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Abstract—The model reduction problem for networks of inter-
connected dynamical systems is studied in this paper. In particular,
networks of identical passive subsystems, which are coupled ac-
cording to a tree topology, are considered. For such networked
systems, reduction is performed by clustering subsystems that
show similar behavior and subsequently aggregating their states,
leading to a reduced-order networked system that allows for an
insightful physical interpretation. The clusters are chosen on the
basis of the analysis of controllability and observability properties
of associated edge systems, representing the importance of the
couplings and providing a measure of the similarity of the behavior
of neighboring subsystems. This reduction procedure is shown to
preserve synchronization properties (i.e., the convergence of the
subsystem trajectories to each other) and allows for the a priori
computation of a bound on the reduction error with respect to
external inputs and outputs. The method is illustrated by means
of an example of a thermal model of a building.

Index Terms—Clustering, model reduction, multiagent systems,
networks.

I. INTRODUCTION

LARGE-SCALE networks of interconnected dynamical
systems appear abundantly in both technology and nature,

with examples ranging from electrical power grids to biological
or chemical networks. Other examples are sensor networks,
social networks and multiagent systems (see, e.g., [22], [35]
for an overview). However, the large scale of such networked
systems complicates its analysis or control, motivating the
need for reduction techniques capable of finding approximate
networked systems of lower complexity.

Existing model reduction techniques such as balanced trun-
cation [25], optimal Hankel norm approximation [15] or mo-
ment matching [3] provide tools for the approximation of linear
dynamical systems, hereby generating a reduced-order system
(i.e., a system with lower state-space dimension) whose input-
output behavior approximates that of the original system (see
[1] for an overview). Even though such methods can have
strong properties such as the preservation of stability properties
or the availability of a computable error bound, they are not
necessarily suited for the reduction of large-scale networked
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systems. Namely, such existing reduction techniques do gen-
erally not preserve the interconnection structure of a given
networked system. As a result, the physical meaning of the
states is not preserved and the resulting reduced-order system
is difficult to interpret, which could for example complicate
the synthesis of (distributed) controllers. The objective of this
paper is therefore the development of a dedicated reduction
procedure for networked systems, hereby approximating the
input-output behavior of such a system while allowing for a
physical interpretation of the reduced-order model.

The problem of the reduction of networked systems has
received interest in fields ranging from economics [34] to chem-
istry [29] and biology [28]. However, none of these methods
consider external inputs to the networked system, whereas
only the latter considers external outputs. A systems theoretic
perspective is taken in [18], where a reduced-order networked
system is obtained by clustering scalar first-order subsystems
that show similar behavior and subsequently aggregating the
states of these subsystems. Moreover, the networked system has
external inputs and a bound on the error in the state trajectories
is given. Similarly, [24] gives a graph-partitioning approach
towards clustering with the same properties. Early work on a
clustering approach on the basis of a separation of time scales
is presented in [10], whereas an approach for the identification
of strongly coupled clusters in a network of dynamical systems
is given in [33]. The idea of clustering is also exploited in
the coherency-based reduction of power systems, see, e.g.,
[9], [14]. A different approach is taken in [23], where a net-
work of identical higher-order linear subsystems is considered.
Here, rather than performing reduction by clustering subsys-
tems, model reduction is performed on the subsystems. Thus,
the interconnection topology remains unaffected and such an
approach can be interpreted as a structure-preserving model
reduction procedure (see [31]).

In the current paper, the former approach is taken and
a clustering-based model reduction procedure for networked
systems is developed. Contrary to [18], subsystems with higher-
order linear dynamics are considered and the networked system
is assumed to have both external inputs and outputs. Specifi-
cally, the identical linear subsystems are assumed to be passive,
whereas the (directed and weighted) interconnection topology
is assumed to have a tree topology. It is remarked that passive
systems form a physically relevant class of systems and that the
passivity property provides a suitable tool for the analysis of
networked systems (see, e.g., [2], [26]).

For such networked systems, a reduced-order system is
obtained by clustering neighboring subsystems (which form
the vertices of the network graph) and aggregating their states
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to obtain a single subsystem that represents the original clus-
ter. This thus essentially generates an updated interconnection
topology which has a clear physical interpretation. In order to
identify the neighboring subsystems most suitable for cluster-
ing, the controllability and observability properties of associ-
ated edge systems are analyzed. These properties, that will be
referred to as edge controllability and edge observability, char-
acterize how difficult it is to steer two neighboring subsystems
apart or how hard it is to distinguish them, respectively. This
analysis crucially relies on two aspects.

First, a novel factorization of the graph Laplacian (describing
the interconnection topology) is introduced, which allows for
the definition of a suitable edge Laplacian for directed and
weighted graphs and facilitates the definitions of the edge sys-
tems mentioned above. Here, it is noted that this factorization
extends a result for undirected graphs in [39]. For tree struc-
tures, it will be shown that this edge Laplacian has desirable
properties in the scope of clustering-based model reduction for
networked systems.

Second, motivated by a result in [6], the passivity property
is exploited. Namely, this property allows for a decomposition
of the (generalized) controllability and observability Gramians
of the networked system into two parts, which are associated
with the interconnection topology and the dynamics of the
subsystems, respectively. By exploiting this decomposition, the
influence of the interconnection topology on the controllability
(observability) properties can be studied independently, pro-
viding a suitable basis for the selection of the neighboring
subsystems to be clustered.

The main contribution of this paper is thus the development
of a dedicated model reduction procedure for networked sys-
tems, for which the following properties are shown. First, it is
shown that the characterization of edge controllability and edge
observability is guaranteed to exist. Second, the synchroniza-
tion property (i.e., the property that states of the subsystems
converge to each other) is preserved during reduction. Third, a
computable a priori bound on the reduction error (in terms of
input-output behavior) is derived, providing a direct measure of
the quality of the approximation and yielding a theoretical basis
for the edge controllability and edge observability approach
taken in the paper.

Finally, it is remarked that preliminary results on this topic
can be found in [5].

The remainder of this paper is organized as follows. The
problem setting is stated in Section II and preliminaries regard-
ing passivity and graph theory are given in Section III. Then, the
relation between edge systems and synchronization properties
is discussed in Section IV, before presenting the clustering-
based model reduction procedure in Section V. Finally, the
procedure is illustrated by means of an example in Section VI
and conclusions are stated in Section VII.

Notation: The field of real numbers is denoted by R. For
a vector x ∈ Rn, the Euclidian norm is given as |x| =

√
xTx.

Next, given a matrix X ∈ Rn×m, its entry in row i and column
j is denoted as (X)ij and X � 0 (X � 0) denotes a positive
(semi)definite matrix. The identity matrix of size n is denoted
as In, whereas 1n denotes the vector of all ones of length n.
The subscript n is omitted when no confusion arises. Moreover,

ei denotes the i-th column of In. A signal x : T → Rn is said
to be in Ln

2 (T ) if
∫
T |x(t)|2dt < ∞, where the corresponding

norm for T = [0,∞) is denoted as ‖x‖2. Finally, X ⊗ Y
denotes the Kronecker product of matrices X and Y , whose
definition and properties can be found in [7].

II. PROBLEM SETTING

A network of identical subsystems Σi is considered, of
which the linear time-invariant dynamics is given as

Σi :

{
ẋi = Axi +Bvi

zi = Cxi

(1)

with xi ∈ Rn, vi, zi ∈ Rm and i ∈ {1, 2, . . . , n̄}. It is noted
that the number of inputs vi to (1) equals the number of outputs
zi, which allows for the interconnection of the subsystems
Σi as

vi =

n̄∑
j=1,j 	=i

wij(zj − zi) +

m̄∑
j=1

gijuj (2)

where i ∈ {1, 2, . . . , n̄} and with uj ∈ Rm, j ∈ {1, 2, . . . , m̄}
the external inputs to the networked system. In (2), the weights
wij ∈ R satisfying wij ≥ 0 represent the strength of the dif-
fusive coupling between the subsystems, whereas gij ∈ R

describe the distribution and strength of the external inputs
amongst the subsystems. After defining the weighted Laplacian
matrix L as

(L)ij =

{
−wij , i 	= j∑n̄

j=1,j 	=i wij , i = j
(3)

and collecting the parameters gij as in a matrix G as (G)ij =
gij , the interconnection (2) can be written as

v = −(L⊗ Im)z + (G⊗ Im)u (4)

where vT = [vT1 vT2 . . . vTn̄ ], z
T = [zT1 zT2 . . . zTn̄ ] and uT =

[uT
1 uT

2 . . . uT
m̄]. The interconnection (4) as characterized

through the matrix L can be associated to a graph, as will be
discussed in more detail in Section III.

Similar to the external inputs introduced in (2), external
outputs are given by

yi =

n̄∑
j=1

hijzj (5)

with yi ∈ Rm, i ∈ {1, 2, . . . , p̄}. Collecting the parameters
hij ∈ R as (H)ij = hij , this can be written as y = (H ⊗ Im)z,
with yT = [yT1 yT2 . . . yTp̄ ]. Then, combining the subsystem
dynamics (1) with the interconnection (4) and the outputs leads
to the dynamics of the networked system as

Σ :

{
ẋ = (I ⊗A− L⊗BC)x+ (G⊗ B)u

y = (H ⊗ C)x
(6)

where xT = [xT
1 xT

2 . . . xT
n̄ ] ∈ Rn̄n.
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Given a networked system Σ as in (6), the objective of
this paper is to find a reduced-order networked system that
approximates the input-output behavior of Σ and allows for
a suitable physical interpretation. To satisfy the latter aspect, a
clustering-based reduction procedure is pursued, in which a
reduced-order networked system is obtained by aggregating
the states of neighboring subsystems. This essentially creates a
new interconnection topology, which can be directly interpreted
in terms of the original network structure. The reduced-order
networked system obtained in this way should preserve syn-
chronization properties (i.e., the property that the subsystem
states converge to each other) and provide a bound on the
reduction error.

III. PRELIMINARIES

The reduction technique for networked systems developed in
this paper will exploit results from graph theory, of which rele-
vant definitions and results are given in this section. Moreover,
the subsystems Σi will be assumed to be passive (see, e.g., [8],
[37]).

Definition 1: A system Σi as in (1) is said to be passive
if there exists a differentiable storage function V : Rn → R

satisfying V ≥ 0 and V (0) = 0 such that

V̇ (xi) :=
∂V

∂xi
(xi)ẋi ≤ vTi zi (7)

holds along all trajectories of (1). If equality holds in (7), the
system Σi is said to be lossless.

Passive systems can be written in port-Hamiltonian form
[32], [38] as

Σi :

{
ẋi = (J −R)Qxi +Bvi

zi = BTQxi

(8)

such that the matrices A and C in (1) are given as A =
(J −R)Q and C = BTQ. In (8), Q = QT characterizes the
storage function V in (7) as V (xi) = (1/2)xT

i Qxi, describing
the energy stored in the system and satisfying Q � 0 if (8)
is a minimal realization (see [38]). Moreover, J is a skew-
symmetric matrix (i.e., J = −JT ) and R = RT � 0 charac-
terizes the internal dissipation, such that R = 0 for lossless
systems.

The interconnection (2) of the subsystems as characterized
by the Laplacian matrix L in (3) can be associated to a directed
graph G = (V , E) (see, e.g, [16], [22] for details on graph
theory). Here, V = {1, 2, . . . , n̄} represents the set of vertices
characterizing the subsystems and E ⊆ V × V gives the set
of directed edges (or arcs) satisfying (i, j) ∈ E if and only if
wji > 0.

Besides this directed graph G, an undirected version of the
same graph is introduced as follows.

Definition 2: Let G be a directed graph with vertex set V and
(directed) edge set E . Then, the undirected graph Gu = (V , Eu)
with (i, j) ∈ Eu if and only if wij + wji > 0 is said to be the
underlying undirected graph.

The underlying undirected graph Gu thus has an edge be-
tween vertices i and j if at least one of the weights wij and wji

is strictly positive, i.e., if there exists at least one directed edge
between i and j. Next, let E ∈ Rn̄×n̄e be the incidence matrix
of an arbitrary orientation of Gu (with n̄e the number of edges).
Thus, if the l-th edge connects vertices i and j, then the l-th
column in E is given as ±(ei − ej), where the sign depends on
the chosen orientation and it is recalled that ei and ej are unit
vectors. Using this notation, the weighted Laplacian L can be
factorized as follows.

Lemma 1: Consider the matrix L in (3) and let E be an
oriented incidence matrix of the underlying undirected graph
Gu. Then, L can be factored as

L = FET (9)

where F ∈ Rn̄×n̄e has the same structure as E. In particular, let
the l-th column of E be given as ei − ej , then the l-th column
of F reads wijei − wjiej , with wij the weights in (2).

Proof: The matrix L in (3) can be written as the sum L =∑
(i,j)∈Eu Lij , where Lij characterizes a single edge in Gu. It is

readily checked that Lij can be written in the form

Lij = (wijei − wjiej)(ei − ej)
T (10)

such that choosing the columns of F and E accordingly leads
to (9). �

The eigenvalues of L can be related to graph-theoretical
properties by exploiting the notion of a directed rooted spanning
tree (see [16], [30]).

Definition 3: A graph T is said to be a directed rooted
spanning tree if it is a directed tree connecting all vertices of
the graph, where every vertex, except the single root vertex, has
exactly one incoming directed edge.

The following result can be found in [22], [30].
Lemma 2: Consider the matrix L in (3) with wij ≥ 0. Then,

L has at least one zero eigenvalue and all nonzero eigenvalues
are in the open complex right-half plane. Moreover, L has
exactly one zero eigenvalue if and only if the associated graph
G contains a directed rooted spanning tree as a subgraph.

IV. EDGE DYNAMICS AND SYNCHRONIZATION

In the remainder of this paper, networked systems Σ will be
considered that satisfy the following assumptions.

Assumption 1: The subsystems Σi are passive and have the
minimal realization (8).

Assumption 2: The interconnection structure characterized
by L in (3) is such that the following statements hold:

1) the underlying undirected graph Gu is a tree (and, thus,
n̄e = n̄− 1);

2) the graph G contains a directed rooted spanning tree as a
subgraph.

Here, it is remarked that neither of these items implies
the other. Namely, directed graphs satisfying the first item do
not necessarily contain a directed rooted spanning tree as a
subgraph. Moreover, graphs with cycles might also contain
a directed rooted spanning tree as a subgraph, such that the
second item does not imply the first.
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Remark 1: A relevant example of a networked systems that
satisfies Assumptions 1 and 2 is given by large platoons of con-
nected vehicles, see, e.g., [20], [27], [36]. In its simplest form,
vehicles with positions si are controlled to achieve a desired
spacing Δi = 0 with Δi = si − si−1. Considering vehicles that
are controlled to react to their predecessor and follower by
adapting their velocity ṡi as ṡi = −α1Δi + α2Δi+1, it follows
that the platoon dynamics is given as

Δ̇i = δi, δi = α1(Δi−1 −Δi) + α2(Δi+1 −Δi) (11)

in which the subsystems Σi are single integrators satisfying
Assumption 1. Moreover, it is clear that the interconnection
structure satisfies Assumption 2. �

Under Assumption 2, the following lemma can be obtained.
Lemma 3: Let the interconnection structure characterized by

L in (3) satisfy Assumption 2 and consider its factorization (9).
Then, the matrix Le ∈ Rn̄e×n̄e with n̄e = n̄− 1 given as

Le = ETF (12)

has all eigenvalues in the open complex right-half plane and
they equal the nonzero eigenvalues of L.

Proof: To prove this lemma, introduce the matrix T as

T =

[
νT

ET

]
(13)

where ν is the left eigenvector for the zero eigenvalue of L, i.e.,
νTL=0. By the second item of Assumption 2 and Lemma 2,
this eigenvalue has multiplicity one, such that ν is unique
(up to scaling). Also, by exploiting the theory of nonnegative
matrices (see, e.g., [17]), it can be shown that all elements of
ν are nonnegative (and ν 	= 0). It is therefore assumed that ν is
scaled such that νT1 = 1. As each column of E has only zero
elements except for the pair (1,−1), ν is linearly independent
of the columns of E and T as in (13) is nonsingular. Thus, its
inverse exists. In particular, it reads

T−1 =
[
1 F (ETF )

−1
]

(14)

where it is noted that the inverse of ETF exists as ETF is of
full rank. Then, the application of the similarity transformation
T to L as in (3) leads to

TLT−1 =

[
0 0
0 ETF

]
=

[
0 0
0 Le

]
. (15)

By Assumption 2 and Lemma 2, L contains only a single zero
eigenvalue, which is isolated from the matrix Le in the rep-
resentation (15). Consequently, Le contains all non-zero eigen-
values of L, which are in the open right-half plane by Lemma 2.
This proves the desired result. �

Remark 2: The matrix Le in (12) is directly related to the
dynamics on the edges of the networked system (6). This can
be shown using the coordinates xe = (ET ⊗ In)x, as will be
done in Section V-A. Motivated by this observation, the matrix
Le might be thought of as the (directed and weighted) edge
Laplacian for the graph G. The edge Laplacian for unweighted
and undirected graphs is studied in [39]. �

Remark 3: A change in orientation of Gu can be expressed
by a diagonal matrix S with entries in {−1, 1}, leading to
the incidence matrix Ẽ = ES and F̃ = FS. Then, it is clear
that L in (9) is independent of the chosen orientation, but
the edge Laplacian Le satisfies L̃e = ẼT F̃ = SLeS. How-
ever, the results in this paper hold regardless of the choice of
orientation. �

Next, under the additional assumption that all interconnec-
tions are bidirectional (i.e., both wij > 0 and wji > 0 when
(i, j) ∈ Eu), the matrix F in (9) allows for a factorization that
will be exploited later.

Lemma 4: Let the interconnection structure characterized by
L in (3) satisfy Assumption 2 and consider its factorization
(9). Moreover, assume that wij > 0 if and only if wji > 0.
Then, there exists diagonal matrices D1 ∈ Rn̄×n̄ and D2 ∈
R(n̄−1)×(n̄−1) satisfying D1 � 0 and D2 � 0 such that

D1FD2 = E. (16)

Proof: To prove this lemma, it is recalled thatAssumption 2
implies the existence of a directed rooted spanning tree T
as a subgraph of G. Let ET denote its set of directed edges,
where (j, i) ∈ ET denotes the edge from vertex i to vertex
j. The matrices D1 and D2 will be explicitly constructed by
subsequently considering the n̄− 1 edges of T , starting from
the root vertex. Thereto, set k = 0 and let Vk = {i0} with i0
the root vertex. Moreover, the matrices D0

1 = I and D0
2 = I

are initialized and the matrix F 0 = D0
1FD0

2 is defined.
Now, arbitrarily select an edge (j, i) ∈ ET that originates

from one of the vertices previously considered and terminates at
a vertex not considered before, i.e., that satisfies i ∈ Vk and j ∈
V \ Vk. As T is a directed rooted spanning tree, such an edge
always exists as long as Vk 	= V . Note that there exists a column
in E that equals (up to a possible change of sign) ei − ej , i.e.,
that characterizes this edge. Let l be the index of this column.
Then, the corresponding column of F k := Dk

1FDk
2 is given as

((Dk
1 )iiwijei − (Dk

1 )jjwjiej)(D
k
2 )ll. Next, note that the vertex

j and the edge l were not considered previously such that
the elements (Dk

1 )jj and (Dk
2 )ll, respectively, have not been

addressed before. Thus, new matrices Dk+1
1 and Dk+1

2 can
be defined as copies of Dk

1 and Dk
2 , with the exception that

the elements (Dk+1
1 )jj and (Dk+1

2 )ll are (uniquely) chosen to
satisfy

((
Dk+1

1

)
ii
wijei −

(
Dk+1

1

)
jj
wjiej

) (
Dk+1

2

)
ll
= ei − ej .

(17)

It is easy to see that the solution satisfies (Dk+1
1 )jj > 0 and

(Dk+1
2 )ll > 0. Then, if Vk+1 = Vk ∪ {j} 	= V , this process is

repeated for k ← k + 1.
As T is a tree, Vk+1 equals V for k = n̄− 1 and, in this case,

all edges are considered. Moreover, as T is a directed rooted
spanning tree, every vertex in V can be reached by exactly one
unique path from the root vertex, such that no edges in T (i.e.,
columns in E and F ) are considered twice. The matrices D1

and D2 in (16) can now be chosen as D1 = Dn̄
1 and D2 = Dn̄

2 ,
finalizing the proof of this lemma. �
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The edge Laplacian Le, introduced in Lemma 3, can be
exploited to study synchronization of the networked system Σ,
as stated in the following theorem from [5].

Theorem 5: Consider the networked system Σ in (6) and let
Assumptions 1 and 2 hold. Then, any trajectory of Σ for u = 0
satisfies, for all i, j ∈ V

lim
t→∞

(xi(t)− xj(t)) = 0. (18)

V. MODEL REDUCTION

In this section, a clustering-based model reduction proce-
dure for networked passive systems will be presented, hereby
exploiting ideas from balanced truncation. Thereto, edge con-
trollability and edge observability Gramians will be introduced
in Section V-A. These Gramians will be exploited to identify the
least important edge, whose adjacent vertices are then clustered
in a one-step reduction procedure in Section V-B. The repeated
application of this procedure leads to a reduction procedure
to obtain reduced-order networked systems of arbitrary order,
whose properties are analyzed in Section V-C.

A. Edge Controllability and Edge Observability

Balanced truncation, which was introduced in [25], is a
successful approach towards model reduction that allows for an
insightful interpretation as it is based on quantifying the degree
of controllability and observability of a given system (see,
e.g., [1], [15]). Moreover, it guarantees stability preservation
and provides a computable error bound. Motivated by these
properties, ideas from balanced truncation are exploited here for
the reduction of networked systems. In particular, the amount
of controllability and observability of the dynamics on the
edges of the system Σ in (6) will be considered as a basis for
subsystem clustering. Thereto, the transformation T in (13) is
applied to (6) to obtain the new coordinates [xT

a xT
e ]

T
= (T ⊗

I)x. Then, it can be concluded from (15) that the dynamics of
xa and xe are independent.

Specifically, the coordinate xa ∈ Rn provides a (weighted)
average of the states of the individual subsystems and satisfies
the dynamics

Σa :

{
ẋa = Axa + (νTG⊗B)u,

ya = (H1⊗ C)xa.
(19)

Therefore, Σa will be referred to as the average system. Next,
the state xe ∈ R(n̄−1)n describes, for each edge, the difference
of the states of the adjacent subsystems (see also Remark 2). It
can be shown (by noting that ETL = LeE

T ) that xe satisfies
the dynamics

Σe :

{
ẋe = (I ⊗A− Le ⊗BC)xe + (Ge ⊗B)u

ye = (He ⊗ C)xe

(20)

with Ge = ETG andHe = HF (ETF )
−1

. Here, it is noted that
the definition of He is the result of the expression of the inverse
transformation (14). The system Σe in (20) will be called the
edge system and is asymptotically stable by Assumptions 1 and 2

and Theorem 5, where it is noted that synchronization of Σ
is equivalent to asymptotic stability of the associated edge
system Σe.

The controllability properties of the edge system characterize
whether adjacent subsystems in the networked system Σ in
(6) can be controlled independently, motivating the following
definition (note that Ge = ETG).

Definition 4: A matrix P̃e = Π̃c ⊗Q−1 is said to be a
generalized edge controllability Gramian for the networked
system Σ satisfying Assumptions 1 and 2 if the matrix Π̃c ∈
R(n̄−1)×(n̄−1) such that Π̃c � 0 is diagonal and satisfies

LeΠ̃
c + Π̃cLT

e − ETGGTE � 0. (21)

Similar to the characterization of edge controllability in
Definition 4, edge observability can be characterized. However,
the latter characterization is obtained on the basis of a different
realization of the edge system (20), which will be shown in
Section V-B (see in particular Remark 6) to have desirable
properties when model reduction by clustering is performed. In
particular, coordinates xf = ((ETF )

−1 ⊗ I)xe ∈ R(n̄−1)n are
considered, such that the transformation of (20) leads to

Σf :

{
ẋf = (I ⊗A− Le ⊗BC)xf + (Gf ⊗B)u

ye = (Hf ⊗ C)xf

(22)

with Gf = (ETF )
−1
ETG and Hf = HF . Clearly, Σf is as-

ymptotically stable and its input-output behaviour equals that
of Σe in (20). Nonetheless, for clarity of exposition, the system
Σf will be referred to as the dual edge system.

Then, the observability properties of the dual edge system
provide a characterization of whether adjacent subsystems in
the networked system Σ in (6) can be distinguished, leading to
the following definition and where it is recalled that Hf = HF .

Definition 5: A matrix Q̃f = Π̃o ⊗Q is said to be a gen-
eralized edge observability Gramian for the networked sys-
tem Σ satisfying Assumptions 1 and 2 if the matrix Π̃o ∈
R(n̄−1)×(n̄−1) such that Π̃o � 0 is diagonal and satisfies

LT
e Π̃

o + Π̃oLe − FTHTHF � 0. (23)

The existence of the matrices Π̃c and Π̃o characterizing the
generalized edge controllability and observability Gramians in
(21) and (23), respectively, is guaranteed when all intercon-
nected vertices are bidirectionally coupled. This is formalized
in the following lemma.

Lemma 6: Let the interconnection structure characterized by
L in (3) satisfy Assumption 2 and assume that wij > 0 if and
only if wji > 0. Then, there exist diagonal matrices Π̃c � 0 and
Π̃o � 0 satisfying (21) and (23), respectively.

Proof: The theorem will be proven for the case of con-
trollability. The result on observability follows similarly.

To prove existence of a diagonal solution Π̃c to (21), it is
remarked that the statements in Lemma 4 hold and the matrix
F in (9) can be written as F = D−1

1 ED−1
2 . Then

D
− 1

2
2 LeD

1
2
2 = D

− 1
2

2 ETFD
1
2
2 = D

− 1
2

2 ETD−1
1 ED

− 1
2

2 (24)
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is a symmetric matrix with the same eigenvalues as Le, which
are all positive by Assumption 2 and Lemma 3. As a result,
also the matrix ETD−1

1 E is symmetric and positive definite.
By exploiting this, it follows that:

LeD2 +D2L
T
e = ETFD2 +D2F

TE

= 2ETD−1
1 E � 0. (25)

Thus, as the left-hand side of (25) is positive definite, there
exists a parameter ε such that

LeD2 +D2L
T
e � εETGGTE (26)

showing that Π̃c = ε−1D2 is a (positive definite) diagonal solu-
tion to (21). Consequently, the generalized edge controllability
Gramian P̃e as in Definition 4 exists. �

Lemma 6 thus guarantees the existence of the generalized
edge Gramians in Definitions 4 and 5. However, the main
motivation for the introduction of these generalized Gramians
follows from the following theorem.

Theorem 7: Consider the networked system Σ in (6) satis-
fying Assumptions 1 and 2. Moreover, assume that matrices
Π̃c � 0 and Π̃o � 0 satisfying (21) and (23), respectively, exist.
Then, the generalized edge controllability Gramian P̃e and the
generalized edge observability Gramian Q̃f satisfy

P̄e � P̃e = Π̃c ⊗Q−1 (27)

Q̄f � Q̃f = Π̃o ⊗Q (28)

with P̄e the controllability Gramian of Σe in (20) and Q̄f the
observability Gramian of Σf in (22).

Proof: The controllability part can be proven by showing
that the matrix

Δ := (I ⊗A− Le ⊗BC)(Π̃c ⊗Q−1)

+ (Π̃c ⊗Q−1)(I ⊗A− Le ⊗BC)T

+ (Ge ⊗B)(Ge ⊗B)T (29)

is negative definite, hereby using results from [6] (see
[19] for a similar result). The observability case can be proven
similarly. �

By Theorem 7, the generalized edge Gramians thus provide
upper bounds for the actual Gramians of the edge system (20)
and dual edge system (22). Here, the Kronecker product struc-
ture of the generalized edge Gramians amounts to a decompo-
sition in two parts, where the first part is only dependent on
the properties of the interconnection topology as characterized
through the edge Laplacian Le [through (21) and (23)]. The
second part is related to the individual subsystems only, through
the storage function that characterizes their passivity property.
This decomposition thus allows for the interpretation of con-
trollability properties on the basis of the interconnection topol-
ogy only, through the matrices Π̃c and Π̃o given by (21) and
(23), respectively. This is highly beneficial in the development
of a reduction method based on subsystem clustering, as this
reduction is essentially performed on the interconnection level.

In particular, the diagonal structure of the matrices Π̃c and
Π̃o allows for a suitable interpretation of the controllability

and observability properties of individual edges. Namely, by
Theorem 7, Π̃c ⊗Q−1 provides an upper bound on the edge
controllability Gramian, and therefore a lower bound on the
energy required to influence each individual edge (see, e.g.,
[1], [15] for an energy interpretation of the controllability and
observability Gramians). Here, it is remarked that, if an edge is
hard to control, it implies that the adjacent subsystems are hard
to influence independently and will thus show similar input-to-
state behavior. Similarly, if an edge is hard to observe (as char-
acterized through Π̃o ⊗Q), the two adjacent subsystems are
hard to distinguish. These observations will provide the main
motivation for clustering the vertices adjacent to such edges.

Remark 4: Clearly, the matrices Π̃c and Π̃o in Definitions 4
and 5, which in the remainder of this paper will also (abusively)
be referred to as the generalized edge Gramians, are not unique.
However, it might be expected that a better reduced-order
networked system can be obtained when the generalized edge
Gramians provide a tight upper bound on the regular edge
Gramians Πc and Πo. A good heuristic to achieve this is the
minimization of the trace of Π̃c and Π̃o under the constraints
(21) and (23) (see, e.g., [4]), which can be achieved by standard
tools for solving linear matrix inequalities. The intuition that
the minimization of the diagonal values of the generalized
edge Gramians leads to better reduced-order models will be
confirmed by error analysis in Section V-C. �

B. One-Step Model Reduction Through Clustering

The generalized edge controllability and generalized edge
observability Gramians introduced in Section V-A provide a
characterization of the degree of controllability and observabil-
ity of each individual edge. The combination of these aspects
provides a measure of the contribution of each edge on the
input-output behavior of the networked system Σ, such that
the least important edge can be identified. Roughly speaking,
the least important edge has both a low degree of controllability
and a low degree of observability. However, details on how to
select this edge on the basis of the generalized edge Gramians
will be given in Section V-C, where the most suitable approach
will be identified by means of error analysis.

In this section, it is assumed that the least important edge has
been identified and a one-step reduction (i.e., involving only
this single edge) will be considered. As motivated earlier, the
subsystems adjacent to this edge are hard to control individually
and hard to distinguish and it is natural to cluster these two
subsystems. Here, for ease of notation, it is assumed that the
least important vertices are given by i and j, where i = n̄− 1
and j = n̄. This can always be achieved by a suitable per-
mutation of the vertex numbers. Then, the projection matrices
V ∈ Rn̄×(n̄−1) and W ∈ Rn̄×(n̄−1) are introduced as

V =

⎡
⎣I 0
0 1
0 1

⎤
⎦ , W =

⎡
⎢⎣
I 0
0

wji

wij+wji

0
wij

wij+wji

⎤
⎥⎦ (30)

clearly characterizing a cluster of the final two vertices. Here,
the elements in the bottom right corner of W are directly related
to the weights of the (directed) edges between vertices i and j.
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Fig. 1. Schematic illustration of the clustering procedure, where projection
with V,W as in (30) amounts to the clustering of subsystems Σi and Σj in
one new subsystem Σi,j . Herein, the weights of the links connecting the cluster
Σi,j to the rest of the network get updated.

The matrices (30) are used to define the projection (V ⊗
I)(W ⊗ I)T , which is biorthogonal (i.e., a Petrov-Galerkin
projection, see [1]) due to the property WTV = I . The appli-
cation of this projection to the system matrix in the networked
system Σ in (6) leads to

(W ⊗ I)T (In̄ ⊗A− L⊗BC)(V ⊗ I)

= WTV ⊗A−WTLV ⊗BC (31)

with WTV = In̄−1 and WTLV ∈ R(n̄−1)×(n̄−1), as follows
from the properties of the Kronecker product (see [7]).

By projecting also the input and output matrices of (6), the
one-step reduced order system

Σ̂n̄−1 :

{
ξ̇ = (I ⊗A−WTLV ⊗BC)ξ + (WTG⊗B)u

ŷ = (HV ⊗ C)ξ

(32)

is obtained, where ξ ∈ R(n̄−1)n provides an approximation of x
as x ≈ (V ⊗ I)ξ. It is clear from (32) that the dynamics of the
subsystems is not influenced by this reduction. Instead, only
the interconnection structure has been affected to introduce the
cluster of the vertices i and j, as illustrated in Fig. 1.

In order to analyze the properties of the reduced-order
networked system (32), the edge connecting vertices i and j
(i.e., the least important edge earlier identified) is assumed to
be characterized by the l-th column of the original incidence
matrix E (and weighted incidence matrix F ), where l = n̄e =
n̄− 1. As for the vertices, this can always be achieved by a
suitable permutation of the edge numbers. Now, the matrices E
and F in (9) can be partitioned accordingly, leading to

E =

⎡
⎣E00 0
Ei0 Eil

Ej0 Ejl

⎤
⎦ , F =

⎡
⎣F00 0
Fi0 Fil

Fj0 Fjl

⎤
⎦ . (33)

Here, it is noted that the zero entries in both E and F result
from the fact that the corresponding column represents the edge
connecting vertex i to j. Specifically, Eil ∈ {−1, 1} and Ejl =
−Eil. Similarly, Fil = wijEil and Fjl = wjiEjl, as follows
from Lemma 1.

Using the partitioning (33), the matrix L̂ = WTLV char-
acterizing the interconnection topology of the reduced-order
networked system Σ̂n̄−1 in (32) can be shown to satisfy the
following properties.

Lemma 8: Let the interconnection structure characterized by
L in (3) satisfy Assumption 2 and consider its factorization
(9), in which the factors E and F are partitioned as in (33).
Moreover, let L̂ = WTLV be the reduced-order interconnec-
tion matrix obtained by projection using the matrices (30), let

Ĝ be the corresponding graph on n̄− 1 vertices and Ĝu the
underlying undirected graph. Then, the following results hold:

1) The matrix L̂ can be factored as L̂ = F̂ ÊT , where Ê ∈
R(n̄−1)×(n̄−2) and F̂ ∈ R(n̄−1)×(n̄−2) are given by

Ê =

[
E00

Ei0 + Ej0

]
(34)

F̂ =

[
F00

wji

wij+wji
Fi0 +

wij

wij+wji
Fj0

]
. (35)

2) The underlying undirected graph Ĝu is a tree;
3) The graph Ĝ contains a directed rooted spanning tree as a

subgraph.

Proof: The first item can be proven by exploiting the
factorization of L as in (9), from which it follows that

WTLV = WTFETV = (WTF )(V TE)
T
. (36)

The computation of V TE, hereby using (33), leads to

V TE =

[
E00 0

Ei0 + Ej0 0

]
(37)

where it is noted that the final column contains all zeros since
Eil + Ejl = 0. Namely, the l-th (with l = n̄− 1) column of E
characterizes the edge that connects vertices i and j, such that
Eil ∈ {1,−1} and Ejl = −Eil. Similarly

WTF =

[
F00 0

wji

wij+wji
Fi0 +

wij

wij+wji
Fj0 0

]
(38)

hereby using a similar argument to prove that the final column
contains all zeros. Herein, the choice of the weights in W
as in (30) is crucial. Also, it is noted that the bottom row in
(38) specifies how the weights of the links that connect the
cluster to the rest of the network are updated (see Fig. 1).
Finally, setting Ê and F̂ as the nonzero columns of V TE and
WTF , respectively, proves the first item in the statement of the
theorem.

The second and third item of the proof are very intuitive, but
a formal proof is given in [5]. �

As the selection of suitable vertices for clustering is based
on properties of the edge system (20) and dual edge system
(22), it is natural to analyze the reduced-order system in similar
coordinates. Therefore, the transformation matrix T̂ = [ν̂ Ê]T

is introduced, which is of the same form as (13). Here, ν̂ is the
left eigenvector for the zero eigenvalue of L̂, thus satisfying
ν̂T L̂ = 0 and ν̂T1 = 1. Moreover, Ê is the reduced-order
incidence matrix of the underlying undirected graph Ĝu as in
Lemma 8 [see (34)].

Then, by performing the coordinate transformation
[ξTa ξTe ]

T
= (T̂ ⊗ I)ξ, it follows that the dynamics of the

reduced-order average system Σ̂a is given as

Σ̂a :

{
ξ̇a = Aξa + (ν̂TWTG⊗B)u

ŷa = (HV 1⊗ C)ξa.
(39)
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Here, it is noted that ξa ∈ Rn, such that its order equals that of
Σa in (19). Nonetheless, Σ̂a will be referred to as the reduced-
order average system.

Similarly to the edge system Σe in (20), the (one-step)
reduced-order edge system Σ̂e is given as

Σ̂e :

{
ξ̇e = (I ⊗A− L̂e ⊗BC)ξe + (Ĝe ⊗B)u

ŷe = (Ĥe ⊗ C)ξe
(40)

where ξe ∈ R(n̄−2)n̄ and L̂e = ÊT F̂ is the reduced-order edge
Laplacian for the graph Ĝ. In (40), the matrices Ĝe and Ĥe

are given as Ĝe = ÊTWTG and Ĥe = HV F̂ (ÊT F̂ )
−1

, re-
spectively. Moreover, after expressing (40) in new coordinates

ξf = ((ÊT F̂ )
−1 ⊗ I)ξe, the reduced-order dual edge system

Σ̂f is obtained. Similar to the high-order counterpart in (22),
it has the same form as the reduced-order edge system (40)

with new external input matrix Ĝf = (ÊT F̂ )
−1
ÊTWTG and

external output matrix Ĥf = HV F̂ .
It is recalled that the selection of the least important edge

is performed on the basis of the generalized edge Gramians
in Definitions 4 and 5, which are in turn calculated through
the edge dynamics (20) and dual edge dynamics (22). After
expressing the generalized edge Gramians Π̃c and Π̃o as

Π̃c =diag
{
πc
1, π

c
2, . . . π

c
n̄−1

}
(41)

Π̃o =diag
{
πo
1 , π

o
2 , . . . π

o
n̄−1

}
(42)

these Gramians can be related to the one-step reduced-order
networked system Σ̂n̄−1 in (32) through the edge system Σ̂e

in (40) and the reduced-order dual edge system Σ̂f . This is
formalized as follows.

Theorem 9: Consider the networked system Σ in (6) satis-
fying Assumptions 1 and 2 and the reduced-order networked
system Σ̂n̄−1 in (32). Let the generalized edge controllability
Gramain Π̃c and generalized edge observability Gramian Π̃o be
written as (41) and (42), respectively. Then,

1) Π̃c
1 := diag{πc

1, . . . π
c
n̄−2} is a generalized edge control-

lability Gramian for Σ̂n̄−1;
2) Π̃o

1 := diag{πo
1 , . . . π

o
n̄−2} is a generalized edge observ-

ability Gramian for Σ̂n̄−1.

Proof: In order to prove the theorem, it will be shown first
that the reduced-order (dual) edge system Σ̂e (Σ̂f ) can directly
be obtained from its original (i.e., non-reduced) counterpart Σe

(Σf ). Thereto, the matrices in (20) and (22) are partitioned as

Le =

[
Le,11 Le,12

Le,21 Le,22

]
, Ge =

[
Ge,1

Ge,2

]

Hf =
[
Hf,1 Hf,2

]
(43)

after which it can be checked [by using the partitioning (33) and
the relations (34), (35)] that

L̂e =Le,11 − Le,12L
−1
e,22Le,21 (44)

Ĝe =Ge,1 − Le,12L
−1
e,22Ge,2 (45)

Ĥf =Hf,1 −Hf,2L
−1
e,22Le,21. (46)

Next, a result from [13] can be used to finalize the proof.
Namely, the application of a projection matrix Tc = [I −
Le,12L

−1
e,22] to (21) yields

Tc

(
LeΠ̃

c + Π̃cLT
e −GeG

T
e

)
T T
c

= L̂eΠ̃
c
1 + Π̃c

1L̂
T
e − ĜeĜ

T
e � 0 (47)

where the partitioning (43) is used as well as (44) and
(45). It can be seen that the right-hand side of the equality
in (47) characterizes a generalized edge controllability Gramian
for the reduced-order system Σ̂, proving the first item of the
theorem. The second item can be proven similarly. �

Theorem 9 shows that the relevant blocks of the generalized
edge Gramians are preserved under reduction. This is impor-
tant, as it will be shown in Section V-C that this facilitates
the repetitive application of the one-step reduction procedure
discussed in this section, yielding reduced-order networked
systems of arbitrary dimension.

Remark 5: The relation (44) represents a Schur complement
of the edge LaplacianLe. The Schur complement of a Laplacian
matrix also forms the basis of so-called Kron reduction of
graphs, which finds application in the scope of reduction of
electrical networks (see [11]). �

Remark 6: The fact that Theorem 9 gives similar statements
for the generalized edge controllability and generalized edge
observability Gramians is directly dependent on the choice to
consider edge controllability and edge observability in different
and specific coordinates, thus providing a motivation for this
choice. Here, it is recalled that the edge system Σe in (20) is
used to study controllability, whereas the dual edge system Σf

in (22) is exploited for the observability case. The evaluation of
controllability and observability in the same coordinates would
not lead to a result as in Theorem 9 for both Gramians simulta-
neously, hereby prohibiting the repeated application of one-step
reductions through clustering. Moreover, this choice would not
allow for the computation of a bound on the reduction error
in Section V-C. Consequently, the use of different coordinates
for the expression of the generalized edge Gramians is crucial
for the development of the clustering-based reduction technique
in this paper and the parameters πc

i and πo
i in (41), (42) play a

similar role as the Hankel singular values in balanced truncation
(see [15] for the latter). �

C. Preservation of Synchronization and Error Bound

The one-step reduction procedure through the projection
using the matrices (30) will be repeatedly applied to obtain
reduced-order networked systems of arbitrary order. However,
before treating this in more detail, the quality of the approxima-
tion obtained by a one-step reduction will be analyzed.

To this end, the output error introduced by reduction is con-
sidered. Herein, it is recalled that the output y of the networked
system Σ in (6) can be found as the sum of the output of the
average system Σa in (19) and the edge system Σe in (20), i.e.,
y = ya + ye. A similar statement holds for the reduced-order
networked system Σ̂n̄−1 in (32), such that ŷ = ŷa + ŷe. Error
analysis for the networked system will therefore be considered
for the average system and edge system separately. First, the
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reduced-order average system Σ̂a equals Σa, as formalized as
follows.

Theorem 10: Consider the networked system Σ in (6) satis-
fying Assumptions 1 and 2 and let Σ̂n̄−1 in (32) be a one-step
approximation obtained by projection. Let Σa in (19) and Σ̂a in
(39) be the corresponding average systems. Then, for any input
function u(·) and initial conditions satisfying xa(0) = ξa(0),
the outputs satisfy ya(t) = ŷa(t) for all t ≥ 0.

Proof: To prove the theorem, the error coordinates ea are
introduced as ea = xa − ξa. Next, from the definition of V in
(30) it is easily seen that V 1n̄−1 = 1n̄, such that it follows from
(19) and (39) that the output error can be written as ya − ŷa =
(H1⊗ C)ea. The dynamics of the error can be obtained from
(19) and (39) and reads

ėa = Aea +
(
(νT − ν̂TWT )G⊗B

)
u. (48)

In the remainder of the proof, it will be shown that ν = Wν̂,
such that (48) is independent of the input u, proving the
theorem.

It is recalled that ν and ν̂ represent the left eigenvector
for the single zero eigenvalue of L and L̂, respectively, i.e.,
νTL = 0 and ν̂T L̂ = 0. By the factorizations of L as in (9)
and L̂ = F̂ ÊT (see Lemma 8) this is equivalent to FT ν = 0
and F̂T ν̂ = 0 such that ν and ν̂ form a basis for the null
spaces (which are guaranteed to be of dimension one by the
factorizations of Le and L̂e, where the latter are full-rank) of
FT and F̂T . Then, after recalling the derivation of F̂ in (38), it
can be concluded that ν̂TWTF = ν̂T [F̂ 0] = 0 and the vector
Wν̂ is in the null space of FT . Consequently, there exists a
scalar c such that cWν̂ = ν. Pre-multiplication with 1T

n̄ yields
c1T

n̄Wν̂ = 1T
n̄ν. Then, by recalling the definition of W in (30),

it can be seen that 1T
n̄W = 1T

n̄−1. Now, by exploiting that ν
and ν̂ have nonnegative elements and the standing assumption
that they are scaled such that 1T

n̄ν = 1 and 1T
n̄−1ν̂ = 1, it can be

seen that c = 1 and the result follows. �
Next, the error between the high-order edge system Σe and

the reduced-order edge system Σ̂e is considered. Thereto, the
matrix M is introduced and partitioned according to (43) as

M =

[
M11 M12

M21 M22

]
:= L−1

e (49)

such that M22 is scalar. Then, when all interconnected subsys-
tems are bidirectionally coupled, the error bound on the edge
systems is given as follows.

Theorem 11: Consider the networked system Σ in (6) satisfy-
ing Assumptions 1 and 2, where wij > 0 if and only if wji > 0.
Let Σ̂n̄−1 in (32) be a one-step approximation obtained by
projection. Let Σe in (20) and Σ̂e in (40) be the corresponding
edge systems. Then, for any input function u(·) ∈ Lm̄

2 ([0,∞))
and initial conditions xe(0) = 0, ξe(0) = 0, the outputs satisfy

‖ye − ŷe‖2 ≤ 2M22

(
Π̃c

2Π̃
o
2

) 1
2 ‖u‖2 (50)

with M22 as in (49) satisfyingM22 > 0. Moreover, Π̃c
2 := πc

n̄−1

and Π̃o
2 := πo

n̄−1 are the discarded parts of the generalized edge

controllability and generalized edge observability Gramians as
in (41) and (42).

Proof: The proof can be found in Appendix A. �
In the results discussed so far, a one-step reduction was

considered, in which two neighbouring vertices are clustered
to obtain a reduced-order networked system. In order to define
the reduction of networked systems to an arbitrary order, it
is recalled that the diagonal generalized edge controllability
Gramian Π̃c and generalized edge observability Gramian Π̃o in
Definitions 4 and 5, respectively, are written as (41) and (42).
Moreover, it is assumed that the edges are numbered such that
the inequalities

(M)211π
c
1π

o
1 ≥ . . . ≥ (M)2(n̄−1)(n̄−1)π

c
n̄−1π

o
n̄−1 ≥ 0 (51)

hold, where (M)ii is the i-th element on the diagonal of M =
L−1
e . The ordering (51) is motivated by the one-step error bound

(50), which indicates that small values of the products in (51)
lead to smaller error bounds and potentially better reduced-
order systems.

Remark 7: The ordering (51) can always be obtained by a
suitable permutation of the edges in the original coordinates
(20). After introducing the permutation matrix S and new coor-
dinates xe = (S ⊗ I)x̃e, the edge Laplacian Le is transformed
to STLeS (consequently, M becomes STMS), whereas the
generalized edge Gramians Π̃c and Π̃o can be written as
ST Π̃cS and ST Π̃oS, respectively, after transformation. �

When the edges are numbered such that the inequalities
(51) hold, a reduced-order networked system consisting of k̄
subsystems can be obtained by introducing

V̄ =Sn̄−1Vn̄−1Sn̄−2Vn̄−2 · · ·Sk̄Vk̄

W̄ =Sn̄−1Wn̄−1Sn̄−2Wn̄−2 · · ·Sk̄Wk̄ (52)

where the projection matrices Vl and Wl are defined as

Vl =

⎡
⎣Il−1 0

0 1
0 1

⎤
⎦ , Wl =

⎡
⎢⎣
Il−1 0

0
wjlil

wiljl
+wjlil

0
wiljl

wiljl
+wjlil

⎤
⎥⎦ . (53)

The projection (52) can be considered as a series of one-step
projections SlVl (and SlWl). Here, Sl is a permutation matrix
that renumbers the vertices (subsystems) such that the vertices
il and jl are renumbered as l and l − 1, with il and jl the
vertices adjacent to the edge l that is removed in this step. Then,
Vl and Wl are of the form (30) and ensure that the relevant
vertices are clustered.

The application of the projection given by (52) to the original
networked system Σ (with n̄ subsystems) in (6) leads to a
reduced-order networked system with k̄ subsystems Σ̂k̄ as

Σ̂k̄ :

{
ξ̇ = (I⊗A−W̄TLV̄ ⊗BC)ξ+(W̄TG⊗B)u

ŷ = (HV̄ ⊗C)ξ
(54)

with ξ ∈ Rk̄n the reduced-order state vector.
Then, the results on properties of the reduced-order network

system obtained by a one-step reduction can be extended to
obtain results on Σ̂k̄, as formalized in the following theorem.
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Theorem 12: Consider the networked system Σ in (6) sat-
isfying Assumptions 1 and 2 and let Σ̂k̄ be a reduced-order
networked system obtained by the series of one-step clusterings
(52). Let Ĝk̄ be the corresponding graph on k̄ vertices and
Ĝu,k̄ the underlying undirected graph. Then, Ĝu,k̄ is a tree and

Ĝk̄ contains a directed rooted spanning tree as a subgraph.
Moreover, any trajectory of Σ̂k̄ satisfies, for all i, j ∈ V̂ :=
{1, 2, . . . , k̄}

lim
t→∞

(ξi(t)− ξj(t)) = 0. (55)

If, in addition, wij > 0 if and only if wji > 0, then the output
error y − ŷ satisfies

‖ŷ − y‖2 ≤ 2

(
n̄−1∑
l=k

(M)ll
√
πc
l π

o
l

)
‖u‖2 (56)

for all trajectories x(·) of Σ and ξ(·) of Σ̂k̄ such that x(0) = 0
and ξ(0) = 0 and for any input function u(·) ∈ Lm̄

2 ([0,∞)).
Proof: To prove the theorem, it is first noted that Lemma 8

guarantees that the interconnection structure obtained by a one-
step reduction satisfies the conditions in Assumption 2. The
repeated application of this lemma then guarantees that the
reduced-order networked system Σ̂k̄ satisfies Assumption 2,
such that the statements on Ĝk̄ and Ĝu,k̄ follow from Lemma 8.
Moreover, as reduction is performed on the level of the in-
terconnection topology and the subsystem dynamics remain
unchanged, Assumption 1 also holds for reduced-order net-
worked systems of arbitrary order. Then, the result (55) on
synchronization directly follows from Theorem 5.

To prove the error bound (56), let ŷl denote the output of
a reduced-order system of the form (54) with l subsystems,
obtained by a one-step reduction from a networked system
of order l + 1 and output ŷl+1. By combining the results of
Theorem 10 and Theorem 11, the error bound for this one-step
reduction can be found as

‖ŷl − ŷl+1‖2 = ‖ŷa,l + ŷe,l − (ŷa,l+1 + ŷe,l+1)‖2
= ‖ŷe,l − ŷe,l+1‖2
≤ 2(M)ll

√
πc
l π

o
l ‖u‖2. (57)

Here, the final equality follows from ŷa,l= ŷa,l+1 in Theorem 10,
whereas the inequality follows from the one-step error bound on
the edge system in Theorem 11. Then, by defining ŷn̄ = y, the
application of the triangle inequality leads to

‖ŷk̄ − y‖2 =

∥∥∥∥∥
n̄−1∑
l=k̄

(ŷl − ŷl+1)

∥∥∥∥∥
2

≤
n̄−1∑
l=k̄

‖ŷl − ŷl+1‖2 (58)

yielding, after the substitution of (57), the error bound (56) for
the reduced-order networked system Σ̂k̄ in (54). �

As shown by Theorem 12, the reduced-order networked
system obtained by clustering of subsystems is guaranteed
to synchronize. Thus, stability properties of the original net-
worked system have been preserved. Moreover, an a priori error
bound is available, providing a direct measure of the quality of
the reduced-order networked system.

Remark 8: It is stressed that the result on the preservation of
synchronization in Theorem 12 does not require the assumption
of bidirectionality (in fact, this property can be proven for any
graph satisfying only point 2. in Assumption 2). Moreover, the
reduction procedure discussed in Section V can be applied as
long as solutions Π̃c and Π̃o to (21) and (23) exist (for which
bidirectionality provides a sufficient, but not necessary, condi-
tion). Even though the error bound (56) is not guaranteed for
systems that do not satisfy the assumption on bidirectionality,
a good approximation can be expected due to the continuous
dependence of the solutions of Σ in (6) on the interconnection
weights wij . Here, an arc with zero weight can be approximated
by an arc with arbitrarily small positive weight, at least on a fi-
nite time interval. �

VI. ILLUSTRATIVE EXAMPLE

To illustrate the clustering-based model reduction procedure
developed in Section V, the thermal model of several adjacent
rooms in a building is considered. Following [21], each room is
modeled as a two thermal-mass system given as

C1Ṫ
i
1 =R−1

int

(
T i
2 − T i

1

)
+R−1

out

(
Tenv − T i

1

)
+ Pi

C2Ṫ
i
2 =R−1

int

(
T i
1 − T i

2

) (59)

where T i
1 and T i

2 are the temperature of the fast thermal mass
C1 and slow thermal mass C2, respectively (i.e., C2 > C1).
Here, the slow thermal mass represents solid elements such
as walls and furniture, whereas the fast thermal mass mainly
models the air inside the room. In (59), Rint is the thermal
resistance between these two thermal masses and Rout is the
thermal resistance of the outer walls. Moreover, Pi represents
the power supplied to the room through external inputs such
as heaters and the heat exchange with neighbouring rooms and
Tenv is the environmental temperature. Then, after choosing the
state xT

i = [T i
1 T i

2], the input vi = Pi −R−1
outTenv and output

zi = T i
1, it can be checked that (59) can be written in the form

(8), where

Q =

[
C1 0
0 C2

]
, J = 0

R =
1

RintC1C2

[
C2

C1
1

1 C1

C2

]
− 1

RoutC2
1

[
1 0
0 0

]
(60)

and B = [C−1
1 0]

T
. As a result, Assumption 1 is satisfied. A

corridor of six rooms is considered as in Fig. 2, such that
the interconnection between the rooms can be written in the
form (2) with the weights given by wi,i+1 = wi+1,i = R−1

wall for
i ∈ {1, 2, 4, 5}, w34 = w43 = (κRwall)

−1 and wij = wji = 0
otherwise. Here, Rwall represents the nominal thermal resis-
tances of the walls dividing the rooms, where it is remarked that
the resistance of the third wall (i.e., the wall between rooms 3
and 4) can be adapted through the parameter κ > 0.

The control of the temperature in the third room is of interest,
and it is assumed that this room has a heater that supplies the
power Ph. Then, the external inputs to the network of rooms
is given by u = [Ph Tenv]

T and the corresponding input matrix
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Fig. 2. Path graph representing a corridor of six rooms and the clusters
obtained by a three-step reduction for κ = 1 (left) and κ = 0.25 (right).

TABLE I
NUMERICAL VALUES OF THE CRITERION π̄i := (M)ll

√
πc
l π

o
l FOR κ = 1

in the interconnection (2) yields G = [e3 R−1
out16]. Finally, a

temperature measurement of the third room is available, such
that y = T 3

1 and H = eT3 . By combining this interconnection
structure with the room dynamics, the networked system has the
form (6). Here, it is remarked that the interconnection structure
satisfies Assumption 2, where it is recalled this assumption al-
lows for the interconnection topology to have nonequal weights
(i.e., the thermal resistances of the walls between different
rooms may vary). However, the internal dynamics of each
room (that satisfies Assumption 1) is required to be equal.
The parameters are taken as C1 = 4.35 · 104 J/K, C2 = 9.24 ·
106 J/K, Rint = 2.0 · 10−3 K/W, Rout = 23 · 10−3 K/W and
Rwall = 16 · 10−3 K/W.

After taking κ = 1, the generalized edge controllability
Gramian and generalized edge observability Gramian are com-
puted through (21) and (23), respectively, hereby minimizing
their trace. Then, by forming the products (M)2llπ

c
l π

o
l , hereby

using (41), (42) and recalling that M = L−1
e , it follows that

edge 5 has the smallest influence on the input-output behavior
of the networked system, followed by edges 1 and 4 (see
Table I). Consequently, a three-step reduction leads to the
clustering as in the left graph of Fig. 2, where it is noted that the
rightmost cluster is formed in two steps. Thus, the two leftmost
rooms as well as the three rightmost rooms are approximated
as a single room each. When the thermal resistance of the wall
between rooms 3 and 4 is decreased by choosing κ = 0.25, a
different clustering is obtained, see the right graph in Fig. 2.
Even though this corresponds to the intuition that rooms that are
strongly coupled (i.e., the wall between them has only a small
thermal resistance) show similar behavior, it is stressed that the
location of external inputs and outputs also plays an important
role. As an example for the case κ = 0.25, the algorithm yields
the large cluster consisting of rooms three to six if the output is
changed to a measurement of the temperature in the first room
rather than room three.

By Theorem 12, synchronization of the reduced-order net-
worked system (for u = 0) is guaranteed. Moreover, Fig. 3
provides a comparison of the frequency response functions (for
input Ph, output T 3

1 , and κ = 1) of the original networked sys-
tem Σ and the reduced-order networked system Σ̂3, showing a
close approximation. In fact, it can be shown that the response

Fig. 3. Comparison of the magnitude of the frequency response functions T of
Σ and T̂ of Σ̂3 (from input Ph to output T 3

1 ) for κ = 1.

with respect to the input Tenv is matched perfectly, which is re-
lated to the fact that this input acts identically on all subsystems
and therefore is related to the average system Σa in (19) only,
which is preserved during the reduction. Finally, Theorem 12
provides an error bound 2

∑5
l=3(M)ll

√
πc
l π

o
l = 11.4 · 10−3,

whereas the real error is computed (through the H∞-norm of
the error system) as 0.849 · 10−3. The conservatism in the error
bound is mainly due to the fact that a diagonal structure is en-
forced in the generalized edge Gramians in Definitions 4 and 5.

VII. CONCLUSION

In this paper, a model reduction procedure for networked
systems with a tree topology and passive subsystems is devel-
oped. Based on a controllability and observability analysis of
corresponding edge systems, clusters of subsystems are iden-
tified and subsequently aggregated. As a result, the reduced-
order network allows for a convenient physical interpretation.
Moreover, it is shown that the property of synchronization is
preserved during reduction and a computable a priori bound on
the reduction error is available.

A natural focus for future research is in the extension of
these results towards interconnection topologies including cy-
cles and nonidentical subsystems. Such extensions are however
not straightforward and the following obstacles are faced.

It is clear that the concept of clustering and the corre-
sponding projection-based approach discussed in this paper
are not limited to graphs with a tree structure. However, the
definition of the (generalized) edge Gramians, which are crucial
in determining which subsystems to cluster, is an open problem
for systems with cycles. Namely, for such systems, the edge
Laplacian Le will have a number of zero eigenvalues that
are related to the existence of redundant coordinates in the
corresponding edge system and the interdependence between
these coordinates (due to the presence of cycles) will affect
the definition of the edge Gramians. More specifically, regular
(i.e., non-generalized) Gramians are only uniquely defined for
asymptotically stable systems and, since the generalized edge
Gramians provide bounds on regular Gramians, the current
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definition might not be suitable for systems with cycles. As
an additional complication, it is recalled that any definition
of generalized edge Gramians for systems with cycles should
feature a property similar to that in Theorem 9 in order to enable
model reduction.

In the extension towards networked systems with non-
identical subsystems, a major challenge lies in the computation
of relevant controllability and observability measures. Namely,
in such a case, a decomposition of such measures in terms
related to the graph structure and subsystems, respectively, as in
Theorem 7, does no longer hold. In addition, the representation
of a cluster of non-identical subsystems needs to be defined.

APPENDIX

Before proving the error bound in Theorem 11, the follow-
ing technical lemma is stated, which relates properties of the
interconnection topology to the gain of the networked system.

Lemma 13: Consider an asymptotically stable system

ẋ = (I ⊗A− L̃⊗BC)x + (G̃⊗B)u

y = (H̃ ⊗ C)x
(61)

in which the subsystems satisfy Assumption 1. Moreover, con-
sider the accompanying system

˙̃x = −L̃x̃+ G̃ũ, ỹ = H̃x̃ (62)

and assume that −L̃ is Hurwitz. If there exists a function
Ṽ (x̃) = x̃T K̃x̃ with K̃ = K̃T � 0 and γ > 0 such that

˙̃V (x̃) ≤ γ2|ũ|2 − |ỹ|2 (63)

holds along all trajectories of (62), then there exists a function
V (x) = xTKx such that

V̇ (x) ≤ γ2|u|2 − |y|2 (64)

holds along all trajectories of (61). In particular, K can be
chosen as K = K̃ ⊗Q, with Q the energy function of the
subsystems as in (8).

Proof: In order to prove this lemma, it is noted that (63)
can be written as[

x̃
ũ

]T [
−L̃T K̃ − K̃L̃+ H̃T H̃ K̃G̃

G̃TK −γ2I

] [
x̃
ũ

]
≤ 0. (65)

Consequently, (63) holds if and only if the matrix given in
(65) is negative semi-definite (see also the theory on dissipative
systems and the bounded real lemma in, e.g., [8]). By the Schur
complement, this is equivalent to

−L̃T K̃ − K̃L̃+ H̃T H̃ − γ−2K̃G̃G̃T K̃ � 0. (66)

Next, the matrix

Λ := (I ⊗A− L̃⊗BC)T (K̃ ⊗Q)

+ (K̃ ⊗Q)(I ⊗A− L̃⊗BC)

+ (H̃ ⊗ C)T (H̃ ⊗ C)

− γ−2(K̃ ⊗Q)(G̃⊗B)(G̃⊗B)T (K̃ ⊗Q) (67)

is considered, which has the same structure as the left-hand-side
of (66) [but for the system (61)]. Thus, by the equivalence dis-
cussed above, (64) holds if Λ satisfies Λ � 0. Then, expansion
of the Kronecker products and substitution of A = (J −R)Q
and C = BTQ, hereby noting that J = −JT , leads to

Λ = −2(K̃ ⊗QRQ)

+ (−L̃T K̃ − K̃L̃+ H̃T H̃ − γ−2K̃G̃G̃T K̃)⊗ CTC (68)

such that the substitution of (66) in (68) gives Λ � −2(K̃ ⊗
QRQ) � 0. Here, the latter inequality follows from the proper-
ties K̃ � 0 and R � 0, proving the lemma. �

Now, the proof of Theorem 11 can be stated as follows.
Proof of Theorem 11: To prove the theorem, the error

between the edge system Σe in (20) and the reduced-order edge
system Σ̂e in (40) has to be considered. However, motivated by
the results of Lemma 13, the accompanying systems defined by
their respective interconnection topologies will be exploited. In
particular, instead of the edge system (20), the dynamics

˙̃xe = −Lex̃e +Geũ, ỹe = Hex̃e (69)

will be used, where x̃e ∈ Rn̄−1. However, it will turn out
that it is more convenient to write (69) in a different form,
which is obtained by pre-multiplying the dynamics of (69) with
M = L−1

e as

M ˙̃xe = −Ix̃e +Gf ũ, ỹe = Hex̃e. (70)

Here, Gf = L−1
e Ge = (ETF )

−1
Ge is the same external input

matrix as that of the dual edge system (22). Before defining the
accompanying system for the reduced-order edge system Σ̂e in
(40), it is recalled that the interconnection topology of Σ̂e is
characterized by L̂e. Then, by considering the partitioning of
M = L−1

e in (49), the relations for the inverse of a partitioned
matrix (see, e.g., [17]) yield[
M11 M12

M21 M22

]
=

[
M11 −M11Le,12L

−1
e,22

−M−1
22 Le,21L

−1
e,11 M22

]
.

(71)

Here, M11 = (Le,11 − Le,12Le,22Le,21)
−1 = L̂−1

e , where the
latter equality follows from (44). Similarly, after introducing
the partitioning

Gf =

[
Gf,1

Gf,2

]
, He =

[
He,1 He,2

]
(72)

and observing that Gf = MGe [see (20)], it can be seen by
comparison of (71) and (45) that Gf,1 = M11Ĝe. After using
He = HfM [see (22)] and (46), it then follows that the accom-
panying system to Σ̂e in (32) can be written as

M11
˙̃
ξe = −Iξ̃e +Gf,1ũ, ˜̂ye = He,1ξ̃e. (73)

In the remainder of this proof, the error between the systems
(70) and (73) will be considered, hereby exploiting ideas from a
frequency-domain approach in [12]. Then, in order to write the
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transfer functions T of (70) and T̂ of (73) in a convenient form,
the functions ϕ and Δ are introduced as

ϕ(s) = (sM11 + I)−1 (74)

Δ(s) = sM22 + I − s2M21ϕ(s)M12. (75)

Using these definitions, the expressions for the inverse of a
partitioned matrix lead to

(sM + I)−1 =

[
ϕ(s) 0
0 0

]

+

[
−sϕ(s)M12

I

]
Δ−1(s)

[
−M21sϕ(s) I

]
(76)

from which it follows that T (s)− T̂ (s) = H̃(s)Δ−1(s)G̃(s),
where:

H̃(s) = −He,1sϕ(s)M12 +He,2 (77)

G̃(s) = −M21sϕ(s)Gf,1 +Gf,2. (78)

This thus expresses the error (in Laplace domain) between the
accompanying systems of the edge system and reduced-order
edge system. The size of this error is quantified by using the
H∞ norm, which is given as∥∥∥T (s)− T̂ (s)

∥∥∥
H∞

= sup
ω∈R

σmax

(
T (jω)− T̂ (jω)

)
(79)

and were σmax(·) represents the largest singular value. By
noting that the transfer functionΔ in (75) and the product G̃G̃H

are scalar [see (78)], it follows that (the squared value of) the
maximum singular value in (79) can be written as

σ2
max

(
T (jω)− T̂ (jω)

)

=
G̃(jω)G̃H(jω)

Δ(jω)ΔH(jω)
λmax

(
H̃(jω)H̃H(jω)

)
. (80)

Here, TH denotes the Hermitian transpose satisfying
TH(jω) = (T (−jω))T and λmax(·) represents the largest
eigenvalue. However, it is clear from (77) that the matrix
H̃H̃H is of rank one, such that its only nonzero eigenvalue
(hence, λmax) reads H̃HH̃ , leading to

σ2
max

(
T (jω)− T̂ (jω)

)
=

G̃(jω)G̃H(jω)H̃H(jω)H̃(jω)

Δ(jω)ΔH(jω)
.

(81)

It is remarked that (81) is a real-valued function.
In order to find a bound on the magnitude of the frequency re-

sponse function in (81), several terms are considered separately.
First, it follows from the definition of G̃ in (78) that

G̃(jω)G̃H(jω) =
[
−M21jωϕ(jω) I

] [Gf,1

Gf,2

]

×
[
Gf,1

Gf,2

]T [
jωϕH(−jω)MT

21

I

]
. (82)

At this point, it is recalled that the generalized edge control-
lability Gramian Π̃c in Definition 4 satisfies inequality (21).
Pre- and post-multiplication of (21) with M = L−1

e and MT ,
respectively, leads to

Π̃cMT +M Π̃c −MGeG
T
e M

T

= Π̃cMT +M Π̃c −GfG
T
f � 0. (83)

Then, by exploiting the partitioning of Π̃c in (41), M in (49),
and Gf in (72), the use of (83) in (82) leads to

G̃(jω)G̃H(jω) ≤ ∇(jω)Π̃c
2 + Π̃c

2∇H(jω). (84)

where the function ∇ is defined as

∇(jω) = M22 −M21jωϕ(jω)M12. (85)

A similar procedure can be performed for the observability
case, hereby using the definition of the generalized edge ob-
servability Gramian Π̃o in (23). Then, again exploiting the
definition (85), it can be shown that

H̃H(jω)H̃(jω) ≤ ∇H(jω)Π̃o
2 + Π̃o

2∇(jω). (86)

Now, by collecting the bounds on G̃(jω)G̃H(jω) in (84) and
H̃H(jω)H̃(jω) in (86) (and recalling that all frequency re-
sponse functions are scalar), it follows that the magnitude of
the error in (81) can be written as

σ2
max

(
T (jω)− T̂ (jω)

)
≤ Π̃c

2Π̃
o
2δ(ω) (87)

where the real-valued function δ is defined as

δ(ω) =

(
∇(jω) +∇H(jω)

)2
Δ(jω)ΔH(jω)

. (88)

In the remainder of the proof, it will be shown that δ satisfies

sup
ω∈R

δ(ω) = δ(0) = (2M22)
2 (89)

where M22 is the discarded block of the matrix M in (49).
In order to show that M22 is positive, it is remarked that the

assumption that wij > 0 if and only if wji > 0 ensures that the
conditions of Lemma 4 hold and that the matrix F as in (9) can
be written as (16). Then, it follows that:

M = L−1
e = (ETF )

−1
= D2

(
ETD−1

1 E
)−1

(90)

where D1 � 0. Consequently (ETD−1
1 E)

−1
is a positive defi-

nite matrix and its diagonal elements are positive. Since D2 � 0
(by Lemma 4), it follows that the diagonal elements of M in
(90) are positive and M22 > 0 [see (49)].

Next, several intermediate steps will be taken to prove the
equality (89). First, Lemma 4 is exploited again and the ma-
trices D1 and D2 in (16) are partitioned according to the
partitioning of the matrices E and F in (33) as

D1 = diag{D1,0, D1,i, D1,j}, D2 = diag{D2,0, D2,l} (91)

such that the equality (16) and the partitioning (33) directly
leads to E00 = D1,0F00D2,0, Ei0 = D1,iFi0D2,0 and Ej0 =
D1,jFj0D2,0. The substitution of this in the expression for
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the incidence matrix for the reduced-order graph Ê in (34) in
Lemma 8 leads to

Ê =

[
E00

Ei0 + Ej0

]

=

[
D1,0 0

0 D1,i
wij+wji

wji

][
F00

wji

wij+wji
Fi0+

wij

wij+wji
Fj0

]
D2,0

(92)

where the property D1,iwij = D1,jwji is used, which can be
concluded from the construction of the matrix D1 as in (17). It
is noted that the second matrix in the multiplication at the right-
hand side of (92) equals F̂ [see (35)], such that (92) provides a
relation of the form

Ê = D̂1F̂ D̂2 (93)

where D̂2 can be chosen as D2,0. This relation will be exploited
later.

As a second intermediate step to show (89), the relation E =
D1FD2 in (16) is again exploited. Namely, it follows from
(16) that the matrix D

−1/2
2 LeD

1/2
2 = D

−1/2
2 ETD−1

1 ED
−1/2
2

is symmetric. By using this fact, as well as the partitioning
of Le in (43) and the partitioning of D2 in (91), it is readily
shown that

D
− 1

2

2,l Le,21D
1
2
2,0 =

(
D

− 1
2

2,0Le,12D
1
2

2,l

)T

. (94)

The third and final intermediate step is based on the relation
(93), where it is recalled that D̂2 can be chosen as D2,0 as in
(91). Then, the factorization L̂e = ÊT F̂ and the relation (93)
imply that D

−1/2
2,0 L̂eD

1/2
2,0 is a symmetric matrix (see above

for the high-order case), such that it admits an eigenvalue
decomposition UΛUT . For the reduced-order edge Laplacian,
this leads to the eigenvalue decomposition

L̂e = D
1
2
2,0UΛUTD

− 1
2

2,0 (95)

where it is noted that all eigenvalues (on the diagonal of Λ) are
real-valued and positive (by Lemma 3) and U is an orthogonal
matrix.

Now, returning to the proof of the bound (89), the function
∇ in (85) is considered. By using the definition of ϕ in (74), it
can be shown that ∇ can be written as

∇(jω) =
(
M22 −M21M

−1
11 M12

)
+M21M

−1
11 (jωI + L̂e)

−1M−1
11 M12. (96)

The use of the eigenvalue decomposition (95) in (96) yields

∇(jω) =
(
M22 −M21M

−1
11 M12

)
+

n̄−2∑
i=1

ci
jω + λi

(97)

where the constants ci are given as

ci = M21M
−1
11 D

1
2
2,0UiU

T
i D

− 1
2

2,0M
−1
11 M12 (98)

and with Ui the i-th column of U . By exploiting the expressions
for the inverse of a partitioned matrix, it follows from (49)

that M−1
11 M12 = −Le,12L

−1
e,22 and M21M

−1
11 = −L−1

e,22Le,21

[see also (71)], such that the expression for ci in (98) can be
written as

ci = L−1
e,22Le,21D

1
2
2,0UiU

T
i D

− 1
2

2,0Le,12L
−1
e,22. (99)

At this point, it is recalled that Le,22 is scalar due to the
one-step reduction. Then, by noting that D2,l in the partitioned
diagonal matrix D2 in (91) is scalar (and strictly positive by
Lemma 4), it follows that:

ci =L−1
e,22D

− 1
2

2,l Le,21D
1
2
2,0UiU

T
i D

− 1
2

2,0Le,12D
1
2

2,lL
−1
e,22 (100)

=
∣∣∣UT

i D
− 1

2
2,0Le,12D

1
2

2,lL
−1
e,22

∣∣∣2 (101)

where the relation (94) is used to obtain the latter equality.
Consequently, ci is nonnegative, i.e., ci ≥ 0. This condition
will turn out to be crucial in proving the result (89).

To prove (89), the numerator and denominator of δ in (88) are
considered separately. First, the (square root of) the numerator
can be written as

∇(jω) +∇H(jω) = 2
(
M22 −M21M

−1
11 M12

)
+

n̄−2∑
i=1

2ciλi

ω2 + λ2
i

. (102)

By noting that M22 −M21M
−1
11 M12 = L−1

e,22 = 1/Le,22 is
strictly positive and recalling that ciλi ≥ 0, it is clear that
(102) is a real-valued positive function which decreases as ω
increases. Consequently

sup
ω∈R

∇(jω) +∇H(jω) = ∇(0) +∇H(0) = 2M22. (103)

Next, the denominator of δ in (88) is considered. By com-
paring the definitions of Δ in (75) and ∇ in (85), it follows
that Δ(jω) = I + jω∇(jω). Then, by substitution of (97) and
explicitly expressing Δ(jω)ΔH(jω), it can be shown that
Δ(jω)ΔH(jω) is a real-valued nondecreasing positive func-
tion, such that

inf
ω∈R

Δ(jω)ΔH(jω) = Δ(0)ΔH(0) = I. (104)

Herein, the properties λi > 0 and ci ≥ 0 are crucial in deriving
the result. Then, the use of the bounds (103) and (104) leads to

sup
ω∈R

δ(ω) ≤
supω∈R

(
∇(jω) +∇H(jω)

)2
infω∈R Δ(jω)ΔH(jω)

=

(
∇(0) +∇H(0)

)2
Δ(0)ΔH(0)

=δ(0)=(2M22)
2 (105)

which proves the result (89).
The substitution of (89) in (87) leads to

σmax

(
T (jω)− T̂ (jω)

)
≤ 2M22

(
Π̃c

2Π̃
o
2

) 1
2

(106)

providing a bound on the gain of the error system formed by the
accompanying system of Σe in (70) and the accompanying sys-
tem of Σ̂e in (73). As this result is independent on the internal
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realization of the systems, it also holds for the representation
(69) of the accompanying system of Σe. Choosing a similar
representation for the accompanying system of Σ̂e, it is clear
that the bound (106) holds for an error system of the form (62)
with system matrices

L̃ =

[
Le 0

0 L̂e

]
, G̃ =

[
LeGf

L̂eGf,1

]

H̃ =
[
He −He,1

]
. (107)

At this point, it is recalled that the bounded real lemma (see,
e.g., [8]) guarantees the equivalence between a frequency-
domain gain bound of the form (106) and the existence of a
matrix K̃ such that (63) holds for γ = 2M22(Π̃

c
2Π̃

o
2)

1
2 . Then,

the error bound (50) follows from the application of Lemma 13.
Here, it is noted that the system (61) with matrices (107)
characterizes the error system Σe − Σ̂e and that the inequality
(64) is equivalent to the system gain using L2 signal norms as
in (50), see, e.g., [8], [32]. �
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