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Abstract A conventional way to handle model predictive control (MPC) problems
distributedly is to solve them via dual decomposition and gradient ascent. How-
ever, at each time-step, it might not be feasible to wait for the dual algorithm to
converge. As a result, the algorithm might be needed to be terminated prematurely.
One is then interested to see if the solution at the point of termination is close to
the optimal solution and when one should terminate the algorithm if a certain dis-
tance to optimality is to be guaranteed. In this chapter, we look at this problem for
distributed systems under general dynamical and performance couplings, then, we
make a statement on validity of similar results where the problem is solved using
alternative direction method of multipliers.

1 Introduction

Model predictive control (MPC) can be used to control dynamical systems with in-
put and output constraints while ensuring the optimality of the performance of the
system with respect to cost functions [1-3]. Typically, the way that the control in-
put is calculated at each time-step is via applying the first control in a sequence
obtained from solving an optimal control problem over a finite or infinite horizon.
The optimal problem is reformulated at each time step based on the available mea-
surements at that time step. Traditionally, a full model of the system is required to
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solve the MPC problem and all the control inputs are calculated centrally. However,
in large-scale interconnected systems, such as power systems [4, 5], water distribu-
tion systems [5], transport systems [6], manufacturing systems [7], biological sys-
tems [8], and irrigation systems [9], the assumption on knowing the whole model
and calculating all the inputs centrally is often not realistic. Recently, much attention
has been paid to solve MPC problems in a distributed way [10-15]. The problem
of distributed model predictive control using dual decomposition was considered
in [13]. However, in solving any optimization problem when using dual decompo-
sition methods the convergence behaviors of dual iterations does not necessarily
coincides to that of the primal formulation. Hence, the authors in [14] presented
a distributed MPC algorithm using dual decomposition accompanied with a stop-
ping criterion to guarantee a pre-specified level of performance. The authors only
addressed linear coupled dynamics with separable cost functions.

In this chapter, specifically, we formulate the problem of achieving a control
objective cooperatively by a network of dynamically coupled systems under con-
straints using MPC. We consider discrete-time nonlinear control systems. We are
interested in casting the problem in a distributed way and we consider the case where
the cost function associated with each system is not necessarily decoupled from the
rest. Additionally, we are not limiting our formulation to the case where the coupling
in the cost function is the same as the coupling in the dynamics [13,14]. We note that
a natural method to solve such problems is to use dual-decomposition at each time-
step and solve the problem iteratively. However, a problem that in implementing
the dual solution iterations is that generally one cannot make any statement on how
close the solution is to the optimum if the dual algorithm is terminated prematurely.
That is, there is no termination guideline to ensure that the variables obtained from
the dual algorithm are within an acceptable bound for the primal problem. In this
chapter, we propose such termination guidelines that indicate how many iterations
are needed to ensure a certain suboptimality guarantee, i.e., distance to optimality.
We extend the results of [14] and present a more general frameworks, i.e., nonlin-
ear interconnected dynamics and cost functions. A way to achieve better numerical
properties for solving distributed MPC is to apply alternating direction method of
multipliers (ADMM) [16]. ADMM is a powerful algorithm for solving structured
convex optimization problems. Combining the strong convergence properties of the
method of multipliers and the decomposability property of dual ascent, the method
is particularly applicable to large-scale decision problems. In particular, recently,
optimal control synthesis and MPC via ADMM has gained some attention [17, 18].
However, to the best of our knowledge, no attention has been paid to distributed
MPC using ADMM. Hence, we show how to address distributed MPC via ADMM.

The origins of ADMM can be traced back to the alternating direction implicit
(ADI) techniques for solving elliptic and parabolic partial difference equations. In
the 70’s, see [16] and references therein, ADMM was first introduced for solving
optimization problems and enjoyed much attention in the following years. How-
ever, the main advantage of applying ADMM in solving optimization problems, its
ability to deal with very large problem through its superior stability properties and
its decomposability, remained largely untapped due to the lack of ubiquity of very
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large scale problems. Nevertheless, the technique has again raised to prominence in
the last few years as there are many applications, e.g. in financial or biological data
analysis, that are too large to be handled by generic optimization solvers.

The outline of this chapter is as follows. In Section 2 we formally define the prob-
lem of interest in this paper and particularly present the plant model and the perfor-
mance criteria we consider. In Section 3 the suboptimality guarantee for the dually
decomposed MPC is presented. (For the sake of brevity the proofs of the theorems
are omitted and can be found in [19].) Additionally, we make some comments on
finding similar guarantee when the problem is solved via ADMM. We illustrate the
applicability of our results on a formation of nonholonomic agents which employ
distributed MPC to acquire a desired formation. Section 4. Finally, some concluding
remarks are presented in Section 5.

1.1 Notation

The sets of real and integer numbers are denoted by R and Z, respectively. For any
ny,ny € ZU{too}, we define ZEZ? ={n€Z|n <n<ny}. When ny = +o0, we use
Z>p, . For any x € R, we also define R>, = {y € R |y > x}. Other sets are denoted
by calligraphic letters, such as 2" and &. Each (directed) graph is a pair of sets as
4 = (V,&), where V¥ is the vertex set and & is the edge set. Each edge in the edge
set & is an ordered pair of vertices, e.g., (vi,v2) € &.

2 Problem Formulation

2.1 Plant Model

Let a directed graph 4” = ({1,...,N}, &%) be given. Consider a discrete-time non-
linear control system composed of N subsystems, where, for each 1 <i < N, sub-
system i can be described in state-space form as

X[.[k—‘,—]]:fi<X[[k}7V[[k];ll[[k]), (1)

with state vector x;[k] € Z; C R" and control input u;[k] € % C R™ for given inte-
gers n;,m; > 1. In addition, let v;[k] = (x;[k])(; yesr € REG1e? " denote the tuple
of the state vector of all the subsystems that can influence subsystem i through its
dynamics. For each 1 <i <N, mapping f; : Z; x Ijieer Zi x U — Zi determine
the trajectory of subsystem i given the initial condition x;[0] € 2; and the inputs.



4 Farhad Farokhi, Iman Shames, and Karl H. Johansson

2.2 Performance Criterion

Let a directed graph ¥ = ({1,...,N},&°) be given. For each time-instance k €
Z>(, we introduce the running cost function

o N

Te((ilK) s (ks 400Xy ) = Y Y €i(xit], wilt]swg ),

t=ki=1

where w;[k] = (X;[k]) (; jcec € RY(:06€" denotes the tuple of the state vector of all
the subsystems that can influence subsystem i through its cost. Note that for the de-
scribed dynamical system, given the control sequence (u;[k : —1—00]){»\7: , and boundary
condition (x;[k])Y_,, the trajectory of the system (x;[k : +o0])¥ , is uniquely deter-
mined by the described system dynamics in (1). Hence, we do not explicitly show
the dependency of the cost function Ji((x;[k])Y.; (w;[k : +o0]) ) to the trajectory
(x;[k+ 1 : +oo])¥ . We make the following standing assumption concerning the
cost function which is crucial for proving stability of the origin for the closed-loop
system with a MPC controller in feedback interconnection.

Assumption 1 Foreach1 <i<N, {;: Z; x 1 esc X X U — Rxq is a mapping
such that (a) £;(X;, W;;0;) is continuous in X; for all x; € Z; and (b) £;(x;,w;;u;) =0
if and only if x; = 0.

2.3 MPC

In each time instance k € Z>, the objective of the designer is to solve an infinite-
horizon optimal control problem given by

(87 [k : +o0])i | =argmin (ﬁ,-[k:+oo])glefk((xi [K])Is (@ik = +-o0] )1y ),
subject to X[t + 1] = £;(X;[z], Vi[t];0;[t]), 1 <i <NVt € Zxy,
Rilk] =x[k], 1 <i<N,
%i[t] € Zi,0;lt) € %, 1 <i<N,Vt €Ly,

2

where (&;[k : +o0])¥, is the state estimate initialized with the state measurement
%;[k] = x;[k], for all 1 <i < N. Note that we use %; and 1i; to emphasize the fact that
these variables are forecast variables and are predicted using the systems model.
We relax the infinite-horizon optimal control problem in (2) into a finite-horizon
optimal control problem given by



Distributed MPC Via Dual Decomposition and ADMM 5
sk . T ~

(& [k k+ DY =argmin gy S (0GR (0 k+T)Y),

subject to X[t + 1] = £(%[t], %i[t]: 0[], 1 <i <N,V € Z5,

3
ﬁ,[k} = X,'[k], 1< SN,
filt) € 2,0 € %, 1 <i<NNVteZT,
where JU7 (G IV s (@ilk < k+TDY,) = YT YN L (Rile), Wile] i[e)), and T €

Z>o denotes the horizon of estimation and control. After solving this optimization
problem, subcontroller i implements w;[k] = @[], for each 1 <i < N. Doing so, the
overall cost of the system equals

o N

Jo (i[O3 (wi[0: +eo])X 1) = 3 Y Lilxile] wilt]swilt),

t=0i=1

where the control sequence (u;[0: +0])¥_,, as described earlier, is extracted step-by-
step from the optimization problem in (3). For the MPC problem to be well-posed,
we make the following standing assumption:

Assumption 2 The optimization problem

k+T N
AGMIN (g o))V Y i(Rile], Wilt): d[r]),
t=k i=1
subject to %[t + 1] = fi(Ri[t], %[t ifr]), 1 <i <NVt € Z5TT,
%[k = x;[k], 1 <i<N,
%i[1] € 2,0t € %, 1 <i<N, VteZ<"+T,

admits a unique global minimizer for all time horizon T € Z>¢U {o}.

Assumption 2 is evidently satisfied if, for each 1 <i < N, (a) mapping £; : Z; X
[1jiesc Zj x U — Rxq is quadratic, and (b) mapping f; : Zi X [1(j jesr £ ¥
U; — Z; is linear [20]. We can also consider strictly convex mappmgs l;: %” X
[1(jiesc Z; x U — R>o when working with finite-horizon cases [21].

3 Main Results

Formulating a constrained optimization problem as a dual problem, in some cases,
enables us to solve it in a decentralized manner across a network of agents. Typi-
cally, each iteration for solving the dual problem involves broadcasting and receiv-
ing variables for each agent. The variables that need to be communicated between
the agents are the variables appearing in the cost function and the variables (La-
grange multipliers) used to enforce the constraints. In the rest of this section, we
first cast the MPC problem in a dual decomposition framework and then introduce
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our result on guaranteeing the performance of the iterations to solve the decomposed
problem distributedly.

3.1 Dual Decomposition

Let us, for each 1 <i < N, introduce slack variables V;[k] € RGP and w;ilk] €
REG)esC™ Doing so, we can rewrite the finite-horizon problem in (3) as

k+T N
(O [k:k+T))L, = argmin )" Y Li(kilr], wilr]:a[r]),
(0 [k: k+T]) L =k i=1

. A . k+T

subject to &;[r + 1] = £ (%,[t], ¥ [t],ui[t]),lgth,VIGZ;f,
f([] x[k], 1 <i<N,

LWt € %, 1 <i<NNVteZs™,

W,[t] = Wilt], Wi[l] =%t 1 <i <NVt ez,

We can incorporate the set of constraints v;[t] = ¥;[¢] and W;[] = W;[¢] into the cost
function as

ktT N
max min Y Y ¢ 1] y[r])
(2‘!7”1)1 1(“nVnW1), 1 t=k i=1 4)

+Ailt] " (Wile] = %ile]) + )" (Wile] = Wilr]) |

where, for each 1 <i < N, variables (A;[k : k+T],pu;[k : k+T])Y_, denote the La-
grange multipliers A;[t] = (4, ;[t])(; yeer € REGHeP™ and B[] = (1 ;1)) iyesc €

RE(.)esC i ,forall k <t < k-+T. Note that in (4) we dropped the time index of the
variables in the subscripts of the minimization and maximization operators to sim-
plify the presentation. We can rearrange the cost function in (4) as

N k+T

max Z min Z f,-(ﬁ,-[t],v'vi[t];ﬁi[t])+li[I}T\_’i[l‘]+I-l,-[l‘]T‘7Vi[t]

(Ai ﬂz) —1i= 1“”v”w’t k
- Y A - Y mll kit
(i.j)esP (i,j)e&€

®)

Using (5), we can separate subsystem cost functions, which allows us to develop
a distributed scheme for solving the finite-horizon MPC problem in (3). This dis-
tributed scheme is presented in Procedure 1. We note that the communication graph,
¢, considered here is the union of the plant graph ¥” and the cost graph ¥€, viz.
¢ =({1,...,N},6Cu&P).
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Procedure 1 Distributed algorithm for solving the finite-horizon MPC problem (3)
Input: x;[k], 1 <i<N
Output: u;[k], 1 <i<N
Parameters: Iteration numbers {S; }7_, and gradient ascent step sizes {h
I: fork=1,2,... do
2:  Initialize Lagrange multipliers (A EO) k:k+T], ”1(0) k:k+TDY,.
3 fors=1,2,...,5; do
4 fori=1,2,...,Ndo
5 Solve the optimization problem

()

8i lSO

@ s k+ 71,99 [k k+T)w0 [k k4 T))
7arg1n1n Li(G;[k : k+T),vilk : k+T), Wik : k+T])

90,5
subject to &+ 1] = (&[], vilt]s0:[1]), Ve € 25T

%[K] = xi[K], )

filt) € 25wl € %, V1 e 5T,

ville I Ziwille ] %5, veezs'™,

(ji)e&P (j.i)e&C
where
kT
Li(lk : k+T),9ilk : k+T), Wik :k+T]) =) Z,v(ﬁ,-[t],w,[}ul[t])wtl H vilt]
=k
+p‘t ]T_ Z A’]z[t]T I[t] Z u_]l ’
(i,j)esPt (i,j)e&€
6: end for
7 AP =4 m+h <“m—v§~“>m>, 1<i<NViez5.
8 pE = O+ Vi — W), 1 <i<N Ve ZSHT

9: end for
10: wlk] =0k, 1<i<N.
11: end for

3.2 From Infinite to Finite Horizon

Let us introduce the notations Vi((x;[k])Y.|) = min g . o), T (kDN 5 (k-

o)1), and Vi (D)) = ming gy e (OTRDY s (Bl e+ DY),
subject to the constraints introduced the 1nﬁn1te horizon optimal control problem
in (2) and the finite-horizon optimal control problem in (3), respectively.

Theorem 1. Assume that there exist an a priori given constant o € [0,1] and con-
trollers ¢, : T, Zi — Y, such that, for all (x;[k])N_, € [IY., Zi, we have

N
%Wmmﬁnz%ﬂw%+m&wﬂ;&mmme«ngn,@
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where X;[k+1] = £:(x;[k], vi[k]; @, ((x;[K])}.,)), for 1 <i <N. Then, aVi((x;[k]).,) <
VIO (k)Y ) for all (k)Y € T, 2.

This theorem illustrates that by solving the finite-horizon optimal control prob-
lem in (3), we get a sub-optimal solution, which is in a vicinity of the solution of the
infinite-horizon optimal control problem in (2) if ¢ is chosen close to one. Hence,
in the paper, we assume that the horizon T is chosen such that it satisfies (6). In
that way, we do not lose much by abandoning the infinite-horizon optimal control
problem for the finite-horizon one.

3.3 Convergence

Generically, in solving any optimization problem, if one resorts to use dual decom-
position methods the convergence behaviors of dual iterations does not necessarily
coincides to that of the primal formulation. In other words, if one terminates the dual
iterations after Sy steps and obtains the decision variables, one cannot make a state-
ment on how close is the primal cost function evaluated at the obtained variable to
its optimal value, i.e., the optimality gap cannot be determined. However, for model
predictive control one can find a bound on such a distance. We aim to propose a way
to calculate the optimality gap for general distributed MPC problems based on the
results proposed by [14]. Let us introduce the notation

VIO (kY = kZT Nl Gl w0l )

t=k i

+ AT O] = wil) + 1T ] = Wil |

1

where (ﬁl(s) [k:k+T], VE‘Y) [k:k+T], V_VES) [k:k-+T])¥, is extracted from Procedure 1.

Theorem 2. Let {V, Yoo be a given family of mappings, such that, for each k € Z>o,
Vi : Hfl:] Zi — Ry satisfies

V()Y ) = v (kDY) 7)

Sor all (x; [k])f;l € H?’:l Z:. In addition, let iteration number Sy in Procedure 1, in
each time-step k € Z>o, be given such that

N

V(R Voo (Galk 1)) > elk] + @ Y iCxlk] wilkl 6 1) (8)
i=1

for a given constant a. € [0, 1], where x;[k+ 1] = fi(xi[k],vi[k];ﬁl(s") [k]), for each

1 <i < N. The sequence {e[k]};_ is described by the difference equation
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e[k] = e[k —1] +a;£i(xi[k— 1], wilk—1);u;[k —1])

F Vil (xilk])iLy) = Veer (ilk — 1)),

forallk € Z>, and

£:(x;[0], w30 wi[0]) + Vi (xi[1]) ) — VT (o)),

elll =

=

i=1

and e[0] = 0. Then, otJo((x;[0])Y_;; (w;[0 : +o0])Y ) < Vo((x;[0))Y.,) for any initial
condition (x;[0))Y_, € [TY., Z:. In addition, if Vo((x;[0])Y_,) < oo for any initial con-
dition (x;[0])Y_, € [TY., Zi, then limy_,X;[k] =0 for 1 <i<N.

Theorem 2 shows that, provided that {Sy };*_, guarantees (8), the cost of the sub-
optimal controller extracted from Procedure 1 is in a close vicinity of the global
optimal controller, i.e., the cost of the sub-optimal controller is never worse than
1/a times the cost of the global optimal controller. In addition, the closed-loop
system is stable.

Now, we only need to present a mapping Vi(-) that satisfies condition (7). We
use the method presented in [14] for generating a reasonable upper bound. Let us
introduce the one-step forward shift operator qz : ([TY., %)+ — (ITV, %)™,
so that for any control sequence (w;[0: 7])Y, € (TTV., %)"*! we have q((w[0:
THY.|) = (ui0: T))Y |, where forall 1 <i< N, uiffj=wfr+1]for0<t<T—1
and u}[T] = 0. Now, for any time-step k € Z>1, we can define

- . (Si—

Ve(alk) 1) = e (kDY (8% k=17 k= 10)).
where the control sequence ﬁfS"’l) [k—1:T +k—1] denotes the control actions of
step k — 1 extracted from Procedure 1. For this described function, we get

- T (S T
Ve(Calk) ) = I (Galk) s (8% k= 127 k= 1) = Vi (kD).
because the control sequence qT({ﬁgs"” ) ] [Tjkk:ll) might not be optimal for time-
step k. Hence, we have proposed a suitable mapping for Theorem 2.

3.4 ADMM Formulation

A way to achieve better numerical properties for solving distributed MPC is to apply
ADMM, which retains the decomposability of the dual formulation while ensuring
better convergence properties in terms of speed and stability [16]. Recently, solving
MPC via ADMM has gained some attention [17]. In what comes next, we cast
the problem introduced in this chapter in an ADMM framework and give a sub-
optimality guarantee for this scenario.
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We rewrite the MPC problem proposed in Section 2.3:

\\Mz

(07 [k : k+T1);Y Ly = argmin gy 7))y Z
ilt

©)
subject to y;[f] € €[1], 1 <i <N, ¥Vt € Z5 T,
where, for each k <t < k+T,y[t] = [&[t] ", Wi[t] ", 0;[] ", v:[t]] T, and
@il = {Rile] ", Wile) T @[] T wl)) T [ ils + 1] = £ (Rils), Wilssauls), (10)
X;[s] € Zi,0[s] € U, Wils] = Wils], Vi[s] = Vi[s], Vs € Z;;{,ﬁ, k) = x;[k]}.

Provided that %;[t] is convex for all t € ZSKT

, then (9) is equivalent to

(6 [k k+ TN | = argmin (g g gy

kT N
v, L LGl + i),

subject to  y;[t] = &[], 1 <i<N,Vrez,

where Wy, (+) is an indicator for [t], viz. Wy, (2) = 0if z € Gft] and Yo (2) =
+o0 otherwise. The augmented Lagrangian for this problem is

L((yilk s k+ Ty, (§ilk s k+TILy, (vilk  k+T]Ly)

k+T N
)+ WD+ B il - - il

=LY

t=k i=1

1)

where ¥;[t], 1 <i <N, are the scaled dual variables. We outline a distributed pro-
cedure that solves the problem in Procedure 2. Now, we reintroduce the following
function for solving the MPC problem via ADMM:

] k+T N ; s s s 2
VOO = 1, X (6610 + § - 60w -]
1=k i=1
For the case that ||ygs) [[]-¢ 55) [f]— [ t]||? is less than a given threshold £ < 1, one

might be able to follow the same hne of reasoning as in Theorem 2 (See [19] for a
more detailed discussion.).

4 Simulations

In this section, we portray the applicability of the algorithm to a formation acquisi-
tion problem. We assume that the nonholonmic vehicle i for each 1 <i < N, can be
described in state-space representation as



Distributed MPC Via Dual Decomposition and ADMM 11

Procedure 2 Distributed algorithm for solving the MPC problem (3) via ADMM
Input: x;[k], 1 <i<N
Output: u;[k], 1 <i<N

1: fork=1,2,... do

2 - Initialize scaled dual variables (YEO) Y.

3 fors=1,2,...,5; do

4 fori=1,2,...,Ndo

5: - Solve the optimization problem

. p

6 vk k7] = argming gy T |€Gvle)) + 5 vl = &7 10 = 1 1R .
7 end for ,

8 - CE‘\H) [t] = Mo (yilt] + yl(") 1), 1<i<N\Vre Z;i*r‘ {IT4}(-) is a projection onto

lu;

9: SV = )+ il - EF V), 1< i <NV e ZEET
10:  end for
11: -—wk] =0k, 1<i<n.

12: end for

(@ (b)
10 0
8 -1 ﬁ\
= 6 ~ Tl o= e a
5 4 g -3
2 -4
0 -5
0 50 100 150 200 0 50 100 150 200
k k
(©) (d)
1 pil3
0.8 "
16 (= i == —
LI
e T e |
B <
I |
0.2 \‘ ' —pi/6 R e e
ol [
0

—pil3
50 10 150 200 P 0 50 10 150 200
k k

Fig. 1 Trajectory and control signal of two vehicles when using Procedure 1 and termination law
described in Theorem 2.
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Fig. 2 Iteration numbers Sy versus time-step k for the simulation results in Figure 1.



12 Farhad Farokhi, Iman Shames, and Karl H. Johansson

@ (b)
10 0
8 -1h
= 6 = -2 \ B
= 2 =~ 1
g 4 g -3
2 -4
0 -5
0 50 100 150 200 0 50 100 150 200
k k
(©) (d)
pi/3
0.8 "
pi/6 M T T T
— 06 =
N i T 0
S04 <
0.2 —pi6f—— —— === ==
0 —pil3
0 50 10 150 200 0 50 10 150 200
k k

Fig. 3 Trajectory and control signal of two vehicles when using a centralized optimization algo-
rithm.

where x;[k] = [ x;1 [k] xi2[K] | " € R s the position of the vehicle, v;[k] € R is its ve-
locity, and 6;[k] € R is its steering-wheel angle. Because of the vehicles’ mechanical
constraints, i.e., bounded speed and steering angle, we assume that the control inputs
should always remain bounded as 0 < v;[k] < 0.5 and |6;[k]| < /6 for all k € Z>.

We define each vehicle control input as w;[k] = [ vi[k] 6;[k] | . Let us start with two
vehicles. At each time-step k € Z>¢, these vehicles are interested in minimizing the
cost function

k+T
I (Galk)Fgs (wilk: k4 TDE) = Y (2] = alt] = dial3 41003 1] +9311)

t=k
where dj; = [2 1]T
[+4.0 -1.0] Tand x,[0] = [+1.0 =5.0] . We also fix the planning horizon T =5.
We use Procedure 1 to calculate the sequence of sub-optimal control signals when
the termination law (i.e., iteration number Sy) is given by Theorem 2. Figure 1 il-
lustrates the trajectory and the control signals of both vehicles with finite-horizon
planning when the sub-optimality parameter is fixed at & = 0.5. To be precise, Fig-
ures 1(a,b) portray different coordinates of the vehicle position while Figures 1(c,d)
illustrate the velocities and steering-wheel angels of the vehicles, respectively. The
red color denotes the first vehicle and the blue color denotes the second one. The
portrayed simulation is done for 200 time-steps. It is interesting to note that over
the first 100 time-steps, in average 1.25 iterations per time-step were used in Proce-
dure 1 to extract the sub-optimal control signal (see Figure 2). Figure 3 illustrates
the trajectory and the control signals of both vehicles with finite-horizon planning
using a centralized optimization algorithm as a reference. We also check the influ-
ence of a. To do so, we introduce some notations. For each time-step k, we define

. Let us fix the starting points of the vehicles as x;[0] =
}T
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Table 1 Sub-optimality ratio as function of o.

o 0.1 0.3 0.5 0.7
p 9.7875 3.2725 1.9684 1.4198

(@) (b)

15 5
10 PR — Of
E Sf E
5 i § ——————
S0 s 10 1m0 20 % =0 100 150 200
k
© _ (d)
1 pil3
08 pil6 — 11 — =
g0 s o W -
S04 MMJ

50 100 150 200
k

Fig. 4 Trajectory and control signal of three vehicles when using Procedure 1 and termination law
described in Theorem 2.

(P [k))2_ | = (8;[k])2_, where
(k- k+T)2, =  argmin I (k)2 (k- k+T])2 ).
(0 [kek+T)e?)?2,

Similarly, we define (uP'd![k])2_, = (ﬁgs") [k])2_, where, for each vehicle, ﬁfSk) k]
is calculated using Procedure 1 when the dual decomposition iteration numbers

{Sk}r_ is extracted from Theorem 2. Now, we define the ratio

p = J5™ ((xilOD)Z s (P[0 H)Z ) /75 (xil0]) 2y (w0 H])2),

where H is the simulation horizon. Table 1 shows p as a function of & for H = 1000.
Based on this table, we can numerically verify the claim of Theorem 2 that using
Procedure 1 when the dual decomposition iteration numbers is extracted from (8)
provides a suboptimality ratio p that is inversely proportional to o.

These simulations can be readily extended to more vehicles. Figure 4 illustrates
the trajectory and the control signals of three vehicles when trying to minimize the
cost function
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Fig. 5 Trajectory of the vehicles in the 2-D plane.

k+T
én«&Wﬁﬁﬁﬂkk+ﬂﬁ1F:2:Nmm—mm—dmﬁ+

2/ [1] = x31] — di3]|3 +2[[x2[r] —x3[t] — dos |3 + 1003 [1] +v3[1] +v3[e]) |

with djp = [+1 =5] ", di3 = [-3 +2] ", and dos = [—4 +7] . Let us fix the
starting points of the vehicles as x;[0] = [+4.0 —l.O]T, x3[0] = [—1—1.0 —3.O]T,

and x3[0] = [ 2.0 +3.0] " We consider planning horizon T = 3. As before, we use
Procedure 1 to calculate the sequence of sub-optimal control signals when the termi-
nation law (i.e., iteration number Sy) is given by Theorem 2 and the sub-optimality
parameter is & = 0.2. The red, blue, and green colors denotes the first, second, and
third vehicle, respectively. Figure 5 portrays the trajectory of the vehicles in the 2-D
plane. The final formation is illustrated by the triangle in black color. The codes to
generate the results of this section can be found at [22].

We conclude this section by briefly noting that the system consisting of N agents
under the aforementioned cost function converges to the desired formation if and
only if ¥€ is connected. This is a direct consequence of the structural rigidity of the
desired formation, for more information see [23]. Other cost functions, such as

I’ I’

M) (. TkWN (1T - N _k+T Tl e T2 1. 11202 & 2
Sy ((xilk])izps (wilk s b+ T])iZ,) = Z;,{ Y (il —x (13—l 12) +Z%v, [,
1=k L(i,j)esc i=

can be considered as well. In this case, the system converges to the desired formation
if and only if the formation is globally rigid with N > 4, see [24,25] and references
therein.
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5 Conclusions

In this paper, we considered the dual decomposition formulation of a distributed
MPC problem for systems with arbitrary dynamical couplings. More specifically,
we studied the problem of calculating performance bounds on the solution obtained
from iteratively solving the dual problem in a distributed way when the iterations
are terminated after Sy steps at time-step k. Later, we commented on how the prob-
lem can be cast in an ADMM setting. We demonstrated the validity of the pro-
posed performance bound through simulations on formation acquisition by a group
of nonholonomic agents. As a future research direction, one might consider provid-
ing better performance bounds for the case where ADMM is implemented to solve
the MPC problem.
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