOMOTIVE EXAMPLES

In order to illustrate the efficiency of our prioritisation

scheme, we consider two automotive examples.
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Fig. 2. Typical sample path of the state x
(1)
k

and the state estimates
x̂pri,k , x̂per,k with priority-based scheduling and with periodic scheduling,
respectively, for subsystem 1 with M = 2, NT = 1.

We present a distance tracking example for a platoon of

vehicles. We wish to estimate the distances of M vehicles

in the platoon to our own vehicle. We model each vehicle’s

distance as an independent random walk (A(j) = 1) subject

to a zero-mean Gaussian disturbance with variance 1. A noisy

distance measurement with C(j) = 1 and vj,k ∼ N (0, 0.01)
from each vehicle’s radar is to be transmitted to us. Our aims

to minimize the cost J in (8) with Γ
(j)
k = 1 for this decoupled

scenario using the observer in (10). The performance is

evaluated in Table I for the priority-based scheduling and a

periodic scheduling by conducting a Monte Carlo simulation

with a horizon of N = 100, 000 each. The priority-based

scheme assumes a periodic baseline strategy. As stated in

Theorem 1, the performance Jpriority is upper bounded by the

performance of the periodic scheme denoted as Jperiodic. The

cost is almost halved by the priority scheme. In Fig. 2, a

typical sample path is drawn for the state evolution and its

corresponding estimates that use either periodic or priority-

based scheduling. Here, we observe that the priority-based

scheme adapts faster to critical changes in the distance

compared to the periodic schedule.

M 2 3 4 6 8

Jpriority 0.5 1.5 3.1 8.5 17
Jperiodic 1.0 3.0 6.0 15.0 28

TABLE I

PERFORMANCE COMPARISON FOR STATE TRACKING

Next, we present a cruise control example to illustrate

the prioritization method for coupled systems. We use a

simple mathematical model for the motion of the car, as

given by mv̇ = F − Fd, where m is the total mass of the

vehicle, v is the speed of the car, F is the force generated

by the engine torque and Fd are the disturbance forces

due to gravity, friction and air drag. The expressions for

each of these forces and the parameters for our model are

taken from [23]. By linearizing around v0 = 27 m/s and

discretizing the resulting differential equation, we arrive at a

first-order state space representation, such as the one in (18),

where the state xk = vk − v0 and the control signal uk =
υk−υ0 denote the difference from the respective equilibrium

values. The control signal at equilibrium can be computed
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as υ0 = b−1(1− a)v0. The system parameters are computed

to be a = 0.9766 and b = 1781.9, and the variances are

chosen to be σ2
x0

= σ2
w = 0.01. The car contains a number

of sensors to measure or estimate its own velocity, such as a

radar, an accelerometer, a GPS, etc. We assume that there are

four sensors with cj = 1 for 1 ≤ j ≤ 4 and the measurement

noise variances set to 0.01, 0.02, 0.03 and 0.04, respectively.

Typically, the variance values are chosen to best fit a training

sequence of measurements while parameterizing the plant

model and calibrating the sensors.

For the purpose of reference tracking, we introduce the

integral state ik+1 = ik + rk − x̂c,k|k, where x̂c,k|k is

the estimate at the observer. Using the augmented state

χk =
[

x̂⊤
c,k|k i⊤k

]⊤

, we design and implement a standard

LQG reference tracking controller. We use the VoI computed

at every sensor with respect to the observer’s estimate to

synthesize the priority of the sensor. We compare the results

of a reference change experiment against a static periodic

scheduler in Fig. 3, and find that the VoI prioritization

improves tracking. A Monte carlo simulation also shows that

the VoI scheme results in a smaller cost, as shown in Table II.

12 14 16 18 20 22 24 26
24

25

26

27

28

Time Index

S
t
a
t
e

x

 

 

12 14 16 18 20 22 24 26
-0.5

0

0.5

1

1.5

2

2.5
x 10

-3

Time Index

C
o
n
t
r
o
ls

u

 

 

r

VoI Case: x

VoI Case: x̂c,k|k

Per Case: x̂c,k|k

Per Case: x

VoI Case: u

Per Case: u

Fig. 3. This plot compares the performance of a periodic scheduler against
the VoI prioritization scheme in a reference tracking experiment on the cruise
control system. We can see that the VoI scheme results in a better tracking
performance.

Scheduler Cost J
VoI Prioritization Scheme 0.1902
Periodic Scheduler 0.5022

TABLE II

A TABLE COMPARING THE ESTIMATION COSTS J FROM A MONTE

CARLO SIMULATION

VI. CONCLUSIONS

We have shown that innovations-based priority assignment

strategies for sensor scheduling can improve the control

performance over a CAN-like bus. We demonstrated how the

concept of VoI can be applied to systematically synthesize

dynamic priorities, while obtaining a performance guarantee

for the resulting cost using rollout algorithms with a static

baseline schedule. In addition, the priorities were found to be

computed efficiently by a quadratic form of the innovations

process at each sensor. We also presented an extension of

the innovations-based prioritization scheme to the case of

coupled systems by suitable approximating the VoI. The

numerical simulations indicate a significant performance

gain when using the proposed innovations-based approach

compared with periodic sensor scheduling.
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