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Abstract— In this paper, we identify sufficient conditions for
Lyapunov Mean Square Stability (LMSS) of a contention-based
network of first-order systems, with state-based schedulers.
The stability analysis helps us to choose policies for adapting
the scheduler threshold to the delay from the network and
scheduler. We show that three scheduling laws can result in
LMSS: constant-probability laws and additively increasing or
decreasing probability laws. Our results counter the notions
that increasing probability scheduling laws alone can guarantee
stability of the closed-loop system, or that decreasing probabil-
ity scheduling laws are required to mitigate congestion in the
network.

I. INTRODUCTION

Event-based systems have been proposed as a means to
reduce congestion in Networked Control Systems (NCS) [1],
[2]. Multiple closed-loop systems that share a communica-
tion channel between their respective sensors and controllers,
as shown in Fig. 1, could use event-triggers to adapt their
transmission rates to the traffic in the network. This brings
benefits to the entire network, as each closed-loop system
loses fewer packets due to congestion. However, in such
a network, the event arrival times cannot be anticipated
and scheduled. Thus, a Contention Resolution Mechanism
(CRM) is required to negotiate channel access between mul-
tiple event-packets from contending loops. The stability and
performance of the resulting network of closed-loop systems
is difficult to analyze. Consequently, design principles for
event-based systems that guarantee stability, in a stochastic
sense, are not easily obtained.

Event triggers are designed to detect a level crossing.
However, how should these levels be chosen, especially after
a packet failure? When sufficient packets do not reach the
controller, either due to physical losses in the medium or
insufficient triggering of the state, decreasing the levels is
required to attain stability, in a stochastic sense. However,
packet failures could also be due to collisions, while using
the CRM, in which case increasing the level might be seen
as necessary to alleviate congestion in the network. This is
the same principle used in congestion control in TCP/IP or
in the backoff mechanism in Carrier-Sense Multiple Access
(CSMA) protocols. However, there is no guarantee that this
policy leads to stability of the closed-loop system. What does
this mean for the design of event-based systems? How should
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Fig. 1. M closed-loops, consisting of a plant (P) and a controller (C)
each, use a shared network (N ) for communication between the respective
sensors and controllers. Note that the controllers and actuators communicate
over a dedicated point to point link, which suffers no losses.

the levels be selected, to ensure stability of the network,
the lack of which results in congestion, and stability of the
closed-loop system?

We consider a network of closed-loop systems that use
a state-based scheduler, with p-persistent CSMA [3] as the
CRM, as shown in Fig. 2. The state-based scheduler is a
local selection mechanism at each node, which thresholds a
function of the state to determine if a packet must be selected
for transmission. The threshold itself is a function of the
delay, or the elapsed time since the last transmission, to adapt
transmission rates to the plant state and network traffic. Our
goal is to identify stability conditions for a network of such
systems.

The main contribution of this paper is an analysis of
Lyapunov Mean Square Stability (LMSS) in this setup. We
find that LMSS is achievable, if the probability of increasing
delay is suitably restricted. Any appropriate selection of
levels, following a non-transmission, must be tailored to
achieve this property. The explicit relationship between a
given level selection mechanism and the probability of delay
involves other factors, such as the congestion in the network
and the dynamics of the plant itself. Thus, it is not possible
to claim that a certain level selection mechanism will always
result in stability or instability of the system.

A second contribution is the proposal of three scheduling
laws, based on the above stability analysis. Our results
provide sufficient conditions for LMSS for these laws. The
scheduling probabilities are mandated to remain constant,
or increase or decrease additively, with increasing delay,
according to these laws. Such variations in the scheduling
probability can be effected by varying the scheduler threshold
(level), specific to network conditions and system dynamics.

The problem of level selection after a packet loss was in-
troduced in [4], where the authors evaluated the control cost
of level triggering subject to i.i.d packet losses. Stochastic



Fig. 2. An overview of a multiple access network (N ) of plants (P(j) ),
state-based schedulers (S(j) ) and controllers (C(j) ), for j ∈ {1, . . . ,M},
with an explicit CRM in the MAC.

stability of event-based systems with i.i.d intervals between
arrivals have been studied in [5], [6]. However, event arrivals
in a contention-based network are not i.i.d [7], and the event
arrivals considered in this paper exhibit a dependence on the
delay since the last transmission. The design of event-based
systems in a contention-based network has been dealt with in
[8], but without modelling collisions in such networks. The
notion of stability that we use in this analysis has been used
in [9], to analyze i.i.d erasures, with a provision to extend
to Markov models, in NCSs.

The rest of this paper is organized as follows. The prob-
lem formulation, along with a Markov chain representation,
is presented in Section II. The main results on sufficient
conditions for LMSS are presented in Section III, and three
scheduling laws are presented in Section IV. Some examples
and conclusions follow in Sections V and VI, respectively.

II. PROBLEM FORMULATION

We consider a network of M identical event-based sys-
tems, shown in Fig. 2. We first describe a model for each
closed-loop system in the network, and then present a model
for the interaction of the M systems in the network.

A. Closed-loop System Model

The network on the sensor link can be modelled from the
perspective of a single closed-loop system, as illustrated in
Fig. 3. We describe each block in this model below.
Plant: The plant P has state dynamics given by

xk+1 = axk + buk + wk , (1)

where a, b ∈ R, wk is i.i.d. zero-mean Gaussian with
variance σ2

w, and x0 has a zero-mean bounded distribution.
Scheduler: A local scheduler S is situated in the sensor
node, and decides if the state is an event, to be scheduled for
transmission, or not. The scheduler output is denoted γk ∈
{0, 1}, and γk = 1 in the case of an event. The innovations in
the state, with respect to the observer (O) across the network,
determine the scheduler output γk, as given by

γk =

{
1, |xk − x̂sk|τk−1

|2 > εd,

0, otherwise.
(2)

Here, x̂sk|τk−1
= ax̂ck−1|k−1 + buk−1, x̂ck−1|k−1 denotes the

estimate at the controller, defined in (5) below, and τk is
the time index of the last received packet, given by τk =

Fig. 3. A model of the closed-loop system from the perspective of a single
NCS in the network. The other control loops in the network are abstracted
by the network traffic block (N ). The resolution block (R) maps the CRM
output α to the MAC output δ. A copy of the observer (O) and controller
(C) are required at the scheduler for this architecture to be feasible.

{max{n,−1} : δn = 1, n ≤ k}. Also, εd > 0 is the
scheduler threshold, and it may vary with the delay, i.e.,
εd need not be equal to εd−1. Here, dk = k − τk is the
delay since the last received packet at time k. The estimate
x̂sk|τk−1

is equal to the estimate at the controller x̂ck|k , if
the current packet is not scheduled for transmission. To
realize such a scheduling policy, the observer and controller
must be replicated within the scheduler, and an explicit
acknowledgement (ACK) of a successful transmission is
required.
Network: The network N generates exogenous traffic, as is
indicated by nk ∈ {0, 1}. It takes a value 1 when a network
source generates an event, and 0 otherwise. The network
traffic is also stochastic, and hence, nk is a binary random
variable, which is not required to be i.i.d.
CRM: The CRM resolves contention between simultaneous
channel access requests. For simplicity, we assume that the
network uses p-persistent CSMA with no retransmissions, in
this paper. The output of the CRM is denoted αk ∈ {0, 1},
and we have

P(αk = 1|γk = 1) = p
α

(3)

where, p
α

is the persistence probability of the CRM. Thus,
with probability p̄

α
= 1−p

α
, some events are suppressed by

the CRM and not permitted to access the medium. Similarly,
αNk is the CRM output for the rest of the network, and
P(αNk = 1|nk = 1) = pα .

The resolution block (R) maps the transmission attempts
αk and αNk to the MAC output δk, as given by

δk = αk(1− αNk ) (4)

where, (δk = 1) indicates that a successful transmission of
the event has occurred. This is possible only when the CRM
permits a transmission and none of the other nodes attempt
to transmit.
Observer (O): The input to the observer is the received
measurement signal yk = δkxk. The observer generates the
estimate x̂ck|k as given by

x̂ck|k = δ̄k(ax̂ck−1|k−1 + buk−1) + δkxk , (5)

where, δ̄k = 1 − δk takes a value 1 when the packet is not
transmitted. In such a case, the estimate is given by a model-
based prediction from the last received data packet at time



τk. The estimation error is defined as x̃ck|k , xk − x̂ck|k , and
Pk|k = E[|x̃ck|k |2] is the estimation error covariance.
Controller (C): The controller generates the signal uk based
on the estimate alone, as given by

uk = −Lx̂ck|k , (6)

where L is the controller gain, and is chosen to optimize
a control cost, such as an infinite horizon Linear Quadratic
Gaussian (LQG) cost function.

We are interested in investigating mean square bounded-
ness of the state in steady state, or LMSS, sometimes used
without the epithet ‘Lyapunov’, as defined below.

Definition 2.1 (Lyapunov Mean Square Stability [10]):
The state is said to possess mean square stability if given
ζ > 0, there exists ξ(ζ) > 0 such that |x0| < ξ implies

lim sup
k→∞

E[|xk|2] ≤ ζ . (7)

The Certainty Equivalence Principle has been shown to
hold in the architecture described in (1)–(6) in [11]. Thus,
we can translate the LMSS property in Definition 2.1 from
the state to the estimation error, as shown below.

Lemma 2.1: For the closed-loop system given by (1)–(6),
there exists a constant ς , with 0 < ς < ζ, such that (7) is
equivalent to

lim sup
k→∞

E[Pk|k ] ≤ ς . (8)

Proof: The estimate at the controller in (5) and the state
can be rewritten as

x̂ck|k = (a− bL)x̂ck−1|k−1 + δk(ax̃ck−1|k−1 + wk−1) (9)

xk = (a− bL)x̂ck−1|k−1 + (ax̃ck−1|k−1 + wk−1) .

Since x̂ck−1|k−1 is the minimum mean square error estimate
[11], we can write E[|xk|2] as

E[|xk|2] = (a− bL)2 E[|x̂ck−1|k−1 |2] + E[Pk|k ] ,

which must be bounded in steady state for stability, as per
Definition 2.1. For the deterministic system, the control law
in (6) ensures mean square boundedness of the state in
steady state, due to optimality. The Certainty Equivalence
Principle holds, and thus, this control law ensures mean
square boundedness of the estimate x̂ck−1|k−1 in (9). Hence
the stability condition depends only on the estimation error,
and xk is LMSS iff lim supk→∞ E[Pk|k ] ≤ ς .
In the rest of the paper, we identify sufficient conditions that
guarantee LMSS, in the sense of (8), for the states of each
of the M closed-loop systems described above.

B. Network Interaction Model

We have defined a model and a notion of stability for
each closed-loop system. However, we need to model the
interactions in the network of M closed-loop systems, and
define a notion of stability for the entire network. To do
this, we use a Markov chain to jointly model the state-based
scheduler and CRM, through which each closed-loop system
interacts with the rest of the network. Such a Markovian
representation is possible because the delay since the last

Fig. 4. A Markov chain representation for a state-based scheduler and a
simple CRM such as p-persistent CSMA with no retransmissions.

successful transmission dk−1 is a sufficient statistic for the
transmission history {δ0, . . . , δk−1}, for the scheduler in (2).

The delay d, along with another index S, is used to denote
each state in the Markov chain in Fig. 4. To understand this
Markov chain, let us trace through the chain for some delay
dk = d− 1, or with the plant in the idle state (I, d− 1). At
the next sampling instant, the state x is declared to be one
of the following.
• Event: The process transitions to (E, d), with probabil-

ity p
γ,d

:= P(γk=1|dk=d−1).
• Non-event: The process transitions to (N, d), with

complimentary probability p̄
γ,d

= 1 − p
γ,d

. Then, it
transitions directly to the next idle state (I, d), to wait
for the next sampling instant.

An event is sent to the CRM, where it is
• Transmitted: The process transitions to (R, d), with

probability pα .
• Suppressed: With complimentary probability p̄

α
, it re-

turns to the next idle state (I, d).
A transmitting node, in any of the (R, d) states, sees a busy
channel if another node in the network is in one of its
transmission states, and transmitting during a busy channel
causes a collision. Thus, a transmission results in
• Collision: The process transitions, with probability p,

defined in (10) below, to the idle state (I, d).
• Success: The process transitions, with probability p̄ =

1− p, to the state (I, 0), with the delay reset to d = 0.
We now present our first assumption, used in the construc-

tion of this Markov chain.
Assumption 2.1: The conditional probability of a busy

channel, as seen by a node in (R, d), for d > 0, is assumed
to be a time-average, which is independent of the current
delays of the interfering nodes, and is given by

p = 1−
(
1−

∞∑
d=1

p
(R,d)

)M−1
, (10)

where, p
(R,d)

is the probability of being in the state (R, d).



This assumption was first made by Bianchi in his much-
acclaimed analysis of CSMA/CA in 802.11 [12], and has
been verified with simulations, for the problem setup con-
sidered in this paper, in [7]. We can now define a notion of
stability for the interactions of the M closed-loop systems
in this network.

Definition 2.2 (Network Steady State): The network of
M closed-loop systems, given by (1)–(6), is said to be in
steady state when the states (S, d), ∀S ∈ {I,N,E,R}, d ≥
0, are recurrent.

We present the second assumption, which we use in the
rest of the analysis.

Assumption 2.2: The network of M closed-loop systems,
given by (1)–(6), is assumed to be in steady state.
This assumption implies that 0 ≤ p < 1, because if p = 1,
then all the states in this Markov chain are transient, except
for the infinite-delay states, and no steady state exists. This,
in turn, requires 0 ≤

∑∞
d=1 p(R,d)

< 1, from (10).
In steady state, we can analyze the performance of any of

the closed-loop systems in this network [7]. The probability
of a node in the states (I, d) and (R, d) are given by

p
(I,d)

=(1−p
γ,d

pα p̄)p(I,d−1)
, p

(R,d)
= p

γ,d
p
α
p

(I,d−1)
. (11)

Then, the probability of a successful transmission is given by
P(δk = 1) = p

(I,0)
and can be obtained by simultaneously

solving
∑∞
d=0 p(I,d)

= 1 and (10) above.
Thus, we begin by assuming that a steady state exists, and

then proceed to find conditions for LMSS. The steady state
assumption is not sufficient to guarantee LMSS. However,
the LMSS conditions we derive guarantee that Assump-
tion 2.2 holds.

III. MAIN RESULTS

We can use the Markov chain in Fig. 4 to analyze
stability of each closed-loop system. However, the transition
probabilities p

γ,d
in the Markov chain are dependent on the

state of the plant, conditioned on its state in the Markov
chain itself. Computing these scheduler probabilities, is not a
simple task, as explained below. We overcome this difficulty
by finding an approximation, which permits us to predict the
stability of the system.

A. Probability Distributions for the Markov Chain States

To use Lemma 2.1, we need to find an expression for
the estimation error covariance. Let us associate, with each
state (S, d) for S ∈ {I,N,E,R}, a probability distribution
function (pdf) for the estimation error at the controller,
denoted by φ

(S,d)
:= {φ(x̃ck|k) : x̃ck|k ∈ (S, d), dk = d}.

Then, the estimation error covariance conditioned on a
delay d is given by Pd =

∫∞
−∞ x̃2φ

(I,d)
(x̃)dx̃. Marginalizing

over the delay distribution, we get

E[Pk|k ] =

∞∑
d=0

Pd P(dk = d) . (12)

This expression is easy to analyze for stability, using the
Markov chain in Fig. 4 [13]. However, these pdf(s) can be
hard to compute. To see why, let us look at the evolution

of these pdf(s) as the delay d increases. For d = 0, it is
easy to see that φ

(I,0)
= φN (σ2

w), where φN is the pdf of
a normal distribution with variance σ2

w. For any delay d,
the pdf(s) associated with the event and non-event states are
constrained versions of the pdf associated with the previous
idle state. Thus, we get

φ
(N,d)

=


φ
(I,d−1)

(x̃)

p̄
γ,d

|x̃| ≤ εd ,

0 otherwise ,
(13)

φ
(E,d)

=


φ
(I,d−1)

(x̃)

p
γ,d

|x̃| > εd ,

0 otherwise ,
(14)

where, p̄
γ,d

=
∫ εd
−εd φ(I,d−1)

(x̃)dx̃ is the probability of a non-
event and p

γ,d
= 1− p̄

γ,d
is the probability of an event after

a delay d.
Then, let us denote ed as the innovations process which

does not get transmitted after a delay d. Its pdf is given by

φe
(I,d)

=P(x̃ck|k |δk=0,dk=d)

=
∑

γk∈{0,1}

P(x̃ck|k |γk,δk=0,dk=d) · P(γk|δk=0,dk=d)

=φ
(N,d)

(x̃) ·
p̄
γ,d

p̄
γ,d

+ p
γ,d

(p̄
α

+ pp
α

)

+ φ
(E,d)

(x̃) ·
(p̄
α

+ pp
α

)p
γ,d

p̄
γ,d

+ p
γ,d

(p̄
α

+ pp
α

)

=

φ(I,d−1)
(x̃) · 1

p̄
γ,d

+p
γ,d

(p̄α+ppα ) |x̃| ≤ εd
φ

(I,d−1)
(x̃) · (p̄α+ppα )

p̄
γ,d

+p
γ,d

(p̄α+ppα ) |x̃| > εd
(15)

where, the last expression was obtained by substituting for
φ

(N,d)
and φ

(E,d)
from (13) and (14), respectively. Finally,

the pdf of the idle state with delay d is obtained from the
plant dynamics in (1) as

φ
(I,d)

=
1

a
φe

(I,d)
(
x̃

a
) ∗ φN (σ2

w) ,

which is obtained through a convolution of two pdf(s).
The above operations must be performed recursively, to

obtain the pdf associated with the state (I, d) for all d > 0,
which is hard to compute. Hence, we find approximations
for the pdf(s) and bounds for the estimation error covariance
in the following subsections.

B. Two Extreme Network Scenarios

To begin with, we identify two simple network scenarios,
no exogenous network traffic and saturated network traffic.

Lemma 3.1 (Case 1: No exogenous network traffic, p = 0):
For the system given by (1)–(6), with no exogenous network
traffic (nk = 0), it holds that Pk|k ≤ maxd ε

2
d.

Proof: With no exogenous network traffic, δk = γk.
Thus, we have sup{γ0,...,γk} Pk|k ≤ ε2d for d = dk, when
γk = 0, and Pk|k = 0 otherwise. Hence, Pk|k ≤ maxd ε

2
d.

In this case, all plants achieve LMSS.
Lemma 3.2 (Case 2: Saturated network traffic, p = 1):

For the system given by (1)–(6), LMSS is achievable if
limd→∞ Pd is bounded.



Proof: When p = 1, φe
(I,d)

= φ
(I,d)

as can be seen from
(15). Then, φ

(I,d)
= a−1φ

(I,d−1)
∗ φN . Definition 2.2 does

not hold, and hence limd→∞ p
(I,d)

= 1.
Thus, stability is determined by the open loop plant. When
a < 1, the estimation error covariance is given by E[Pk|k ] =
σ2
w

1−a2 . Unstable plants cannot be stabilized with saturated
network traffic. However, to identify conditions required for
stability, we need to find a suitable approximation that can
be used even for unstable plants.

C. Approximation of PDFs using Majorization Theory

Let us choose φ̂
(S,d)

to approximate φ
(S,d)

such that
φ

(S,d)
� φ̂

(S,d)
. We define the majorization operator � below.

Definition 3.1: The pdf φa is said to majorize another pdf
φb, denoted as φa � φb, if∫ L

−L
φa(`)d` ≥

∫ L

−L
φb(`)d` , ∀L ∈ R .

This results in an ordering of the second moments, Pv =∫∞
v=−∞(v − E[v])2φvdv for v = {a, b}, as stated below.

Lemma 3.3: If φa � φb, then Pa ≤ Pb.
Proof: Since φa � φb, and

∫∞
−∞ φa(`)d` =∫∞

−∞ φb(`)d`, there is more probability mass in larger ` in
φb. Thus, its second moment is larger.

Using Definition 3.1, we find φ̂
(I,d)

, as stated below.
Theorem 3.4: Let the pdf, φ̂

(I,d)
, be defined by the recur-

sive relation
φ̂

(I,d)
=

1

a
φ̂

(I,d−1)
∗ φN ,

with φ̂
(I,0)

= φN . Then, φ
(I,d)
� φ̂

(I,d)
for all d ≥ 0.

Proof: We show this using induction. Trivially, at d =
0, φ

(I,0)
= φ̂

(I,0)
= φN . Let us assume that, for some d,

φ
(I,d)
� φ̂

(I,d)
. Then, from (15), we can show that φe

(I,d+1)
�

φ
(I,d)

. To see this, note that -
• For |e| ≤ εd+1, we have∫ e

−e

φ
(I,d)

(x̃)

p̄
γ,d+1

+ p
γ,d+1

(p̄α + ppα)
dx̃ ≥

∫ e

−e
φ

(I,d)
(x̃)dx̃ ,

because p̄
γ,d+1

+ p
γ,d+1

(p̄
α

+ pp
α

) ≤ 1.
• For |e| > εd+1, we have∫ −e

−∞
φ

(I,d)
(x̃)

(p̄
α

+ pp
α

)

p̄
γ,d+1

+ p
γ,d+1

(p̄
α

+ pp
α

)
dx̃

+

∫ ∞
e

φ
(I,d)

(x̃)
(p̄
α

+ pp
α

)

p̄
γ,d+1

+ p
γ,d+1

(p̄α + ppα)
dx̃

≤
∫ −e
−∞

φ
(I,d)

(x̃)dx̃+

∫ ∞
e

φ
(I,d)

(x̃)dx̃ ,

because (p̄α+ppα )
p̄
γ,d+1

+p
γ,d+1

(p̄α+ppα ) ≤ 1.

Since φe
(I,d+1)

� φ
(I,d)

and φ
(I,d)
� φ̂

(I,d)
, we have

φe
(I,d+1)

� φ̂
(I,d)

1

a
φe

(I,d+1)
(
x̃

a
) � 1

a
φ̂

(I,d)
(
x̃

a
)

φN ∗
1

a
φe

(I,d+1)
(
x̃

a
) � φN ∗

1

a
φ̂

(I,d)
(
x̃

a
) ,

where, the above relationships follow from the properties of
the majorization operator for neat distributions [14]. Hence,
φ

(I,d+1)
� φ̂

(I,d+1)
, and, this is true for all d ≥ 0.

The pdf(s) given by φ̂
(I,d)

define the worst-case evolution
of the system considered in Lemma 3.2, where p = 1.

D. Stability Conditions for the Markov Chain

Let us now look at stability conditions for the Markov
chain in Fig. 4.

Lemma 3.5: For the closed-loop system given by (1)–(6),
under Assumption 2.2, sufficient conditions for LMSS are
given by

lim sup
d→∞

p
(I,d+1)

p
(I,d)

<
1

1 + a2
(16)

∞∑
d=1

p
γ,d

1 + a2
<

1

p
α
p

(I,0)

(17)

Proof: The estimation error covariance can be bounded
from above, using the approximations from Theorem 3.4, as

E[Pk|k ] =

∞∑
d=1

p
(I,d)

Pd ≤
∞∑
d=1

p
(I,d)

P̂d

For this expression to be bounded [15], we require

lim sup
d→∞

p
(I,d+1)

P̂d+1

p
(I,d)

P̂d
< 1 .

Since P̂d = σ2
w(1 +a2 + · · ·+a2d), the left hand side of the

above inequality can be written as

lim sup
d→∞

p
(I,d+1)

p
(I,d)

[
1 + a2 a2d

1 + a2 + · · ·+ a2d

]
≤ lim sup

d→∞

p
(I,d+1)

p
(I,d)

[1 + a2] .

By requiring the last expression to be strictly less than 1 in
(16), we satisfy the conditions required to obtain LMSS.

The above analysis is only possible in steady state (As-
sumption 2.2), which requires that

∑∞
d=1 p(R,d)

< 1. Substi-
tuting for p

(R,d)
from (11) in this expression, and using (16),

we obtain (17).
Let us assume that we choose the scheduler probabilities

such that
p

(I,d+1)
<

p
(I,d)

1 + a2
, (18)

and such that (16) is true. Then, using this in
∑∞
d=0 p(I,d)

=
1, we get p

(I,0)
> a2/(1 + a2).

Finally, we derive some conditions to achieve the require-
ments in Lemma 3.5, and hence LMSS.

Theorem 3.6: For the closed-loop system given by (1)–
(6), under Assumption 2.2, sufficient conditions for LMSS
are given by

lim sup
d→∞

p
γ,d

> κ
α

1

(1− pc)M−1
, (19)

∞∑
d=1

p
γ,d

(1 + a2)d−1
<

1

pα
(1− κ1/(M−1)

α
)

1

p
(I,0)

, (20)

where, pc = pαp(I,0)

∑∞
`=1

p
γ,`

(1+a2)`−1 and κα = 1
pα

a2

1+a2 .



Proof: From the Markov chain in Fig. 4, we can use
the recursive relationship for the pdf of the state (I, d + 1)
in (11) along with the sufficient condition in (16) to obtain

lim sup
d→∞

(1− p
γ,d+1

pα p̄)p(I,d)

p
(I,d)

<
1

1 + a2

lim sup
d→∞

p
γ,d+1

p̄ >
1

p
α

a2

1 + a2
= κ

α
. (21)

Substituting for p̄ from (10) and the sufficient condition in
(18), we get

lim sup
d→∞

p
γ,d+1

(
1−

∞∑
`=1

p
γ,`
p
α
p

(I,`−1)

)M−1

≥ lim sup
d→∞

p
γ,d+1

(
1− pαp(I,0)

∞∑
`=1

p
γ,`

(1 + a2)`−1

)M−1

Using the definition of pc and setting the above expression
to be greater than κ

α
to achieve (21), we obtain the bound

in (19).
For 0 < p

γ,d
< 1, the above inequality results in

κ
α

1

(1− pc)M−1
< 1 , (22)

which can be rearranged to obtain (20).

Steady State versus LMSS: As mentioned earlier, As-
sumption 2.2 is not sufficient to guarantee LMSS. This can
be seen by noting that a steady state requires p < 1. From
(11), this implies that p

(I,d+1)
< p

(I,d)
. Thus, the network

steady state ensures that the loop is sometimes closed, as
against the case p = 1, when the loop is never closed. But,
this feedback may not be sufficient to stabilize the system,
in the sense of Definition 2.1.

However, LMSS for all M systems in the network ensures
a network steady state, in the sense of Definition 2.2. To
see this, note that the upper bound in (20) ensures that (17)
is satisfied. This is because κα < 1, from (21). Thus, in
(20), (1− κ(1/(M−1))

α
) < 1. Hence, a steady state is indeed

achieved by the closed-loop systems in stability.

IV. DESIGN OF THE SCHEDULER

Now that we have some constraints on the scheduling
probabilities, what does this mean for the design of the
scheduler itself? In particular, how should p

γ,d
be designed as

a function of d to achieve LMSS? We can immediately think
of three possible ways to vary the scheduling probability
with delay: holding it a constant, additively increasing or
decreasing it. We do not consider multiplicatively increasing
or decreasing the scheduler probabilities as it is easy to
show that this would negate the conditions of Theorem 3.6.
We discuss each of the other designs, and identify stability
conditions for these schedulers.

A. Constant Scheduling Laws

This scheduler is designed to provide a constant schedul-
ing probability for all delays, ie. p

γ,d
= p

γ
, for all d > 0.

Applying the constraints obtained from Theorem 3.6, we
identify stability conditions for this particular law.

Corollary 4.1: For the closed-loop system given by (1)–
(6), a sufficient condition for LMSS for constant scheduling
laws is given by

κ
α

1

(1− pc)M−1
< p

γ
< κ

α
(1− κ1/(M−1)

α
)

1

p
(I,0)

. (23)

Proof: The lower bound on pγ comes from the con-
straint in (19). To obtain the upper bound, note that the left
hand side of (20) can be evaluated as p

γ

1+a2

a2 . Substituting
in (20) and rearranging, gives us (23).

B. Additive Scheduling Laws

This scheduler is designed to provide an additive in-
crease/decrease in the scheduling probability with delay, i.e.,
p
γ,d

= p
γ,d−1

+ ν, for ν ≷ 0. Since max pγ,d < 1, this
scheduling law can only be defined when the additive terms
decrease in magnitude. A necessary condition is obtained by
requiring that the sum of the series in (20) is summable and is
given by lim supd→∞ p

γ,d+1
/p

γ,d
< 1 + a2. We look at one

of many possible examples, for increasing and decreasing
scheduling probabilities, to see the effects on the bounds.

Let us first consider an increasing sequence of scheduler
probabilities, defined by

p
γ,d

= pγ,1 + η + η2 + · · ·+ ηd−1 , for η < 1 . (24)

Thus, limd→∞ p
γ,d

= p
γ,1

+ η
1−η , and p

γ,1
and η must be

chosen such that this term is less than 1. Then, we have the
following result.

Corollary 4.2: For the closed-loop system given by (1)–
(6), a sufficient condition for LMSS for the additive and
increasing scheduling law in (24), is given by

κα
1

(1− pc)M−1
< pγ,max < κα(1− κ1/(M−1)

α
)

1

p
(I,0)

+ κη ,

where, p
γ,max = p

γ,1
+ η

1−η and κ
η

= η
1−η ·

a2

1+a2−η .

Proof: The maximum scheduling probability is given
by p

γ,max = limd→∞ p
γ,d

, and thus the lower bound on
pγ,max comes from the constraint in (19). The upper bound
is obtained by evaluating the left hand side in (20) and
rearranging the resulting condition.

Now, let’s consider a decreasing sequence of scheduler
probabilities, defined by

p
γ,d

= pγ,1 − β − β2 − · · · − βd−1 , for β < 1 . (25)

Thus, limd→∞ p
γ,d

= p
γ,1
− β

1−β , and p
γ,1

and β must be
chosen such that this term is less than the bound in (19), and
p
γ,1

< 1. Then, we have the following result.
Corollary 4.3: For the closed-loop system given by (1)–

(6), a sufficient condition for LMSS for the additive, but
decreasing, scheduling law in (25), is given by

κ
α

1

(1− pc)M−1
+

β

1− β
< p

γ,1

< κ
α

(1− κ1/(M−1)
α

)
1

p
(I,0)

+
β

1 + a2 − β
.

The proof is identical to the one for Corollary 4.3, with the
exception that max p

γ,d
= pγ,1 .



Fig. 5. The approximate pdf in Theorem 3.4 is majorized by the actual
pdf, as seen in this comparison of the cdf(s). The approximate distribution
has a larger variance, and is an upper bound for the actual variance.

V. EXAMPLE

We now illustrate some of the results presented above.
In Fig. 5, we illustrate that φ̂

(I,d)
from Theorem 3.4 is

majorized by φ
(I,d)

for d = {1, . . . , 5}, by comparing
their cumulative distribution functions (cdf(s)). The arrow
indicates the variation in the cdf(s), with increasing delay.
We use a closed-loop system with parameters a = 2, b = 1,
σw = 1 and εd = 1, for all d > 0. The CRM persistence
probability is set to p

α
= 1, and the conditional probability

of a busy channel is p = 0.6. Note that the approximation
depends on the dynamics of the plant, and it was chosen
to correspond to the worst-case evolution of the real pdf(s),
with saturated network traffic. Thus, the approximation is
tighter for large p and small a.

Next, we consider two network scenarios: case 1 corre-
sponds to a network with M = 2 nodes, and case 2 with
M = 10 nodes. The rest of the parameters are a = 1, b = 1,
σw = 1 and εd = 0.25, ∀d > 0. The CRM presented in this
paper permits no retransmissions, and cannot support many
unstable processes. Our analysis shows this; By applying the
constant law design from Corollary 4.1, we do not find any
set of parameters pγ , pc and p

I,0
that guarantee LMSS.

However, the Markov analysis extends to a CRM with
retransmissions [7]. For 10 retransmissions, we use the
results of Lemma 3.5, which apply here as well, to show
that for case 1, LMSS is achievable, and for case 2, LMSS
cannot be guaranteed. Using (16), we see that the idle state
probabilities must achieve a ratio of less than 0.5, for large d.
Case 1 achieves a ratio of less than 0.1 for d > 10, whereas
case 2 has a ratio of 0.98 even after d = 50. The LMSS
properties can be inferred from a trace of the state x, for
each case, in Fig. 6.

VI. CONCLUSIONS

We have derived a set of sufficient conditions on the
probability of delay since the last transmission that ensure
LMSS of the event-based NCS, with state-based schedulers
and an explicit CRM. We have translated these conditions
to constraints on the scheduling probabilities. Using these
constraints, we have identified three scheduling laws, along
with sufficient conditions to obtain LMSS. Future work

Fig. 6. A comparison of the trace of the plant state x for two different
network scenarios: case 1 is guaranteed to be LMSS by the results of
Lemma 3.5, while case 2 is not.

includes extending the laws to a CRM with retransmissions
and translating scheduling laws into policies for modifying
the scheduler thresholds.
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