
Optimal Disturbance Accommodation with Limited Model Information

Farhad Farokhi, Cédric Langbort, and Karl H. Johansson

Abstract— The design of optimal dynamic disturbance-
accommodation controller with limited model information is
considered. We adapt the family of limited model information
control design strategies, defined earlier by the authors, to
handle dynamic-controllers. This family of limited model infor-
mation design strategies construct subcontrollers distributively
by accessing only local plant model information. The closed-loop
performance of the dynamic-controllers that they can produce
are studied using a performance metric called the competitive
ratio which is the worst case ratio of the cost a control design
strategy to the cost of the optimal control design with full model
information.

I. INTRODUCTION

Recent advances in networked control engineering have

opened new doors toward controlling large-scale systems.

These large-scale systems are naturally composed of many

smaller unit that are coupled to each other [1]–[4]. For these

large-scale interconnected systems, we can either design

a centralized or a decentralized controller. Contrary to a

centralized controller, each subcontroller in a decentral-

ized controller only observes a local subset of the state-

measurements (e.g., [5]–[7]). When designing these con-

trollers, generally, it is assumed that the global model of the

system is available to each subcontroller’s designer. However,

there are several reasons why such plant model information

would not be globally known. One reason could be that

the subsystems consider their model information private,

and therefore, they are reluctant to share information with

other subsystems. This case can be well illustrated by supply

chains or power networks where the economic incentives

of competing companies might limit the exchange of model

information between the companies. It might also be the case

that the full model is not available at the moment, or the

designer would like to not modify a particular subcontroller,

if the model of a subsystem changes. For instance, in the case

of cooperative driving, each vehicle controller simply cannot

be designed based on model information of all possible

vehicles that it may interact with in future. Therefore, we are

interested in finding control design strategies which construct

subcontrollers distributively for plants made of intercon-

nected subsystems without the global model of the system.
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The interconnection structure and the common closed-loop

cost to be minimized are assumed to be public knowledge.

We identify these control design methods by “limited model

information” control design strategies [8], [9].

Multi-variable servomechanism and disturbance accom-

modation control design is one of the oldest problems in

control engineering [10]. We adapt the procedure introduced

in [10], [11] to design optimal disturbance accommodation

controllers for discrete-time linear time-invariant plants un-

der a separable quadratic performance measure. The choice

of the cost function is motivated first by the optimal dis-

turbance accommodation literature [10], [11], and second

by our interest in dynamically-coupled but cost-decoupled

plants and their applications in supply chains and shared

infrastructures [3], [4]. Then, we focus on the disturbance ac-

commodation design problem under limited model informa-

tion. We investigate the achievable closed-loop performance

of the dynamic controllers that the limited model information

control design strategies can produce using the competitive

ratio, that is, the worst case ratio of the cost a control design

strategy to the cost of the optimal control design with full

model information. We find a minimizer of the competitive

ratio over the set of limited model information control design

strategies. Since this minimizer may not be unique we prove

that it is undominated, that is, there is no other control design

method that acts better while exhibiting the same worst-case

ratio.

This paper is organized as follows. We mathematically

formulate the problem in Section II. In Section III, we

introduce two useful control design strategies and study their

properties. We characterize the best limited model informa-

tion control design method as a function of the subsystems

interconnection pattern in Section IV. In Section V, we study

the trade-off between the amount of the information available

to each subsystem and the quality of the controllers that they

can produce. Finally, we end with conclusions in Section VI.

A. Notation

The set of real numbers and complex numbers are denoted

by R and C, respectively. All other sets are denoted by

calligraphic letters such as P and A. The notation R denotes

the set of proper real rational functions.

Matrices are denoted by capital roman letters such as A.

Aj will denote the jth row of A. Aij denotes a sub-matrix

of matrix A, the dimension and the position of which will

be defined in the text. The entry in the ith row and the jth

column of the matrix A is aij .

Let Sn
++ (Sn

+) be the set of symmetric positive definite

(positive semidefinite) matrices in R
n×n. A > (≥)0 means
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that the symmetric matrix A ∈ R
n×n is positive definite

(positive semidefinite) and A > (≥)B means A−B > (≥)0.

σ(Y ) and σ(Y ) denote the smallest and the largest sin-

gular values of the matrix Y , respectively. Vector ei denotes

the column-vector with all entries zero except the ith entry,

which is equal to one.

All graphs considered in this paper are directed, possibly

with self-loops, with vertex set {1, . . . , n} for some positive

integer n. We say i is a sink in G = ({1, . . . , n}, E), if there

does not exist j 6= i such that (i, j) ∈ E. The adjacency

matrix S ∈ {0, 1}n×n of graph G is a matrix whose entries

are defined as sij = 1 if (j, i) ∈ E and sij = 0 otherwise.

Since the set of vertices is fixed here, a subgraph of G is a

graph whose edge set is a subset of the edge set of G and

a supergraph of G is a graph of which G is a subgraph. We

use the notation G′ ⊇ G to indicate that G′ is a supergraph

of G.

II. MATHEMATICAL FORMULATION

A. Plant Model

Consider the discrete-time linear time-invariant dynamical

system described in state-space representation by

x(k + 1) = Ax(k) +B(u(k) + w(k)) ; x(0) = x0, (1)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

n is the control

input, and w(k) ∈ R
n is the disturbance vector. In addition,

assume that w(k) is a dynamic disturbance modeled as

w(k + 1) = Dw(k) ; w(0) = w0. (2)

Let a plant graph GP with adjacency matrix SP be given.

We define the following set of matrices

A(SP) = {Ā ∈ R
n×n | āij = 0 for all 1 ≤ i, j ≤ n

such that (sP)ij = 0}.

Also, let us define

B(ǫb) = {B̄ ∈ R
n×n | σ(B̄) ≥ ǫb, b̄ij = 0

for all 1 ≤ i 6= j ≤ n},

for a given scalar ǫb > 0 and

D = {D̄ ∈ R
n×n | d̄ij = 0 for all 1 ≤ i 6= j ≤ n}.

We can introduce the set of plants of interest P as the

space of all discrete-time linear time-invariant systems of

the form (1) and (2) with A ∈ A(SP), B ∈ B(ǫb),
D ∈ D, x0 ∈ R

n, and w0 ∈ R
n. Since P is isomorph to

A(SP)×B(ǫb)×D×R
n ×R

n, we identify a plant P ∈ P
with its corresponding tuple (A,B,D, x0, w0) with a slight

abuse of notation.

We can think of xi ∈ R, ui ∈ R, and wi ∈ R as the state,

input, and disturbance of scalar subsystem i with its dynamic

given as

xi(k + 1) =

n
∑

j=1

aijxj(k) + bii(ui(k) + wi(k)).

We call GP the plant graph since it illustrates the inter-

connection structure between different subsystems, that is,

subsystem j can affect subsystem i only if (j, i) ∈ EP . In

this paper, we assume that overall system is fully-actuated,

that is, any B ∈ B(ǫb) is a square invertible matrix. This

assumption is motivated by the fact that we want all the

subsystems to be directly controllable.

B. Controller

The control laws of interest in this paper are discrete-time

linear time-invariant dynamic state-feedback control laws of

the form

xK(k + 1) = AKxK(k) +BKx(k) ; xK(0) = 0,

u(k) = CKxK(k) +DKx(k).

Each controller can also be represented by its transfer func-

tion

K ,

[

AK BK

CK DK

]

= CK(zI −AK)−1BK +DK ,

where z is the symbol for one time-step forward shift

operator. Let a control graph GK with adjacency matrix SK

be given. Each controller K must belong to

K(SK) = {K̄ ∈ Rn×n | k̄ij = 0 for all 1 ≤ i, j ≤ n

such that (sK)ij = 0}.

When adjacency matrix SK is not relevant or can be deduced

from context, we refer to the set of controllers as K. Since it

makes sense for each subsystem’s controller to have access

to at least its own state-measurements, we make the standing

assumption that in each control graph GK, all the self-loops

are present.

Finding the optimal structured controller is difficult (nu-

merically intractable) for general GK and GP even when

the global model is known. Therefore, in this paper, as a

starting point, we only concentrate on the cases where the

control graph GK is a supergraph of the plant graph GP .

C. Control Design Methods

A control design method Γ is a mapping from the set of

plants P to the set of controllers K. We can write the control

design method Γ as

Γ =







γ11 · · · γ1n
...

. . .
...

γn1 · · · γnn







where each entry γij represents a map A(SP)×B(ǫb)×D →
R. Let a design graph GC with adjacency matrix SC be

given. The control design strategy Γ has structure GC if,

for all i, the map Γi = [γi1 · · · γin] is only a function

of {[aj1 · · · ajn], bjj , djj | (sC)ij 6= 0}. Consequently, for

each i, subcontroller i is constructed with model information

of only those subsystems j that (j, i) ∈ EC . We are

only interested in those control design strategies that are

neither a function of the initial state x0 nor of the initial

disturbance w0. The set of all control design strategies with

the design graph GC is denoted by C. Since it makes sense

for the designer of each subsystem’s controller to have access
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to at least its own model parameters, we make the standing

assumption that in each design graph GC , all the self-loops

are present.

For simplicity of notation, let us assume that any control

design strategy Γ ∈ C has a state-space realization of the

form

Γ(A,B,D) =

[

AΓ(A,B,D) BΓ(A,B,D)
CΓ(A,B,D) DΓ(A,B,D)

]

,

where matrices AΓ(A,B,D), BΓ(A,B,D), CΓ(A,B,D),
and DΓ(A,B,D) are of appropriate dimension for each plant

P = (A,B,D, x0, w0) ∈ P . The matrices AΓ(A,B,D) and

CΓ(A,B,D) are block diagonal matrices since different sub-

controllers should not share state variables. This realization

is not necessarily a minimal realization.

D. Performance Metrics

We need to introduce performance metrics to compare

the control design methods. These performance metrics are

adapted from earlier definitions in [8], [12]. Let us start with

introducing the closed-loop performance criterion.

To each plant P = (A,B,D, x0, w0) ∈ P and controller

K ∈ K, we associate the performance criterion

JP (K)=

∞
∑

k=0

[x(k)TQx(k)+(u(k)+w(k))TR(u(k)+w(k))]

where Q ∈ Sn
++ and R ∈ Sn

++ are diagonal matrices. We

make the standing assumption that Q = R = I . This is

without loss of generality because of the change of vari-

ables (x̄, ū, w̄) = (Q1/2x,R1/2u,R1/2w) that transforms the

state-space representation into

x̄(k + 1)= Q1/2AQ−1/2x̄(k)+Q1/2BR−1/2(ū(k)+ w̄(k))

= Āx̄(k) + B̄(ū(k) + w̄(k)),

and the performance criterion into

JP (K)=

∞
∑

k=0

[x̄(k)T x̄(k) + (ū(k) + w̄(k))T (ū(k) + w̄(k))].

(3)

This change of variable would not affect the plant, control,

or design graph since both Q and R are diagonal matrices.

DEFINITION 2.1: (Competitive Ratio) Let a plant graph

GP and a constant ǫb > 0 be given. Assume that, for every

plant P ∈ P , there exists an optimal controller K∗(P ) ∈ K
such that

JP (K
∗(P )) ≤ JP (K), ∀K ∈ K.

The competitive ratio of a control design method Γ is defined

as

rP(Γ) = sup
P=(A,B,D,x0,w0)∈P

JP (Γ(A,B,D))

JP (K∗(P ))
,

with the convention that “ 0
0” equals one.

DEFINITION 2.2: (Domination) A control design method

Γ is said to dominate another control design method Γ′ if

for all plants P = (A,B,D, x0, w0) ∈ P

JP (Γ(A,B,D)) ≤ JP (Γ
′(A,B,D)), (4)

with strict inequality holding for at least one plant in P .

When Γ′ ∈ C and no control design method Γ ∈ C exists

that dominates it, we say that Γ′ is undominated in C.

E. Problem Formulation

For a given plant graph GP , control graph GK, and design

graph GC , we want to solve the problem

argmin
Γ∈C

rP(Γ). (5)

Because the solution to this problem might not be unique,

we also want to determine which ones of these minimizers

are undominated.

III. PRELIMINARY RESULTS

In order to give the main results of the paper, we need

to introduce two control design strategies and study their

properties.

A. Optimal Centralized Control Design Strategy

In this subsection, we find the optimal centralized control

design strategy K∗
C(P ) for all plants P ∈ P; i.e., the

optimal control design strategy when the control graph GK

is a complete graph. Note that we use the notation K∗
C(P )

to denote the centralized optimal control design strategy

as the notation K∗(P ) is reserved for the optimal control

design strategy for a given control graph GK. We adapt the

procedure given in [10], [11] for constant input-disturbance

rejection in continuous-time systems to our framework.

First, let us define the auxiliary variables ξ(k) = u(k) +
w(k) and ū(k) = u(k + 1)−Du(k). It is evident that

ξ(k + 1) = Dξ(k) + ū(k). (6)

Augmenting (6) with the system state-space representation

in (1) results in
[

x(k + 1)
ξ(k + 1)

]

=

[

A B
0 D

] [

x(k)
ξ(k)

]

+

[

0
I

]

ū(k). (7)

In addition, we can write the performance measure in (3) as

JP (K) =

∞
∑

k=0

[

x(k)
ξ(k)

]T [
x(k)
ξ(k)

]

. (8)

To guarantee existence and uniqueness of the optimal con-

troller K∗
C(P ) for any given plant P ∈ P , we need the

following lemma to hold [13].

LEMMA 3.1: The pair (Ã, B̃) with

Ã =

[

A B
0 D

]

, B̃ =

[

0
I

]

, (9)

is controllable for any given P = (A,B,D, x0, w0) ∈ P .

Proof: The pair (Ã, B̃) is controllable if and only if

[

Ã− λI B̃
]

=

[

A− λI B 0
0 D − λI I

]

is full-rank for all λ ∈ C. This condition is always satisfied

since all the matrices B ∈ B(ǫb) are full-rank matrices.
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Now, the problem of minimizing the cost function in (8)

subject to plant dynamics in (7) becomes a state-feedback

linear quadratic optimal control design with a unique solution

of the form

ū(k) = G1x(k) +G2ξ(k)

where G1 ∈ R
n×n and G2 ∈ R

n×n. Therefore, we have

u(k + 1) = Du(k) + ū(k)

= Du(k) +G1x(k) +G2ξ(k).
(10)

Using ξ(k) = B−1(x(k + 1)−Ax(k)) in (10), we get

u(k + 1) = Du(k) +G1x(k)

+G2B
−1(x(k + 1)−Ax(k)).

(11)

Putting a control signal of the form u(k) = xK(k)+DKx(k)
in (11) results in

xK(k + 1) = DxK(k)+(DDK +G1 −G2B
−1A)x(k)

+ (G2B
−1 −DK)x(k + 1).

Now, because of the form of the control laws of interest

introduced earlier in Subsection II-B, we have to enforce

G2B
−1−DK = 0. Therefore, the optimal controller K∗

C(P )
becomes

xK(k + 1) = DxK(k) + [G1 +DG2B
−1 −G2B

−1A]x(k),

u(k) = xK(k) +G2B
−1x(k),

with the initial condition xK(0) = 0 again because of the

form of the control laws of interest.

LEMMA 3.2: Let the control graph GK be a complete

graph. Then, the cost of the optimal control design strategy

K∗
C for each plant P ∈ P is lower-bounded as

JP (K
∗
C(P )) ≥

[

x0

Bw0

]T [
V11 V12

V T
12 V22

] [

x0

Bw0

]

,

where

V11 = W +D2B−2 +DWD, (12)

V12 = −D(W +B−2), (13)

V22 = W +B−2, (14)

with the matrix W defined as

W = AT (I +B2)−1A+ I. (15)

Proof: To make the proof easier, let us define

J̄P (K, ρ) =

∞
∑

k=0

(

[

x(k)
ξ(k)

]T [
x(k)
ξ(k)

]

+ ρū(k)T ū(k)

)

,

and

K̄∗
ρ (P ) = arg min

K∈K
J̄P (K, ρ).

Using Lemma 3.1, we know that K̄∗
ρ (P ) uniquely exists. We

can find J̄P (K̄
∗
ρ (P ), ρ) using X(ρ) as the unique positive

definite solution of the discrete algebraic Riccati equation

ÃTX(ρ)B̃(ρI + B̃TX(ρ)B̃)−1B̃TX(ρ)Ã

− ÃTX(ρ)Ã+X(ρ)− I = 0,
(16)

with Ã and B̃ defined in (9). According to [14], we have

X(ρ) ≥ ÃT (X−1
1 + (1/ρ)B̃B̃T )−1Ã+ I

= ÃT (X1 −X1B̃(ρI + B̃TX1B̃)−1B̃TX1)Ã+ I,

where

X1 = ÃT (I + (1/ρ)B̃B̃T )−1Ã+ I.

Basic algebraic calculations show that

lim
ρ→0+

X1 −X1B̃(ρI + B̃TX1B̃)−1B̃TX1 =

[

W 0
0 0

]

where W is defined in (15). According to [15], we know

lim
ρ→0+

J̄P (K̄
∗
ρ (P ), ρ) = JP (K

∗
C(P ))

and as a result

X= lim
ρ→0+

X(ρ) ≥

[

A B
0 D

]T[
W 0
0 0

][

A B
0 D

]

+ I.

Equivalently, we get
[

X11 X12

XT
12 X22

]

≥

[

ATWA+ I ATWB
BWA BWB + I

]

. (17)

Now, we can calculate the cost of the optimal control design

strategy as

JP (K
∗
C(P )) =

[

x0

ξ(0)

]T [
X11 X12

XT
12 X22

] [

x0

ξ(0)

]

(18)

where

ξ(0) = G2B
−1x0 + w0 = −(X−1

22 XT
12 +DB−1)x0 + w0.

(19)

If we put (19) in (18) and use the sub-Riccati equation

X22 − I = BX11B −BX12X
−1
22 XT

12B,

that is extracted from the Riccati equation in (16) when ρ =
0, we can simplify (18) to the one in (20). Now, using (17)

it is evident that X22 ≥ BWB + I , and as a result

JP (K
∗
C(P )) ≥

[

x0

w0

]T [
V11 V12B
BV T

12 BV22B

] [

x0

w0

]

.

where V11, V12, and V22 are introduced in (12)-(14). The rest

is only a straight forward matrix manipulation (factoring the

matrix B).

B. Deadbeat Control Design Strategy

In this subsection, we introduce the deadbeat control

design strategy and give a useful lemma about its competitive

ratio.

DEFINITION 3.1: The deadbeat control design strategy

Γ∆ : A(SP)× B(ǫb)×D → K is defined as

Γ∆(A,B,D) =

[

D −B−1D2

I −B−1(A+D)

]

.

Using this control design strategy, irrespective of the value of

the initial state x0 and the initial disturbance w0, the closed-

loop system reaches the origin just in two time-steps. Note
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JP (K
∗
C(P )) =

[

x0

−(X−1
22 XT

12 +DB−1)x0 + w0

]T [
X11 X12

XT
12 X22

] [

x0

−(X−1
22 XT

12 +DB−1)x0 + w0

]

=

[

x0

w0

]T [
X11 −X12X

−1
22 XT

12 +B−1DX22DB−1 −B−1DX22

−X22DB−1 X22

] [

x0

w0

]

=

[

x0

w0

]T [
B−1(X22 +DX22D − I)B−1 −B−1DX22

−X22DB−1 X22

] [

x0

w0

]

.

(20)

that the deadbeat control design strategy is a limited model

information control design method since

Γ∆
i (A,B,D) = −(z − dii)

−1b−1
ii d2iie

T
i − b−1

ii (Ai +Di)

for each 1 ≤ i ≤ n. The cost of the deadbeat control design

strategy Γ∆ for any P = (A,B,D, x0, w0) ∈ P is

JP (Γ
∆(A,B,D)) =

[

x0

Bw0

]T [
Q11 Q12

QT
12 Q22

] [

x0

Bw0

]

,

where

Q11 = I +D2(I +B−2) +ATB−2A (21)

+DATB−2AD +ATB−2D +DB−2A,

Q12 = −D −ATB−2 −DB−2 −DATB−2A, (22)

Q22 = ATB−2A+B−2 + I. (23)

The closed-loop system with deadbeat control design strategy

is shown in Figure 1(a). This feedback loop can be re-

arranged as the one in Figure 1(b) which has two separate

components. One component is a static-deadbeat control

design strategy [8] for regulating the state of the plant and

the other one is the deadbeat observer for canceling the

disturbance effect.

LEMMA 3.3: Let the plant graph GP contain no isolated

node and GK ⊇ GP . Then, the competitive ratio of the

deadbeat control design method Γ∆ satisfies rP(Γ
∆) ≤

(2ǫ2b + 1 +
√

4ǫ2b + 1)/(2ǫ2b).
Proof: First, let us define the set of all real numbers that

are greater than or equal to rP(Γ
∆) as

M =

{

β̄ ∈ R

∣

∣

∣

∣

JP (Γ
∆(A,B,D))

JP (K∗(P ))
≤ β̄ ∀P ∈ P

}

.

It is evident that JP (K
∗
C(P )) ≤ JP (K

∗(P )) for each plant

P ∈ P , irrespective of the control graph GK, and as a result

JP (Γ
∆(A,B,D))

JP (K∗(P ))
≤

JP (Γ
∆(A,B,D))

JP (K∗
C(P ))

. (24)

Using Equation (24), Definition 3.1, and Lemma 3.2, we get

that β belongs to the set M if

[

x0

Bw0

]T [
Q11 Q12

QT
12 Q22

] [

x0

Bw0

]

[

x0

Bw0

]T [
V11 V12

V T
12 V22

] [

x0

Bw0

]

≤ β, (25)

for all A ∈ A(SP), B ∈ B(ǫb), D ∈ D, x0 ∈ R
n, and

w0 ∈ R
n where Q11, Q12, and Q22 are defined in (21)-(23)

and V11, V12, and V22 are defined in (12)-(14). The condition

in (25) is satisfied if and only if
[

βV11 −Q11 βV12 −Q12

βV T
12 −QT

12 βV22 −Q22

]

≥ 0,

for all A ∈ A(SP), B ∈ B(ǫb), and D ∈ D. Now, using

Schur complement [16], we can show that β belongs to the

set M if both conditions

Z = βV22 −Q22

= AT (β(I +B2)−1 −B−2)A+ (β − 1)(B−2 + I) ≥ 0,
(26)

and

βV11 −Q11−[βV12 −Q12]

× [βV22 −Q22]
−1[βV T

12 −QT
12] ≥ 0,

(27)

are satisfied for all matrices A ∈ A(SP), B ∈ B(ǫb), and

D ∈ D. We can go further and simplify the condition in (27)

to

β(W +DWD +D2B−2)−Q11

−
[

−DZ +ATB−2
]

Z−1
[

−ZD +B−2A
]

≥ 0,
(28)

where Z is introduced in (26). For all β ≥ 1 + 1/ǫ2b , we

know that Z ≥ (β − 1)(B−2 + I) ≥ 0 and, as a result the

condition

(β − 1)I+AT
(

β(I +B2)−1 −B−2

−(β − 1)−1B−2(B−2 + I)−1B−2
)

A ≥ 0
(29)

becomes a sufficient condition for the condition in (28) to

be satisfied. Consequently, β belongs to the set M, if it is

greater than or equal to 1+1/ǫ2b and it satisfies the condition

in (29). Thus, we get
{

β | β ≥ (2ǫ2b + 1 +
√

4ǫ2b + 1)/(2ǫ2b)

}

⊆ M.

This concludes the proof.

IV. PLANT GRAPH INFLUENCE ON ACHIEVABLE

PERFORMANCE

First, we need to give the following lemmas to make proof

easier.

LEMMA 4.1: Let the plant graph GP contain no isolated

node and GK ⊇ GP . Let P = (A,B,D, x0, w0) ∈ P be a

plant such that A is a nilpotent matrix of degree two. Then,

JP (K
∗(P )) = JP (K

∗
C(P )).

Proof: When matrix A is nilpotent, based on the unique

positive-definite solution of the discrete algebraic Riccati
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Now if (SP)11 has an off-diagonal entry, then there exist

1 ≤ i, j ≤ n− c and i 6= j such that (sP)ji 6= 0. Using the

second part of the proof of Theorem 4.4, it is easy to see

rP(Γ
Θ) ≥

2ǫ2b + 1 +
√

4ǫ2b + 1

2ǫ2b
,

because the control design ΓΘ acts like the deadbeat control

design strategy on that part of the system. Using both these

inequalities proves the statement.

If (SP)11 = 0 and (SP)22 = 0, every matrix A with struc-

ture matrix SP becomes a nilpotent matrix of degree two.

Thus, according to Lemma 4.1, we get that JP (K
∗(P )) =

JP (K
∗
C(P )), and based on the unique solution of the asso-

ciated discrete algebraic Riccati equation, for this plant, the

optimal centralized control design is

K∗
C(P ) =

[

D D(I +B2)−1B−1A−B−1D2

I −(I +B2)−1BA−B−1D

]

,

which is exactly equal to ΓΘ(A,B,D). Thus, rP(Γ
Θ) = 1.

THEOREM 4.6: Let the plant graph GP contain no iso-

lated node and contain at least one sink, the design graph

GC be a totally disconnected graph, and GK ⊇ GP . Then,

the following statements hold:

(a) The competitive ratio of any control design strategy

Γ ∈ C satisfies rP(Γ) ≥ (2ǫ2b + 1 +
√

4ǫ2b + 1)/(2ǫ2b), if

(SP)11 is not diagonal.

(b) The control design method ΓΘ is undominated by all

limited model information control design methods in C.

Proof: First, we prove statement (a). Suppose that

(SP)11 6= 0 and (SP)11 is not a diagonal matrix, then there

exist 1 ≤ i, j ≤ n − c and i 6= j such that (sP)ji 6= 0.

Consider the family of matrices A(r) defined by A(r) =
reje

T
i . Based on Lemma 4.3, if we want to have a bounded

competitive ratio, the control design strategy should satisfy

r+ bjj(dΓ)ji(A(r), B,D) = 0 (because node 1 ≤ j ≤ n− c
is not a sink). The rest of the proof is similar to the proof

of Theorem 4.4.

See [9, p.130] for the detailed proof of statement (b).

Combining Lemma 4.5 and Theorem 4.6 illustrates that

if (SP)11 6= 0 is not diagonal, the control design method

ΓΘ has the smallest ratio achievable by limited model

information control methods. Thus, it is a solution to the

problem (5). Furthermore, if (SP)11 and (SP)22 are both

zero, then ΓΘ becomes equal to K∗. This shows that ΓΘ is

a solution to the problem (5) in this case too. The rest of the

cases are still open.

V. DESIGN GRAPH INFLUENCE ON ACHIEVABLE

PERFORMANCE

In the previous section, we solved the optimal control

design under limited model information when GC is a totally

disconnected graph. In this section, we study the necessary

amount of information needed in each subsystem to ensure

the existence of a limited model information control design

strategy with a better competitive ratio than Γ∆ and ΓΘ.

THEOREM 5.1: Let the plant graph GP and the design

graph GC be given and GK ⊇ GP . Then, we have rP(Γ) ≥
(2ǫ2b + 1 +

√

4ǫ2b + 1)/(2ǫ2b) for all Γ ∈ C if GP contains

the path i → j → ℓ with distinct nodes i, j, and ℓ while

(ℓ, j) /∈ EC .

Proof: See [9, p.132] for the detailed proof.

VI. CONCLUSIONS

We studied the design of optimal dynamic disturbance

accommodation controllers under limited plant model infor-

mation. To do so, we investigated the relationship between

closed-loop performance and the control design strategies

with limited model information using the performance metric

called the competitive ratio. We found an explicit minimizer

of the competitive ratio and showed that this minimizer

is also undominated. Possible future work will focus on

extending the present framework to situations where the

subsystems are not scalar.
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