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SUMMARY

Design and experimental validation of model predictive control (MPC) of a hybrid dynamical laboratory process with wireless
sensors is presented. The laboratory process consists of four infrared lamps, controlled in pairs by two on/off switches,
and of a transport belt, where moving parts equipped with wireless sensors are heated by the lamps. The process, which is
motivated by heating processes in the plastic and printing industry, presents interesting hybrid dynamics. By approximating
the stationary heat spatial distribution as a piecewise affine function of the position along the belt, the resulting plant model
is a hybrid dynamical system. The control architecture is based on the reference governor approach: the process is actuated
by a local controller, while a hybrid MPC algorithm running on a remote base station sends optimal belt velocity setpoints
and lamp on/off commands over a wireless link, exploiting the sensor information received through the wireless network.
A discrete-time hybrid model of the process is used for the hybrid MPC algorithm and for the state estimator. The physical
modelling of the process and the hybrid MPC algorithm are presented in detail, together with the hardware and software
architectures. The experimental results show that the presented theoretical framework is well suited for control of the new
laboratory process, and that the process can be used as a prototype system for evaluating hybrid and networked control
strategies. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Today’s society is rapidly moving toward an ‘every-
where connected wireless community’ with large
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numbers of interacting mobile embedded systems that
influence every aspect of our lives. Handheld communi-
cation devices and personal computers are exchanging
information over cellular and wireless local area
networks. Wireless appliances and systems are being
used in our offices and homes, but more and more
also in large-scale control systems such as in utility
infrastructures and transportation networks.

Communication networks have been commonly used
in distributed control systems since the seventies [1].
Over the last few years, a number of initiatives have
been taken to introduce wireless networks in industrial
automation and process control. New wireless sensors
for industrial control applications are already present
on the market. It is evident that new communication
protocols and control strategies are needed for these
wireless control systems [2, 3]. Recent standardization
efforts include WirelessHART [4], which is a wire-
less mesh network communications protocol designed
to meet the needs for process automation applica-
tions, and the ISA-SP100 standard [5], according
to which wireless sensors will be primarily used
within ‘Class 2-Closed-loop supervisory control’ of
the taxonomy introduced by the standard, where
information availability is often not safety critical. A
rigorous framework for designing integrated control
and communication systems is however lacking. There
are several initiatives to counteract this fact; one such
initiative is SOCRADES [6] driven by the European
automation industry to develop a design platform for
wireless automation.

The use of a wireless technology in feedback control
loops raises new challenges. The network medium
introduces uncertainties on packets loss, communica-
tion outages, transmission delay etc. The impact of
these uncertainties on the closed-loop control system
depends on many system aspects. For example, some
communication protocols guarantee the delivery of
a message, but on the other hand give high delay
variability. Other protocols provide a less reliable
communication, but ensure better delay characteris-
tics. For wireless networks, packet losses typically
vary heavily with the radio conditions, hence if the
environment is changing or the nodes are mobile, the
control system needs to handle the varying network
conditions.

1.1. Wireless control in industry

There are several benefits from introducing wireless
networking in industrial control applications in general.
They can be summarized as follows [6, 7]:

• Cost: Wireless links lead to reduced wiring, which
constitutes a substantial part of the development
cost for many industrial plants simply due to the
high price of copper wires. Wireless technology
also has the potential to reduce the installation
cost, since hardware installation for a wireless
network is limited to some routers and gateways.

• Flexibility: With wireless links there are fewer
physical design limitations, and it is easier to move
the equipment. Thanks to mobility and fast recon-
figuration, new and better designs can be exploited
in the system development and operation.

• Fault handling: Connectors and wires lead to many
faults in industrial control systems, partly because
of cable wear and tear. Consequently, wireless
devices have a potential to reduce the downtime
for these systems.

There are numerous barriers against wireless networking
in industrial control. In a recent survey [8], the main
concerns were security and reliability, followed by the
fact that there is too little knowledge available and
too few industrial products. By developing control
architectures and algorithms especially suitable for
unreliable wireless links, one can target the reliability
issue. By presenting a new pedagogical laboratory
process on wireless control, we are in this paper
contributing to the awareness of networked control
potentials and limitations.

1.2. Main contribution

The main contribution of this paper is to present
the design and the experimental validation of hybrid
model predictive control (MPC) over wireless links on
a new laboratory process built for this purpose at the
University of Siena, see Figure 1. The process consists
of a transport belt where moving parts equipped with
wireless sensors are heated by four infrared lamps.
The latter are commanded in pairs by two on/off
switches. The process is actuated by a local controller,
while a hybrid MPC algorithm running on a remote
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Figure 1. The new hybrid laboratory process with wireless
sensors presented in the paper.

base station sends optimal belt velocity setpoints and
lamp on/off commands. The remote controller receives
information from the sensors through a wireless
network formed by Telos motes [9]. A discrete-time
hybrid model of the process is used for the design of
the hybrid MPC algorithm and of the state estimator.

1.3. Related work

Control over wireless networks is a young research
area without mature theory or tools, but with a lot of
current activity. A general view on the need for interac-
tion between control and communication in the design
of wireless networks was recently introduced [2].
Open research problems in the area of control using
wireless sensor networks (WSNs) include choice of
architectures and modular design and implementa-
tion [3, 10]. A cross-layer framework for the joint
design of wireless networks and distributed controllers
is being attempted [11], although care needs to be
taken to avoid undesirable interactions [12].

This paper advocates the use of MPC [13] as a tool
to tackle control problems in such uncertain environ-
ments such as those arising from wireless sensors and
actuator loops. MPC is widely spread in the industry
for the control of complex multivariable processes [14].

Given a model of the process dynamics, constraint spec-
ifications on system variables (input saturations, state
bounds, etc.), and desired performance specifications,
at each time step the MPC control algorithm solves an
optimal control problem, which depends on the current
state as initial condition and on the current reference
signals, over a future prediction horizon. The result of
the optimization is a sequence of future control moves.
Only the first element of the sequence is applied to the
process, the remaining moves are discarded, and the
optimization is repeated at the control cycle.

MPC based on hybrid dynamical models [15] has
emerged as a very promising approach to handle
switching linear dynamics, on/off inputs, logic states,
as well as logic constraints on input and state variables.
The associated finite-horizon optimal control problem
can be formulated as a mixed-integer program for
which efficient solvers are available. Extensions of the
hybrid MPC formulation introduced above have been
recently proposed for stochastic hybrid systems [16]
that appear to be suitable for application within a
hybrid networked control architecture.

To handle the unreliability of the communica-
tion links between the base station (where the MPC
computations are performed) and the process, we
use the reference governor approach [17, 18]. Here,
the process stability is granted by a local controller
at the plant. The local controller receives its refer-
ence from the remotely executed MPC algorithm,
which aims at obtaining the desired performance.
Thus, the computational power required to solve the
optimization problem is moved away from the plant.
The reference governor approach was first studied in
the context of unreliable network links in [19], where
the command sequences computed by the predictive
controller are used to possibly overcome packet loss
and large (possibly unbounded) delays, together with
a synchronization algorithm. Other existing laboratory
facilities for feedback control over wireless measure-
ments include platforms for coordination of mobile
agents, see e.g. [20].

1.4. Outline

The outline of the paper is as follows. Section 2
presents the laboratory process and the corresponding
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mathematical model. Section 3 provides a description
of the overall control system architecture, including
the wireless networks, and Section 4 focuses on the
hybrid MPC system design. The hardware and software
architectures are detailed in Section 5. Simulations and
experimental results are reported in Section 6. Conclu-
sions and a discussion on future research directions
are given in Section 7.

Earlier results related to the work described in this
paper were presented in [21], where the problem and
the hybrid MPC design were introduced. In this paper
we extend such preliminaries in several directions.
We define the hybrid MPC problem in more detail,
thoroughly describe the control and communication
architecture, and present extensive experimental results
under different network conditions.

2. PROCESS DESCRIPTION, MODELLING,
AND ARCHITECTURE

This section describes the laboratory process and
derives a control and estimation-oriented hybrid
dynamical model of it.

2.1. Physical plant

The physical plant is shown in Figure 1. The main
components of the plant, whose schematics are shown
in Figure 2, are a belt with an incremental angular
encoder, four infrared lamps, and wireless sensors, also
called sensor motes, to be placed on the belt. The belt
is actuated by an electric servo-motor to which the
encoder is connected. The heating lamps are placed in
a row over the belt, and two on/off switches are avail-
able to actuate them. The first switch controls lamps 1
and 3, the second switch, lamps 2 and 4. The lamps
are grouped to reduce the complexity of the model
and of the control algorithm. The sensor motes are
radio-equipped temperature sensors, which communi-
cate their reading to a remote receiver.

To derive a dynamic model of the process we define
the states as the sensor casing temperature T1∈R, the
sensor temperature T2∈R, and the position p∈R of the
part that moves along the belt. The system evolution is

Belt

Mote
v

u2

u1

uc

1 2 3 4

{T1, T2, p}

Power and
Actuator

Figure 2. Schematics of the process.

governed by the differential equations

Ṫ1 = −�(T1−Tss(p,u1,u2)) (1a)

Ṫ2 = −�(T2−T1) (1b)

ṗ = �(uc) (1c)

where uc∈R and u1,u2∈{0,1} are control inputs, and
Tss :R3→R is a static nonlinearity. The parameters
�,�>0 are physical constants, that we have computed
by identification on experimental data. The continuous
signal �(uc) corresponds to the part velocity, which is
obtained through a static nonlinear mapping �(·) of
the control command. As regards the discrete input
signals, u1=0 when lamps 1 and 3 are off, u1=1 when
they are on, and similarly for u2 relatively to lamps 2
and 4. The steady-state temperature of the sensor casing
at position p, when the lamps switches are (u1,u2),
is Tss(p,u1,u2)

Tss(p,u1,u2)= f1(p)u1+ f2(p)u2+Tamb (2)

where Tamb∈R is the ambient temperature, and fi (p) :
R→R, i ∈{1,2} describe the increase in steady-state
temperature at position p obtained by turning on the
i th switch.

2.2. Hybrid model

We want to approximate the continuous-time model
(1) and the nonlinearity Tss in (2) by a hybrid model.
In order to use the tool [22], we introduce an auxiliary
variable � to model a piecewise affine approxima-
tion of (Tss−Tamb): we partition R into � intervals
{I1, I2, . . . , I�}, and approximate fi , i=1,2, by the
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Figure 3. Tss−Tamb and its piecewise affine approximation.

piecewise affine functions

�i (p(t)) =

⎧⎪⎨
⎪⎩
Ki

j p(t)+hij if ui=1

p∈ I j , j=1, . . . ,�

0 otherwise

i=1,2 (3a)

�(p(t)) = �1(p(t))+�2(p(t)) (3b)

The notation �(p(t)) is used in (3) to highlight that �
depends on the position p, which changes in time. For
simplicity, from now on we will use the notation �(t)
instead. The effect of Tamb will be introduced later as
a measured disturbance. The nonlinear function and its
piecewise affine approximation are shown in Figure 3.

The continuous-time model of the physical plant
is sampled with sampling period Ts=250ms using a
zero-order hold. We obtain the following discrete-
time system:

x(t+1) =
⎛
⎜⎝
a11 0 0

a21 a22 0

0 0 1

⎞
⎟⎠

︸ ︷︷ ︸
�

x(t)

+
⎛
⎜⎝
b11 0

b21 0

0 b32

⎞
⎟⎠

︸ ︷︷ ︸
�

(
�(t)

vc(t)

)
(4a)

y(t) =
(
0 1 0

0 0 1

)
︸ ︷︷ ︸

C

x(t) (4b)

where x=(T1,T2, p)T, �(t) is defined by (3), and
the belt velocity vc=�(uc) is used as system input.
The motor command can be recovered by the inversion
uc(t)=�−1(vc(t)). By (3)–(4), the quantities �(t), x(t),
y(t) depend on the discrete inputs u1(t) and u2(t).
In order to apply hybrid MPC, systems (3)–(4)

are formulated in HYSDEL [22] and automatically
converted into a mixed logical dynamical (MLD)
system [15]

x(t+1) = Ax(t)+B1u(t)+B2�(t)+B3z(t) (5a)

y(t) =Cx(t) (5b)

E2�(t)+E3z(k)�E1u(k)+E4x(k)+E5 (5c)

where u=(vc,u1,u2)T∈R×{0,1}2 is the input vector,
and z(t)∈R22 and �(t)∈{0,1}10 are continuous and
binary auxiliary variables, respectively. The auxiliary
variables describe the piecewise affine dynamics (3).

3. CONTROL ARCHITECTURE

The architecture of the feedback control system closed
over two wireless network links is shown in Figure 4.
The solid boxes are the functional blocks while the
dashed boxes indicate the implementation on the
physical platforms. Temperature data from the phys-
ical plant is sent over a WSN to the Host PC. An
observer estimates the system states, which are used
by the hybrid MPC to compute the control commands.
The commands are sent to the Target PC over a WLAN
connection. A local controller implemented in the
Target PC and in the motor electronics uses the Hybrid
MPC control commands to compute the actuation. This
section describes the control system in some detail
together with the wireless networks and their control
and estimation-oriented model.
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Figure 4. Wireless control architecture.

3.1. Control system

The control architecture is a cascade controller.
The inner controller is locally placed at the plant;
hence it is referred to as local controller. The outer
controller is remotely located and referred to as remote
controller. The remote controller exploits network links
to exchange information with the plant and the local
controller. The inner (local) controller receives high
level commands (setpoints) from the outer (remote)
controller, and regulates the process accordingly,
ensuring stability and tracking. The outer controller
generates the setpoints based on the simplified system
model, which results from the plant in closed loop
with the local controller. A simplified model makes
easier the long-term planning, which is computation-
ally intensive, while stability and tracking need to be
enforced by a local controller to avoid delays and data
losses. From an implementation point of view the local
controller must be fast, but does not need large compu-
tational effort. A simple linear controller accomplishes
these tasks. On the other hand the remote controller
runs on a slower time scale, but needs larger computa-
tional effort to generate optimal plans. We implement
the remote controller by hybrid MPC. The controller
implementation is further described in Section 5.

3.2. Wireless networks

Two networks support the delocalization of the outer
controller from the plant site. In this way the remote
controller can be implemented in a powerful computer,
which does not need to be located in the proximity of
the plant. Wireless networks are used to transmit the

process measurements from the plant to the remote
controller and to transmit the setpoints from the remote
controller to the local one. The process measurements
are sent over a WSN implemented over the network
standard IEEE 802.15.4, while the remote control
commands are communicated over IEEE 802.11 g. The
radio frequency for both networks is 2.4GHz, but other-
wise there is no interaction between the two networks.

In this paper we use a simple model for the network
links based on the erasure channel. Let u and y denote
the plant input and output, respectively, and û and ŷ
denote the signals after transmission. We have that
û(t)=u(t) and ŷ(t)= y(t), if the corresponding packets
at time t are received. We assume that the receivers can
detect if a packet is lost (for instance by a suitably cali-
brated timeout), and that the detection is instantaneous.
We denote a lost packet by �, so that if at time t the
command packet was lost, û(t)=�, while if the sensor
packet was lost, ŷ(t)=�. In the case the command
packet or the sensor packet is lost, the local controller
or the estimator, respectively, takes adequate actions to
ensure continuing control operations, as described later
in Section 4. Note that in this simple network model,
we make the reasonable assumption that the communi-
cation delays during normal operations are negligible
compared with the plant dynamics, while longer delays
can be modelled as packet drops, since largely delayed
data are not useful for real time control.

Even if the network model we use in this paper
is simple, by implementing the stochastic hybrid
MPC approach [16] more complex models for the
communication links can be used, such as the Gilbert
models described in [23]. In this case, provided that
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an algorithm for network state estimation, such as the
ones in [24], is integrated in the control system,
the control strategy can compensate for variations in
the network characteristics. See [24] for further details
on more complex network models, and on network
state estimation algorithms.

4. CONTROL SYSTEM DESIGN

The overall control strategy is based on a local
controller and on a hybrid MPC algorithm that acts
as a reference governor [17, 18]. The local feedback
controller is implemented in the proprietary motor elec-
tronics. It controls the voltage to track the belt velocity
commands received from the remote controller. At
the same time, it rejects disturbances due to varying
belt friction. Additional control logic is implemented
to convert the velocity command received from the
remote controller into a command format that can
be sent to the servo-controller. The additional logic
also ensures continuing operation when the command
packet is lost: when the command packet is lost, the
local controller applies a zero-order holder, which
results in vc(t)=vc(t−1).

For the remote controller, we use the Hybrid MPC
implemented in the Hybrid Toolbox for MATLAB [25],
where the optimization problem is solved online in real
time using the mixed-integer quadratic programming
solver CPLEX [26]. Note that the laboratory process and
the control architecture are general enough for experi-
mentation of other control strategies.

4.1. The hybrid MPC algorithm

In order to be used for prediction in the MPC algorithm,
the hybrid discrete-time model developed in Section 2.1
needs to be extended by two additional states. The first
one is the ambient temperature Tamb in (2). Such a state
remains constant in the prediction model and represents
a measured disturbance. The second additional state is
the ‘input memory’ state xu , which is used to constrain
the acceleration of the belt, not explicitly modelled
in (4). The dynamics of xu are defined by

xu(t+1)=vc(t) (6)

The acceleration at time t for a given input vc(t) can be
computed by backward Euler approximation from xu(t)
and vc(t) as

(
vc(t)−xu(t)

)
/Ts , so that constraints on

the acceleration can be expressed as state constraints.
The system model becomes

x(t+1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 0 0 1 0

a21 a22 0 1 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ x(t)

+

⎛
⎜⎜⎜⎜⎜⎜⎝

b11�(t)

b11�(t)

b32vc(t)

0

vc(t)

⎞
⎟⎟⎟⎟⎟⎟⎠ (7a)

y(t) =
(
0 1 0 0 0

0 0 1 0 0

)
x(t) (7b)

where x=(T1,T2, p,Tamb, xu)T.
The hybrid MPC algorithm [15] is based on the solu-

tion at each time step t of the following optimization
problem:

min J ({u(k),�(k|t), z(k|t)}N−1
0 , x(t))

�
N−1∑
k=0

(
qvcvc(k)

2+qz

(
1

Ts

)2

(vc(k)−xu(k|t) )2

+ ‖Qy(y(k|t)− yr )‖2
)

+q��
2 (8a)

subject to dynamics (5) with state update equation as
in (7), and to the state and input constraints⎛
⎜⎝
20

20

0

⎞
⎟⎠�

⎛
⎜⎝
T1(k|t)
T2(k|t)
p(k|t)

⎞
⎟⎠�

⎛
⎜⎝

50

50

1.2

⎞
⎟⎠ , k=1, . . . ,N (8b)

−0.1�vc(k|t) � 0.1, k=0, . . . ,N−1 (8c)

u1(k|t), u2(k|t) ∈ {0,1}, k=0, . . . ,N−1 (8d)
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where distances are expressed in meters, velocities in
meters per second, and temperatures in degrees Celsius.
The tuning parameters of the hybrid MPC problem (8d)
were selected as

N =4, q� =103, qvc =2

qz =1, Qy =
(
0.01 0

0 0.6

)

according to the following rationales. The accelera-
tion and the velocity of the belt should be low, in
order to reduce power consumption and to avoid wild
dynamics, that can cause excessive wear. We want to
track a position reference and a temperature reference
and we also want the state to remain in a predefined
‘safe’ set, that excludes high and low temperatures
and excessive velocities. The continuous input refer-
ence is set to 0 favoring light actuation of the belt.
The output reference profile yr ∈R2 defines the desired
behavior of the system. The length of the horizon N
affects the performance of the controller. A longer
horizon gives a smoother behavior, a shorter one gives a
more aggressive controller. Furthermore, the longer the
horizon, the more complex the optimization problem,
hence the prediction horizon N is chosen by trading
off between the performance and the available compu-
tational power.

The hybrid MPC algorithm executes the following
operations at each time step t :

1. the system output y(t) is measured and the state
estimate x̂(t) is computed;

2. the optimal control problem (8) is solved with
x(0|t)= x̂(t);

3. the first optimal input u∗(0) is applied to the
system as the current control u(t).

4.2. Observer

In the considered process, not all of the states are
measurable. Thus, we design an observer to estimate
the unmeasured states. The available measurements to
use are the belt position, measured using the encoder
mounted on the belt, and the temperature registered
by the wireless sensors. In the design we use the
simplest applicable observer, which is the reduced

order nonlinear Luenberger observer

x̂(t+1|t+1) = �x̂(t |t)+	(t)+K [ŷ(t+1)

−C(�x̂(t |t)+	(t))] (9a)

	(t) =
⎛
⎜⎝
b11�(t |t)
b21�(t |t)
Tsvc(t)

⎞
⎟⎠ , K =

⎛
⎜⎝
k11 k12

1 0

0 1

⎞
⎟⎠ (9b)

where Ts =250ms is the sampling period, and k11=5,
k12=0.

As referred in Section 3.2, the wireless network
links introduce packet losses. In fact, the observer uses
the received signal ŷ, instead of the locally measured
signal y. When packets containing measurements are
lost, a simple estimation method is to let the estima-
tion evolve in open loop [27], which means that if no
measurements are received, the system is assumed to
evolve according to the hybrid prediction model (3)–(4).
In this case we set y=C(�x̂(t |t)+	(t)) in Equation
(9), so that (9) becomes equivalent to the open-loop
update x̂(t+1|t+1)=�x̂(t |t)+	(t). In the proposed
control architecture, the packets can also be dropped in
the link that connects the controller to the plant, even
if, being a TCP/IP wireless link, this is supposed to
be more reliable. When packets containing commands
are lost, the local controller keeps the previous refer-
ence. More advanced strategies for compensating lossy
communication are discussed in [28]. How to jointly
estimate network states and process states is discussed
in [24].

5. IMPLEMENTATION

The closed-loop control system is shown in Figure 4.
It consists of five main blocks in addition to two wire-
less networks. In this section we first describe the hard-
ware and the software architectures. Then, we discuss
the controller implementation.

5.1. Hardware architecture

The hardware architecture of the closed-loop system
is shown in Figure 5. The remote controller runs in
the Host PC, which is a 1.2GHz Pentium-MTM laptop,
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Figure 5. Hardware architecture.

equipped with 632MB RAM. For communications, it
is equipped with an Intel R© PRO/Wireless LAN 2100
3A Mini PCI Adapter integrated IEEE 802.11 g WLAN
card. The local controller additional logic runs in the
Target PC, which is a PentiumTM 133MHz, equipped
with 128MB RAM, only 4MB of which are actually
used because of software architecture limitations. To
enable communication with the Host PC, the Target PC
is connected via ethernet LAN to a D-LinkTM DWL-
2100AP WLAN router. To interface the Target PC with
the process, a National Instruments R© PCI-6024E DAQ-
board is used.

The process belt is moved using a belt roller with
an encapsulated 24V DC-motor, which in turn is
controlled using a DC servo-amplifier. An incremental
angular optical encoder connected to the belt is used
to measure the velocity. The switching of the lamps is
managed using two relays, one for each pair of lamps,
to turn on and off their supply currents. The encoder
and all the actuators are connected through the DAQ
board.

The objects moving on the belt are Tmote SkyTM

wireless sensors from Moteiv R© [9]. These, so-called
motes are equipped with temperature, humidity, and
light sensors, a low-power 8MHz 16 bit micropro-
cessor, and a 2.4GHz IEEE 802.15.4 radio transceiver.
The mote placed on the belt measures its temperature
and communicates it to another mote connected to the

USB port of the Host PC. Note that the measurement
is sent via a WSN that can be composed of a varying
number of motes, depending on how many motes are
positioned along the area between the remote controller
and the process.

5.2. Software architecture

The software architecture of the system is shown
in Figure 6. The control application consists of a
distributed implementation over four platforms: two
of these are implemented on Tmotes and two are
implemented on PCs.

The Host PC runs Microsoft R© WindowsTM XP.
On top of this, it runs MATLAB R©7.1, CPLEXTM9.0,
and the Hybrid Toolbox v1.1.0 for executing the MPC
algorithm, which solves problem (8). Concurrently to
the MPC algorithm, the Host PC runs the Virtual COM
software from FTDI Chip R© (http://www.ftdichip.com),
which reads the USB port of the Host PC Tmote
and abstracts a virtual COM RS-232 port. The virtual
COM port is in turn read by the Java Sensor Reader
program, which reads the port and presents the data
in a suitable MATLAB format. We simply denote the
software abstraction of the Host PC as Host.

The Target PC runs xPC-TargetTM real-time
kernel [29], with the application being developed in
SIMULINK R©, and with code generation provided by
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Figure 6. Software architecture.

REAL-TIME WORKSHOPTM. The xPC toolbox allows
one to use a standard PC, the Target PC in our case, as
a microcontroller in a transparent way, which is useful
for controller prototyping since it is easy to reconfigure
and is inexpensive. It provides a hardware abstraction
for TCP/IP communication with the Host, as well as
an abstraction toward the DAQ card. The full hardware
abstraction of the Target PC from the WLAN router to
the DAQ is referred to as the Target.

Both the Tmotes on the belt and the Tmote connected
to the Host PC run TinyOS with custom applications.
The Tmotes on the belt run a sensor application soft-
ware, which samples the onboard temperature sensor
at the system sampling frequency 4Hz and sends the
data to the Host PC Tmote. The Host PC Tmote runs a
receiver application software, which listens for packets
from the sensor application and forwards them to its
USB controller connected by the USB port to the Host.

5.3. Controller implementation

The Hybrid MPC algorithm is implemented on the
Host within the Hybrid Toolbox for MATLAB [25].
System model (7) is written in HYSDEL [22] and auto-
matically converted by the associated compiler into
the MLD system (5). The optimal control problem (8)
is formulated using the Hybrid Toolbox [25] and
included into a SIMULINK model as an S-function.
The resulting optimization problem consists of 141
optimization variables, 93 continuous and 48 binary,
respectively, and 585 mixed-integer linear inequalities.
The average time required to solve the optimization
problem using CPLEX is 17ms, with a worst-case
computation time of around 125ms. This computation
time motivates the choice of the sampling frequency of

4Hz for the overall control system. After the control
command has been computed, it is sent to the Target
via the wireless TCP/IP link.

From a functional point of view, the Target and
the proprietary motor electronics implement the local
controller, where the electronics provide the feedback
component and the Target computer implements the
interfaces and the backup logics needed to counteract
command packet losses. The Target generates the motor
commands ûc(t) from the commanded belt velocity
v̂c(t) received from the Host through the network
by performing the inversion ûc(t)=�−1(v̂c(t)). The
feedback component of the local controller is a
servo-controller implemented in the proprietary motor
electronics, which regulates the input voltage to the
electrical motor to track the desired belt velocity v̂c(t),
using the command ûc(t) received from the Target
and a local voltage feedback. The local controller
rejects disturbances caused by the variable moving part
position on the belt and by the variable friction. The
Target also integrates the encoder signal to generate the
position measurements to be sent to the Host. Finally,
the Target implements a zero-order holder on the last
command received from the Host. This functionality
handles the recovery action for the packet losses that
occur in the link from the Host to the Target, ensuring
continuing operation by providing the most recent
available command to the process.

6. EXPERIMENTAL RESULTS

In this section we present experimental results of the
process in closed loop with the hybrid MPC controller
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designed in Section 4.1. The experiments aim at
evaluating the performance of the control architecture,
and, most of all, the impact of the wireless commu-
nication on the closed-loop behavior. We first analyze
the behavior with respect to data losses in the forward
link, i.e. the communication of the input command
from the MPC to the local controller, through the
WLAN network. Then we analyze the behavior with
respect to data losses in the WSN communication, i.e.
in the backward (feedback) channel that brings process
measurements to the MPC controller.

In the experiments with forward channel losses,
we set a constant reference temperature and position
reference yr =[35,0.7]T. Since the WLAN network
used in the process is very reliable, data losses are
introduced on purpose by using a real data-loss profile
obtained from a sensor network. In this way, even if
in the particular network used for the process very
few losses occur, we are able to evaluate the loss
effects when less reliable networks are used. The
hybrid MPC controller (8) is first tuned in simula-
tion also taking into account the packet loss model
of Section 3.2. First, the nominal step response (no
packet loss, perfect modelling) is simulated. Then, a
lossy feedback channel is simulated with the packet
loss profile obtained from a real sensor network. The
simulation results are shown in Figure 7(a), where the
dashed lines indicate the nominal response and the
solid line indicates the response of the model with
packet losses simulated from real data. The deviation
from the nominal behavior that occurs around t=150s
is due to a massive packet drop burst. During such an
interval, the lamps are commanded off, but the temper-
ature keeps increasing. This means that the packets
containing the current commands are being dropped
and an older command is being applied. The position is
not affected by the drops, because the velocity input is
in steady-state conditions (i.e. it is constant) and hence
the backup control action is equal to the command that
would be received over the network.

The experimental results are shown in Figure 7(b).
Other than by the packet losses, the errors are now intro-
duced by external noise and modelling imperfections.
In particular, due to the piecewise affine approximation
of (2) the input behavior is more aggressive. The refer-
encepoint yr ,which in thepredictionmodel is achievable

despite the inputquantization, is not achievable in the real
process.As a consequence the controller keeps switching
the lamps on and off, and temperature chatters around
the equilibrium in a (disturbed) limit cycle. However, the
experimental results (solid lines) are still satisfactorily
close to the simulation of the nominalmodel (reported as
dashed lines, for comparison).

Next, we consider the case where losses occur in the
backward channel, the feedback channel that brings
measurements to the MPC controller. In these experi-
ments, some measurements of the sensor network are
lost or corrupted and cannot be used by the controller.
According to the strategy in Section 4, if the measure-
ment is not received, the process state estimate is
updated by prediction only. Hence, when measurements
are not received we set ŷ(k+1)=C(�x̂(t |t)+	(t)) in
(9), so that the correction term in (9) cancels.

In these experiments, the temperature reference is
a square wave with maximum 42◦C, minimum 38◦C,
and frequency 3mHz. The position reference is a
square wave with maximum 0.9m, minimum 0.5m
and frequency 10mHz. The initial position is 0m,
the initial temperature is the ambient temperature, and
the experiments last 1000 s. Another sensor node is
sending data at higher frequency (20Hz) to disturb
the communication of the sensor on the belt. The base
station knows the node-ID of the sensor on the belt and
it is able to discard the data sent by the other sensor.
However, in this process the data sent by the node on
the belt are disturbed.

In Figures 8–10, the results for the first experiment
are reported. Figure 8 shows the system measurements
after packet drops compensation (hence, ŷ=Cx̂(k) is
plotted if y(k) is not received).

The inputs applied to the system are reported in
Figure 9, while Figure 10 shows the sensor network
communications’ performance. In Figure 10(a), the
temperature measurements received from the sensor are
shown, where a value of −1 indicates that the temper-
ature measurement is not received. In Figure 10(b),
the packet reception rate (PRR) as a function of time
is reported. PRR(t) is computed as the ratio between
the number of received packets and the number of sent
packets during the time interval [t−15s, t+15s] (for
this reason PRR(t) is shown for t�15s). In this first
experiment, the network is relatively reliable as shown
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Figure 7. Simulations and experiments on the process shown in Figure 2. (a) Simulations. Nominal behavior (dashed) and
behavior with feedback packet losses simulated from real packet loss profile (solid). (b) Experimental behavior (solid) and

nominal simulated behavior (dashed).
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Figure 8. Experiments with losses in the feedback channel,
reliable channel case: temperature and position (solid)
and corresponding references (dashed) as available for the
remote controller. (a) Temperature: in case the measurement
is not received, the predicted value is shown. (b) Position:
no losses occur in the WLAN network that carries position

measurements.

by Figure 10(b), and in fact only about 7.9% of the
measurements collected along the whole experiment
are lost. The reference tracking performance is good
and the oscillations around the setpoint are due to
the quantization of the control input that affects the
temperature (the lamps that are switched on/off). The
tracking performance of the position is even higher,
because the position measurement is sent through the
WLAN network, which is very reliable. In fact, no
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Figure 9. Experiments with losses in the feedback channel,
reliable channel case. commands issued by MPC: (a) belt

motor command, and (b) lamp commands.

data loss occurs for the position measurements during
this experiment, and the delays are in the order of
milliseconds, hence much smaller than the sampling
period.

In Figures 11–13, the results for the second exper-
iment are reported. Figure 11 shows the process
measurements after packet drops compensation, similar
to Figure 8. Figure 12 reports the inputs applied to
the system, and Figure 13 shows the sensor network
communications’ performance. In Figure 13(a), the
temperature measurements received from the sensor
are shown, similar to Figure 10(a). In Figure 13(b),
the PRR computed during a moving centered window
of 30 s is reported, similar to Figure 10(b). In the
second experiment, the feedback network link is made
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Figure 10. Experiments with losses in the feedback channel,
reliable channel case: measurements received from the
network. (a) Measurements received by the controller.
A reported value −1 indicates the measurement is not
received. (b) Packet reception rate PRR(t) computed over

a moving centered window of 30 s.

unreliable by means of reflective aluminum foils around
the sensor antenna that disrupt the signals. The PRR is
much lower in Figure 13(b) than in Figure 10(b). The
total percentage of missing temperature measurements
is now 62.8%. This affects the temperature reference
tracking performance as it appears from Figure 11(a).
In particular, the abrupt changes in the temperature
value in Figure 11(a) reveal long bursts of missing
data. When data are missing, the predicted value of
the temperature is shown in Figure 11(a). As a conse-
quence, when a measurement is finally received, the
real temperature is shown, which results in a jump in
the plot. A closer look at one of these events is shown
in Figure 14, which reports the temperature used as
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Figure 11. Experiments with losses in the feedback channel,
unreliable channel case: temperature and position (solid)
and corresponding references (dashed) as available for the
remote controller. (a) Temperature: in case the measurement
is not received, the predicted value is shown. (b) Position:
no losses occur in the WLAN network that carries position

measurements.

available for the controller (solid line), the temperature
reference (dashed line), and the received temperature
sensor data (crosses) during one of the intervals where
the PRR is lower (cf. Figure 13(b)). Between t=550s
and t=600 s, very few data are received. The predic-
tion model seems to be sufficiently good when the
temperature has to be increased (e.g. between t=560 s
and t=580s), but when the temperature has to remain
constant or has to be decreased (e.g. between t=580s
and t=600s) there is a large difference between the

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 20:209–225
DOI: 10.1002/rnc



HYBRID MPC BASED ON WIRELESS SENSOR FEEDBACK 223

0 200 400 600 800 1000

0

25

50

75

100

0 200 400 600 800 1000

0

1

0 200 400 600 800 1000

0

1

(a)

(b)

Figure 12. Experiments with losses in the feedback channel,
unreliable channel case. commands issued by MPC: (a) belt

motor command, and (b) lamp commands.

prediction model and the real process, which results
in the jump at t=600s, when the first measurement is
received after more than 20s of data losses.

7. CONCLUSIONS AND FUTURE RESEARCH

This paper has presented a hybrid MPC design and
an experimental demonstration of remote control over
wireless networks. Data packets dropped in both
forward and feedback communication links can be
handled with good results using standard hybrid MPC
techniques. The hybrid MPC design has several advan-
tages compared with traditional controllers. The most
obvious advantage is that it offers the possibility to
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Figure 13. Experiments with losses in the feedback channel,
unreliable channel case: measurements received from the
network. (a) Temperature measurements received by the
controller. A reported value −1 indicates that the measure-
ment is not received. (b) Packet reception rate PRR(t)

computed over a moving, centered window of 30 s.

handle process nonlinearities and on/off inputs, and to
enforce constraints on states, inputs, and outputs in a
simple and direct way. The setup has been proven easy
to tune. The only drawback is that hybrid MPC can be
computationally intense, although it is fast enough for
the application at hand, and the worst-case computation
period can be bounded a priori by imposing time
constraints on the optimization solver. The computa-
tional burden required by hybrid MPC is one of the
main motivations for investigating its network-based
implementation, since this allows to execute the MPC
algorithms in powerful computational units placed
remotely with respect to the plant, and connected to a
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Figure 14. Experiments with losses in the feedback channel,
unreliable channel case: a closer view to temperature refer-
ence tracking performance as affected by dropped data.

much simpler local controller at the plant by flexible
and inexpensive (wireless) network links.

Although the proposed control architecture ensures
continuing operation despite data losses in both the
forward and the feedback channel, long sequences of
packet drops may degrade the overall system perfor-
mance. This can be seen in the experimental results.
For this reason, the authors are currently working
on the implementation of the stochastic hybrid MPC
controller [16] where the statistical properties of the
communication channel will be estimated as proposed
in [24], and used to adaptively constrain the working
set of the controller to ensure robustness with respect
to network condition variability.
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