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Abstract:

Much of the current theory of networked control systems uses simple point-to-point communi-
cation models as an abstraction of the underlying network. As a result, the controller has very
limited information on the network conditions and performs suboptimally. This work models
the underlying wireless multihop mesh network as a graph of links with transmission success
probabilities, and uses a recursive Bayesian estimator to provide packet delivery predictions
to the controller. The predictions are a joint probability distribution on future packet delivery
sequences, and thus capture correlations between successive packet deliveries. We look at finite
horizon LQG control over a lossy actuation channel and a perfect sensing channel, both without
delay, to study how the controller can compensate for predicted network outages.

Keywords: Control and estimation with data loss; Networked embedded control systems;

Stochastic control

1. INTRODUCTION

Increasingly, control systems are operated over large-scale,
networked infrastructures. In fact, several companies to-
day are introducing devices that communicate over low-
power wireless mesh networks for industrial automation
and process control (Wireless Industrial Networking Al-
liance, 2010; International Society of Automation, 2010).
While wireless mesh networks can connect control pro-
cesses that are physically spread out over a large space
to save wiring costs, these networks are difficult to design,
provision, and manage (Bruno et al., 2005). Furthermore,
wireless communication is inherently unreliable, introduc-
ing packet losses and delays, which are detrimental to
control system performance and stability.

Several works in Networked Control Systems (NCSs) (Hes-
panha et al., 2007) study stability and controller synthe-
sis for control systems using different network models to
provide statistics about packet losses and delays. Schenato
et al. (2007) and Ishii (2008) model the network as an i.i.d.
Bernoulli process, Seiler and Sengupta (2005) describe the
network using a Gilbert-Elliott model, and Elia (2005) uses
a stochastic LTI system to model fading. Olfati-Saber et al.
(2007) and other works on consensus of multi-agent sys-
tems simply model the multihop network as a connectivity
graph. The multihop network model in Gupta et al. (2009)
is most similar to the network model used in our work.
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Fig. 1. A networked control system over a mesh network,
where the controllers can be located on any node.

Most of these research studies suffer from two key limi-
tations. The first limitation is the use of simple models of
packet delivery over a point-to-point link or a star network
topology to represent the network, which are often multi-
hop and more complex. For instance, a real communication
protocol that may be used in a NCS is TSMP (Pister and
Doherty, 2008), which uses a TDMA schedule to route
packets over a directed acyclic graph routing topology.
The second limitation is the treatment of the network as
something designed and fixed a priori before the design
of the control system. Very little information is passed
through the interface between the network and the control
system, limiting the interaction between the two “layers”
to tune the controller to the network conditions, and vice
versa.
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To the best of our knowledge, our work is the first to
use a reasonably sophisticated multihop network model
to monitor the network conditions and dynamically tune
the controller to compensate for predicted packet losses. In
this work, we consider a special case of the general system
architecture of a NCS over a mesh network proposed by
Robinson and Kumar (2007), depicted in Fig. 1. We place
the controller at the sensor and assume lossless delivery of
acknowledgments on the actuation channel, so the optimal
LQG controller and estimator can be designed separately
(Schenato et al., 2007).

Similar to Gupta et al. (2009), we model the network
routing topology as a graph of independent links, where
transmission success on each link is described by a two-
state Markov chain. A key difference is that in addition
to the routing topology, our network model also includes
a global TDMA transmission schedule. Such a minimalist
network model captures the essence of how a network with
bursty links can have correlated packet deliveries (Willig
et al., 2002), which are particularly bad for control when
they result in bursts of packet losses.

Using this model, we propose a network estimator to
estimate, without loss of information, the state of the
network given the past packet deliveries.! The network
state estimate is translated to a joint probability distri-
bution predicting the success of future packet deliveries,
which is passed through the network-controller interface
so the controller can compensate for unavoidable network
outages. The network estimator can also be used to notify
a network manager when the network is broken and needs
to be reconfigured or reprovisioned, a direction for future
research.

Section 2 describes our plant and network models. We
propose the Gilbert-Elliott Independent links, Hop-by-
hop routing, Scheduled (GEIHS) network estimator in
Section 3. Next, we design a finite-horizon, Future-Packet-
Delivery-optimized (FPD) LQG controller to utilize the
packet delivery predictions provided by the network es-
timators, presented in Section 4. Section 5 provides an
example and simulations demonstrating how the GEIHS
network estimator combined with the FPD controller can
provide better performance than a classical LQG controller
or a controller assuming i.i.d. packet deliveries. Finally,
Section 6 describes the limitations of our approach and
future work.

2. PROBLEM FORMULATION

This paper studies an instance of the general system ar-
chitecture depicted in Fig. 1, with a single control loop
containing one sensor and one actuator. One network es-
timator and one controller are placed at the sensor, and
we assume that an end-to-end acknowledgement (ACK)
that the controller-to-actuator packet is delivered is always
received at the network estimator, as shown in Fig. 2.
For simplicity, we assume that the plant dynamics are
significantly slower than the end-to-end packet delivery
deadline, so that we can ignore the delay introduced by
the network. The general problem is to jointly design a

L Strictly speaking, we obtain the probability distribution on the
states of the network, not a single point estimate.

ACK N
\ Vi Vg I/k_il

Network Wc v

Fig. 2. A control loop for plant P with the network on the

actuation channel. The network estimator N passes
packet delivery predictions f,s+n-1 to the FPD con-
k

troller €, with past packet delivery information ob-
tained from the network N over an acknowledgement
(ACK) channel.

network estimator and controller that can optimally con-
trol the plant using our proposed GEIHS network model.
In our problem setup, the controller is only concerned with
the past, present, and future packet delivery sequence and
not with the detailed behavior of the network, nor can it
affect the behavior of the network. Therefore, the network
estimation problem decouples from the control problem.
The information passed through the network-controller
interface is the packet delivery sequence, specifically the
joint probability distribution describing the future packet
delivery predictions.

2.1 Plant and Network Models

The state dynamics of the plant P in Fig. 2 is given by

Tpy1 = Az + v Buy, + wy, s (1)
where A € R B ¢ R™ and w;, are ii.d. zero-
mean Gaussian random variables with covariance matrix
R, € Si, where Sﬁ is the set of ¢ x ¢ positive semidefinite
matrices. The initial state xg is a zero-mean Gaussian
random variable with covariance matrix Ry € Sﬁ_ and is
mutually independent of wy. The binary random variable
Vi indicates whether a packet from the controller reaches
the actuator (v = 1) or not (v, = 0), and each vy, is in-
dependent of xg and wy, (but the v}’s are not independent
of each other).

Let the discrete sampling times for the control system be
indexed by k, but let the discrete time for schedule time
slots (described below) be indexed by ¢. The time slot
intervals are smaller than the sampling intervals. The time
slot when the control packet at sample time £ is generated
is denoted tj, and the deadline for receiving the control
packet at the receiver is t,. We assume that ) < tj4 for
all k.

The model of the TDMA wireless mesh network (N in
Fig. 2) consists of a routing topology G, a link model
describing how the transmission success of a link evolves
over time, and a fixed repeating schedule F(T). Each of
these components will be described in detail below.

The routing topology is described by G = (V,€), a
connected directed acyclic graph with the set of vertices
(nodes) ¥V = {1,...,M} and the set of directed edges
(links) € C {(¢,4) : 4,4 €V, i # j}, where the number of
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Fig. 3. Gilbert-Elliott link model

edges is denoted E. The source node is denoted a and the
sink (destination) node is denoted b. Only the destination
node has no outgoing edges.

At any moment in time, the links in G can be either be up
(succeeds if attempt to transmit packet) or down (fails if
attempt to transmit packet). Thus, there are 2F possible
topology realizations G = (V, ), where £ C & represents
the edges that are up. 2

At time tj, the actual state of the topology is one of the
topology realizations but it is not known to the network
estimator. With some abuse of terminology, we define G*
to be the random variable representing the state of the
topology at time tj.3

This paper considers the network under the Gilbert-Elliott
(G-E) link model and assumes all the links in the network
are independent. The G-E link model represents each link
l by the two-state Markov chain shown in Fig. 3. At each
sample time k, a link in state 0 (down) transitions to
state 1 (up) with probability p}', and a link from state
1 transitions to state 0 with probability pf. 4 The steady-
state probability of being in state 1, which we use as the
a priori probability of the link being up, is

pu=p}'/ (0} + p})

The fixed, repeating schedule of length T is represented
by a sequence of matrices F(T) = (F() F@)  FT)
where the matrix F(¢—1 (med T)+1) yepresents the links
scheduled at time ¢. The matrix F(*) € {0, 1}M*M is de-
fined from the set F(*) C £ containing the links scheduled
for transmission at time t. We assume that nodes can only
unicast packets, meaning that for all nodes i, if (i, j) € F®

then for all v # j, (i,v) ¢ F®). Furthermore, a node holds
onto a packet if the transmission fails and can retransmit
the packet the next time an outgoing link is scheduled
(hop-by-hop routing). Thus, the matrix F(*) has entries

1 if (4,5) € F®, or
if i = j and Yo € V, (i,v) ¢ FV
0 otherwise.

® _
Fi;" =

An exact description of the network consists of the se-
quence of topology realizations over time and the schedule
F(T). Assuming a topology realization G, the links that
are scheduled and up at any given time ¢ are represented

by the matrix F®#G) € {0, 1}M*M | with entries

2 Symbols with a tilde (7) denote values that can be taken on
by random variables, and can be the arguments to probability
distribution functions (pdfs).
3 Strictly speaking, G(*) is a function mapping events to the set of
all topology realizations, not to the set of real numbers.

We can easily instead use a G-E link model that advances at each
time step t, but it would make the following exposition and notation
more complicated.

1 if (4,5) e FONE, or
= ifi=jandVoeV,(i,0) g FONE (2)
0 otherwise.

FH6)

)

Define the matrix F(t136) = FEG) FEFLE) ... F(tl;é),

such that entry Fig?’t/;a) is 1 if a packet at node 7 at time ¢
will be at node j at time ¢/, and is 0 otherwise. Since the
destination b has no outgoing links, a packet sent from the
source a at time t 1reach’es~ the destination b at or before
time ¢’ if and only if Féi’t ¢ = 1. To simplify the notation,
let the function J, indicate whether the packet delivery
v € {0,1} is consistent with the topology realization G,
assuming the packet was generated at ¢, i.e.,

. o~ (e t;G)
RCE) I (3)
0 otherwise.

The function assumes the fixed repeating schedule F(T),
the packet generation time t,, the deadline ¢/, the source
a, and the destination b are implicitly known.

2.2 Network Estimators

As shown in Fig. 2, at each sample time k the network
estimator N takes as input the previous packet delivery
Vi1, estimates the topology realization using the net-
work model and all past packet deliveries, and outputs
the joint probability distribution of future packet deliv-
eries fu:+H—1. For clarity in the following exposition, let

V, € {0,1} be the value taken on by the packet delivery
random variable v, at some past sample time k. Let the
vector V5~ = [Vo,...,Vi_1] denote the history of packet
deliveries at sample time k, the values taken on by the

vector of random variables vy ™" = [vg,...,V_1]. Then,

fy:+H—1 (17()}171) = P(V;I:+H71 =, ! |V(1;71 = V(Ijil) (4)

is the prediction of the next H packet deliveries, where
vt = vk, ..., vgrH—1] is a vector of random variables
representing future packet deliveries and ;' ' € {0, 1}#.

The parameters of the network models — topology G,
schedule F(*), link probabilities {p;};ce or {p, piee,
source a, sink b, packet generation times ¢;, and deadlines
t,, — are known a priori to the GETHS network estimator
and are left out of the conditional probability expressions.

In Section 3, we will use the probability distribution on
the topology realizations (our network state estimate),
P(G® =Glus™ =Vi™)

to obtain f k+xz-1 from V5~' and the network model. 5
k

2.3 FPD Controller

The FPD controller (€ in Fig. 2) optimizes the control
signals to the statistics of the future packet delivery
sequence, derived from the past packet delivery sequence.
We choose the optimal control framework because the cost
function allows us to easily compare the FPD controller

5 For compact notation, we will often use V(’Tl in place of u(’f*l =

VE=! and only write the random variable and not its value in the
probability expressions.
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with other controllers. The control policy operates on the
information set

T, = {whui vy} (5)
The control policy minimizes the linear quadratic cost
function

J= E [9371:7QO$N+Z:V;01 :vawnJrVV,LUZQzun} (6)

where @y, @1, and Q2 are positive definite weighting

matrices and N is the finite horizon. Section 4 will show

that the resulting architecture separates into a network

estimator and a controller which uses the pdf f s+n-1
k

supplied by the network estimator (N in Fig. 2) to find
the control signals uy.

3. NETWORK ESTIMATION AND PACKET
DELIVERY PREDICTION

We will use recursive Bayesian estimation to estimate the
state of the network, and use the network state estimate
to predict future packet deliveries.

3.1 GEIHS Network Estimator

The steps in the GEIHS network estimator are derived
from (4). We introduce new notation for conditional pdfs
(i.e., ak, Pk, Zx), which will be used later to state the
steps in the estimator compactly.® Since all the links in
the network are independent, the probability that a given
topology G’ at sample time k — 1 transitions to a topology
G after one sample time is given by

I'(G;G') =P(GW|GED) =

H ]-_pldl H p?2

LeE'né l,cENE
< I »b I t-» - ™
I3€E\E lacE\(E'UE)

: ~ 1
First, express fV]IZ-JrH—l (Dy' ') as
fullerH—l(l’éq*l)

—_—
Py V) =
> PWhpna|GU0) P2 G0 [V

G(k+H-1)

Sirr—1(Pr—1;Gr—1)
where for h=2,...,H — 1
anp—1 (P75 G)
Pyt Gram |[VE) =

Y (BGeIGE ) PG ) (©)

G(k+h—1)

op_1e—1(#73,Gr1)

D(Gh;Gho1) Suth—1(Ph-1;Gr_1)

X P(uf 2, Gurn V) )

op_1jp—1(By73,Gro)

6 A semicolon is used in the conditional pdfs to separate the values
being conditioned on from the remaining arguments.

We used the relation
P(psn—1|GO+m =0 772 V) = PV |GE10)
When h = 1, replace P(v; "2 Ge+n-1|VE~1) in (8) with
P(Gw|V5~) = ﬁk‘k,l(é). The value ﬂk‘k,l(é) comes
from
PGOVE) = 30 PGOIGE ) BGH 0 [Vi)
N— G(k—1)

Brir—1(G) T(G:G) Br—11k-1(G")

Br—11k—2(G)

P(Vi_1|G*E=0) - P(G*-1|Vs~?)

P(Vk_l |V§_2)
—_—
Zy_1

Again, we used the independence of future packet deliver-
ies from past packet deliveries given the network state,
P(V_1|GE-1 VE72) = P(Vj_1|GE-D)

Note that P(V,_1|V5~2) is the same for all G, so it is

treated as a normalization constant. Finally, Gy_1(G) =
P(G®), where all links are independent and have link
probabilities equal to their steady-state probability of
being in state 1, and is expressed in (14) below.

To summarize, the GEIHS Network Estimator and Packet
Delivery Predictor is a recursive Bayesian estimator. The
measurement output step consists of

Fvn () =
k

> Skrr1(Fr-1;Gu1) - ap -1 (B8, Gro1)  (9)
C’;VH—I

where the function a1 is obtained from the follow-

Sk—1(Vi_1;G)

P(Go-[VE~) =
N— —
Br—1]k—1(G)

ing recursive equation for h =2,..., H — 1:
-1 (T, G) = > (F(GM Gh-1)
Gha

X Otn1(Ph—1; Gh1) - Oéh—1\k—1(175727éh71)> (10)
with initial condition
041|k—1('73, él) =

> T(G1;G) - 0k(00; ) - B (G) . (11)
G

The prediction and innovation steps consist of

5k|k—1(é) = ZF(G’;G”) '5k71|k71(él) (12)
é/

61 (Vi—1:G) - Br1p—2(G
Bro1jp1(G) = = 1(Vi 17221@6 116—2(G)

Bo-1(G) = le H L—m )
lc€ leE\E
where ap—1, Br—1jk—1, and Byr—; are functions, Zj_ is

(13)

(14)

a normalization constant such that )= Br_1x-1(G) = 1,
and the functions ¢, (for the different values of x above)
and I" are defined by (3) and (7), respectively.

3.2 Discussion

The network estimators are trying to estimate network
parameters using measurements collected at the border
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of the network, a general problem studied in the field of
network tomography (Castro et al., 2004) under various
problem setups. One of the greatest challenges in network
tomography is getting good estimates with low computa-
tional complexity estimators.

Our proposed network estimator is “optimal” with re-
spect to our models in the sense that there is no loss
of information, but it is computationally expensive. The
GEIHS network estimator takes O(E22F) to initialize and
O(2H2%E) for each update step. The proofs are given in
Chen et al. (2010). A good direction for future research is
to find lower complexity, suboptimal network estimators
for our problem setup, and compare them to our optimal
network estimators.

Our network estimators can easily be extended to incorpo-
rate additional observations besides past packet deliveries,
such as the packet delay and packet path traces. The latter
can be obtained by recording the state of the links that the
packet has tried to traverse in the packet payload. The
function d;_1 in (13) just needs to be replaced with an-
other function that returns 1 if the the received observation
is consistent with a network topology G, and 0 otherwise.
The advantage of using more observations than the one bit
of information provided by a packet delivery is that it will
help the GEIHS network estimator more quickly detect
changes in the network state.

Note that the network state probability distribution,
Br—1)k—1(G) in (13), does not need to converge to a prob-
ability distribution describing one topology realization

to yield good packet predictions f, e+u-1 (D5 ~"). Several
k

topology realizations G may result in the same packet
delivery sequence.

Also, note that the GEIHS network estimator performs
better when the links in the network are more bursty. Long
bursts of packet losses from bursty links result in poor
control system performance, which is when the network
estimator would help the most.

4. FPD CONTROLLER

The FPD controller is derived using dynamic programming
in Chen et al. (2010). From the derivation, we find that

the optimal cost-to-go is of the form V}, = m;fSk(ug‘l)xk +
skwh™1), where Sy, : {0,1}* — S and s; : {0,1}F — Ry
are given by
Sk(uéc*l) =Q1+ ATE [Sk+1(u(’)€)\u(l;_1]A — P(l/k:1|u§_1)
-1
|:ATS]C+1(uk=1,Vg_1)B(Q2 + BTSk+1(Vk=1,Vg_1)B)

X BTSk+1(y/k:1,u§_1)A:| (15)

spwh™1) = trace {JE [5k+1<u§>|u{j’1]Rw} +E [Sk+1<v{§>\v§’1]

Theorem 1. For a plant with state dynamics given by (1),
the optimal control policy operating on the information
set (5) which minimizes the cost function (6) results in an
optimal control signal, uy = —Lgxy, where Ly is

—1
Ly = (Q2 + BT Si1(v=1,v 71)3) BT S 1e=105"1)A (16)

k
0
and Sk@k1) is given by (15).

The proof of this theorem is presented in Chen et al.
(2010). Notice that Sy, and sy, are functions of the variables

vy~ '. Since the value of Sy;; is required at sample time
k, we compute its conditional expectation as

k—1

E I:Sk+1(1/§)|110 ] = ]P(l/k = 1|U§_1)Sk+1(uk:1,1/§71)

+ P(Vk = 0|I/(l)€71 )Sk.‘_l(uk:O,V{;_l) . (17)

Using the above expressions, we obtain the net cost to be
N—-1

J = trace Sy Ry + Z trace {E[Sk+1(u§)]Rw}
k=0

Notice that the control inputs u; are only carried over the

network and applied to the plant. They do not influence

V]JCV or the network itself. Thus, the architecture separates

into a network estimator and controller, as shown in Fig. 2.

(18)

4.1 Algorithm to Compute Optimal Control Gain

At sample time k, we have vy~ '. To compute Ly, we need
Sk41(e=1,0""), which can only be obtained through a
backward recursion from Spy. This requires knowledge of
v, ', which are unavailable at sample time k. Thus, we
must evaluate {Sg41,...,Sn} for every possible sequence

of arrivals v '. This algorithm is described below.

(1) Imitialization: Sy@N~"'=sY*1 vk~1) = Qo,
VoYt e {0, 13Nk,
(2) forn=N-1:-1:k+1
a) Using (17), compute E [S,41(up)|ve ™, 057,
Vo € {01,
b) Using (15), compute Sn(”;,lil:ﬂgikfl,l/g*l),
Vgt e {0, 1)k
(3) Compute Ly using Ski1(ve=1,05"").

For k = 0, the values Sy, E[S](v)], and the other values
obtained above can be used to evaluate the cost function
according to (18).

4.2 Discussion

The FPD controller is optimal but computationally expen-
sive, as it requires an enumeration of all possible packet
delivery sequences from the current sample time until the
end of the control horizon to calculate the optimal control
gain (16) at every instant k. Running the algorithm at
each sample time k takes O(¢3(N — k)2V~*) operations,
where ¢ = max(¢,m) and ¢ and m are the dimensions of
the state and control vectors. The proof is given in Chen
et al. (2010).

5. EXAMPLES AND SIMULATIONS

Using the system architecture depicted in Fig. 2, we will
demonstrate the GEIHS network estimator on a small
mesh network and use the packet delivery predictions in
our FPD controller. Fig. 4 depicts the routing topology
and short repeating schedule of the network. Packets are
generated at the source every 409 time slots,” and the

7 Effectively, the packets are generated every 9 4+ 4K time slots,
where K is a very large integer, so we can assume slow system
dynamics with respect to time slots and ignore the delay introduced
by the network.
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Fig. 4. Example of a simple mesh network for network
estimation.
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o
I
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packet delivery probability, E[v
|
E

o

Fig. 5. Packet delivery predictions when network in Fig. 4
has all links up and then link (3,b) fails.

packet delivery deadline is ¢}, — tx = 9,Vk. The network

estimator assumes all links have p" = 0.0135 and p? =
0.0015.

The packet delivery predictions from the network estima-
tor are shown in Fig. 5. Although the network estimator
provides f, k+H—1(i/’:{71), at each sample time k we plot

the average prediction E[v;t"~!]. In this example, all the

links are up for k € {1,... ,4} and then link (3, b) fails from
k = 5 onwards. After seeing a packet loss at k = 5, the
network estimator revises its packet delivery predictions
and now thinks there will be a packet loss at k = 7. The
average prediction for the packet delivery at a particular
sample time tends toward 1 or 0 as the network estimator
receives more information (in the form of packet deliveries)
about the new state of the network.

The prediction for k& = 7 (packet generated at schedule
time slot 3) at k = 5 is influenced by the packet delivery
at k = 5 (packet generated at schedule time slot 1) because
hop-by-hop routing allows the packets to traverse the same
links under some realizations of the underlying routing
topology G. Mesh networks with many interleaved paths
allow packets generated at different schedule time slots to
provide information about each others’ deliveries, provided
the links in the network have some memory. As discussed
in Section 3.2, since a packet delivery provides only one
bit of information about the network state, it may take
several packet deliveries to get good predictions after the
network changes.

FPD, IID, and ON LQG Control Comparison
50

X:PD

. +X;PD

7&(7)(‘1"3

s D
= *3

o x?N

‘ . L |t
10 1 12
sample time, k

system state, x

Packet
Delivery

U:PD

UZPD
i D
A —uy

a0
e —uy

control input, u

E I \ P PR |
k] I 1 12 ;N
sample time, k 2

LORRRD)

Fig. 6. Plot of the different control signals and state vectors
when using the FPD controller, an IID controller, and
an ON controller (see text for details).

Now, consider a linear plant with the following parameters

0 15 5 0 0.1 0 10 0
A*{1.5 0 }’B*[OM}’RUJ*[O 0‘1}’R0*{0 10}

Q1= Qs = [1 0} On = [100 100:|

The transfer matrix A flips and expands the components
of the state at every sampling instant. The input matrix
B requires the second component of the control input to
be larger in magnitude than the first component to have
the same effect on the respective component of the state.
Also, the final state is weighted more than the other states
in the cost criterion. We compare three finite horizon LQG
controllers: the FPD controller, an IID controller, and
an ON (always-online) controller. The IID controller was
described in (Schenato et al., 2007) and assumes that the
packet deliveries are i.i.d. with the a priori probability of
delivering a packet through the network,® and the ON
controller is the classical LQG controller which assumes
no packet losses on the control link. See Chen et al. (2010)
for a more detailed description of the controllers.

The controllers are connected to the plant at sample
times k = 9,10,11 through the network example given
in Fig. 5. Fig. 6 shows the control signals computed by the
different controllers and the plant states when the control
signals are applied following the actual packet delivery
sequence. From the predictions at k£ = 8,9, 10 in Fig. 5, we
see that the FPD controller has better knowledge of the
packet delivery sequence than the other two controllers.
The FPD controller uses this knowledge to compute an
optimal control signal that outputs a large magnitude for
the second component of u1g, despite the high cost of this
signal. The IID and ON controllers believe the control
packet is likely to be delivered at & = 11 and choose,
instead, to output a smaller increase in the first component
of uq1, since this will have the same effect on the final state
if the control packet at k = 11 is successfully delivered.

The FPD controller is better than the other controllers at
driving the first component of the state close to zero at

8 Using the stationary probability of each link under the G-E link
model to calculate the end-to-end probability of delivering a packet
through the network.
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Table 1. Simulated LQG Costs (10,000 runs)
Example Described in Section 5

[ FPD Controller | TID Controller | ON Controller |
[ 631.63 [ 10082 | 11589 |

the end of the control horizon, £k = 12. Thus, the packet
delivery predictions from the network estimator help the
FPD controller significantly lower its LQG cost, as shown
in Table 1. The reported costs are averages over 10,000
Monte-Carlo simulation runs of the system, where the
network state is set to the one described above.

6. CONCLUSIONS

This paper proposes two network estimators based on sim-
ple network models to characterize wireless mesh networks
for NCSs. The goal is to obtain a better abstraction of
the network, and interface to the network, to present to
the controller and (future work) network manager. To get
better performance in a NCS, the network manager needs
to control and reconfigure the network to reduce outages
and the controller needs to react to or compensate for the
network when there are unavoidable outages. We studied a
specific NCS architecture where the actuation channel was
over a lossy wireless mesh network and a network estimator
provided packet delivery predictions for a finite horizon,
Future-Packet-Delivery-optimized LQG controller.

There are several directions for extending the basic prob-
lem setup in this paper, including those mentioned in Sec-
tion 3.2. For instance, placing the network estimator(s) on
the actuators in the general system architecture depicted
in Fig. 1 is a more realistic setup but will introduce a
lossy channel between the network estimator(s) and the
controller(s). Also, one can study the use of packet delivery
predictions in a receding horizon controller rather than a
finite horizon controller.

Aside from studying variations of the basic problem setup,
there are still several fundamental questions that deserve
further investigation. We know that the Gilbert-Elliott
link model is a simplification of a lossy wireless link,
but can we use more sophisticated network models with-
out overmodeling? Are there classes of routing topologies
where packet delivery statistics are less sensitive to the
parameters in the Gilbert-Elliott link models, pi' and p{,
which may be difficult to estimate on all links in the
network? How do we build networks (e.g., select routing
topologies and schedules) that are “robust” to link model-
ing error and provide good packet delivery statistics (e.g.,
low packet loss, low delay) for NCSs? The latter half of
the question is partially addressed by works like Soldati
et al. (2010), which studies how to schedule a network to
maximize reliability under packet deadline constraints.
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