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a b s t r a c t

In this paper a new distributed asynchronous algorithm is proposed for time synchronization in networks
with random communication delays, measurement noise and communication dropouts. Three different
types of the drift correction algorithm are introduced, based on different kinds of local time increments.
Under nonrestrictive conditions concerning network properties, it is proved that all the algorithm types
provide convergence in the mean square sense and with probability one (w.p.1) of the corrected drifts of
all the nodes to the same value (consensus). An estimate of the convergence rate of these algorithms
is derived. For offset correction, a new algorithm is proposed containing a compensation parameter
coping with the influence of random delays and special terms taking care of the influence of both linearly
increasing time and drift correction. It is proved that the corrected offsets of all the nodes converge in
the mean square sense and w.p.1. An efficient offset correction algorithm based on consensus on local
compensation parameters is also proposed. It is shown that the overall time synchronization algorithm
can also be implemented as a flooding algorithm with one reference node. It is proved that it is possible
to achieve bounded error between local corrected clocks in the mean square sense and w.p.1. Simulation
results provide an additional practical insight into the algorithm properties and show its advantage over
the existing methods.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Cyber–Physical Systems (CPS), Internet of Things (IoT) and Sen-
sor Networks (SN) have emerged as research areas of paramount
importance, with many conceptual and practical challenges and
numerous applications (Akyildiz & Vuran, 2010; Holler et al.,
2014; Kim & Kumar, 2012). One of the basic requirements in
networked systems is, in general, time synchronization, i.e., all the
nodes have to share a common notion of time. The problem of
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time synchronization in networked systems has attracted a lot of
attention, but still represents a challenge due to multi-hop com-
munications, stochastic delays, communication and measurement
noise, unpredictable packet losses and high probability of node
failures, e.g., Sundararaman, Buy, and Kshemkalyani (2005). There
are numerous approaches to this problem, starting from different
assumptions and using different methodologies, e.g., Elson, Girod,
and Estrin (2002), Sivrikaya and Yener (2004) and Sundarara-
man et al., (2005). An important class of time synchronization
algorithms is based on full distribution of functions (Simeone,
Spagnolini, Bar-Ness, & Strogatz, 2008; Solis, Borkar, & Kumar,
2006). Distributed schemes with the so-called gradient property
have been proposed in Fan and Lynch (2006) and Sommer and
Wattenhofer (2009). A class of consensus based algorithms, called
CBTS (Consensus-Based Time Synchronization) algorithms, has at-
tracted considerable attention, e.g., He, Cheng, Chen, Shi, and Lu
(2014a), He, Cheng, Shi, Chen, and Sun (2014b), Li and Rus (2006),
Liao and Barooah (2013a), Schenato and Fiorentin (2011), Tian
(2015) and Xiong and Kishore (2009). It has been treated in a
unified way in a recent survey (Tian, Zong, & Cao, 2016), providing
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figure of merit of the principal approaches. In Carli, Chiuso,
Zampieri, and Schenato (2008) and Yildirim, Carli, and Schenato
(2015) a control-based approach to distributed time synchroniza-
tion has been proposed. Fundamental and yet unsolved problems
in all the existing approaches are connected with communication
delays and measurement noise; see Freris, Graham, and Kumar
(2011) for basic issues, and Chaudhari, Serpedin, and Qaraqe
(2008), Choi, Liang, Shen, and Zhuang (2012), Garone, Gasparri,
and Lamonaca (2015) and Xiong and Kishore (2009) for different
aspects of delay influence.

In this paper we propose a new asynchronous distributed algo-
rithm for time synchronization in lossy networks, characterized
by random communication delays, measurement noise and commu-
nication dropouts. The algorithm is composed of two distributed
recursions of asynchronous stochastic approximation type based on
broadcast gossip and derived from predefined local error functions.
The recursions are aimed at achieving asymptotic consensus on the
corrected drifts and corrected offsets and, consequently, at obtaining
common virtual clock for all the nodes in the network.

The proposed recursion for drift synchronization is based on
noisy time increments, defined in three characteristic forms (a
preliminary form has been presented in Stanković, Stanković,
and Johansson (2016)). We prove convergence to consensus of the
corrected drifts in the mean square sense and with probability one
(w.p.1), under nonrestrictive conditions. Furthermore, we provide
an estimate of the corresponding asymptotic convergence rate. It
is shown that the proposed recursion with the increments of
unbounded length with random boundaries provides convergence
rate faster than 1

t , what is essential for convergence to a common
global virtual clock. Compared to the analogous existing algo-
rithms (Schenato & Fiorentin, 2011; Tian, 2015), the proposed
scheme is structurally different and simpler (not involving mutual
drift estimation, typical for the CBTS algorithms) and, in addition,
provides the best performance. Notice that the algorithm in Schen-
ato and Fiorentin (2011) cannot handle communication delays and
measurement noise, while the papers Tian (2015, 2017), derived
from a particular form of increments of unbounded length, treat
random delays, but not measurement noise and communication
dropouts. Moreover, the algorithm proposed therein cannot pro-
vide convergence rate achievable by the proposed methodology.
The approach in Garone et al. (2015) does not ensure consensus of
corrected drifts in spite of additional pairwise inter-node commu-
nications.

We also propose a novel recursion for offset synchronization,
which starts froma special error function, obtained from the differ-
ence between local times, with two important modifications aim-
ing at: (1) eliminating the deteriorating effect of linearly increasing
absolute time, and (2) coping with the influence of delays by
introducing additional delay compensation parameters. It is proved
that the proposed algorithm provides convergence in the mean
square sense and w.p.1 to a set of bounded random variables.
The algorithm for the offset correction proposed in Schenato and
Fiorentin (2011) cannot handle these problems, while the algo-
rithm in Tian (2015, 2017) allows unbounded corrected offsets
and assume perfect clock readings. The approach in Yildirim et
al. (2015) does not provide a rigorous insight into overall network
stability. Attention is also paid to an improvement of the offset cor-
rection algorithm, based on linear consensus iterations, aiming at
decreasing the dispersion of the offset convergence points. Special
cases related to delay and noise are discussed in order to clarify
potentials of the proposed algorithms.

The resulting time synchronization algorithm composed of the
proposed drift and offset correction recursions ensures finite dif-
ferences between local corrected clocks in the mean square sense
and w.p.1. To the authors’ knowledge, this is the first method with
such a performance in the case of random delays, measurement

noise and communication dropouts. It is also demonstrated that
the proposed algorithm can be implemented as a flooding algo-
rithm, with one preselected reference node.

Finally, some illustrative simulation results are presented, giv-
ing additional insights into the theoretically discussed issues.

2. Synchronization algorithms

2.1. Time and network models

Assume a network consisting of n nodes, formally represented
by a directed graph G = (N , E), where N is the set of nodes and
E the set of arcs. Denote by N+

i the out-neighborhood and by N−

i
the in-neighborhood of node i, i = 1, . . . , n. Assume that each node
has a local clock, whose output, defining the local time, is given for
any absolute time t ∈ R by

τi(t) = αit + βi + ξi(t), (1)

where αi ̸= 0 is the local drift (gain), βi is the local offset, while ξi(t)
is measurement noise, appearing due to equipment instabilities,
round-off errors, thermal noise, etc. Liao and Barooah (2013a,
b), Schenato and Fiorentin (2011) and Stanković, Stanković, and
Johansson (2012). Each node i applies an affine transformation to
τi(t), producing the corrected local time

τ̄i(t) = aiτi(t) + bi = git + fi + aiξi(t), (2)

where ai and bi are the local correction parameters, gi = aiαi is the
corrected drift and fi = aiβi + bi the corrected offset, i = 1, . . . , n.

Distributed time synchronization is aimed at providing a com-
mon virtual clock, i.e., equal corrected drifts gi and equal corrected
offsets fi, i = 1, . . . , n, by distributed real-time estimation of the
parameters ai and bi. We assume that the nodes communicate
according to the broadcast gossip scheme, e.g., Aysal, Yildriz, Sar-
wate, and Scaglione (2009), Bolognani, Carli, Lovisari, and Zampieri
(2012) and Nedić (2011), without global supervision or fusion
center. Therefore, each node j ∈ N has its own local communication
clock that ticks according to a Poisson process with rate µj, inde-
pendently of the other nodes. At each tick of its communication
clock (denoted by t jb, b = 0, 1, 2, . . .), node j broadcasts its current
state to its out-neighbors i ∈ N+

j . Each node i ∈ N+

j hears the
broadcast with probability pij > 0. Let {t j,il }, l = 0, 1, 2, . . . , be the
sequence of absolute time instants corresponding to the messages
heard by node i. The message sent at t j,il is received at node i at the
time instant

t̄ j,il = t j,il + δ
j,i
l ,

where δj,il represents the corresponding communication delay (for
physical and technical sources of delays see Chaudhari et al.
(2008), Choi et al. (2012), Freris et al. (2011), Leng and Wu (2011)
and Xiong and Kishore (2009)). We assume in the sequel that

δ
j,i
l = δ̄j,i + ηi(t̄

j,i
l ), (3)

where δ̄j,i is constant, while ηi(t̄
j,i
l ) represents a stochastically time-

varying component with zero mean. After receiving a message
from node j, node i reads its current local time, calculates its own
current corrected local time and updates the values of its correction
parameters ai and bi. The process is repeated after each tick of any
node in the network;we assume, as usually, only one tick at a given
time t (Nedić, 2011).
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2.2. Drift correction algorithm

The recursion for updating the value of parameter ai at node i,
as a response to a message coming from node j, is based on the
following error function:

ϕ̄a
i (t̄

j,i
l ) = ∆τ̄j(t

j,i
l ) −∆τ̄i(t̄

j,i
l ), (4)

where ∆τ̄j(t
j,i
l ) and ∆τ̄i(t̄

j,i
l ) are increments of the corrected local

times, given by

∆τ̄j(t
j,i
l ) = τ̄j(t

j,i
l ) − τ̄j(t j,im ) = aj∆τj(t

j,i
l ),

∆τ̄i(t̄
j,i
l ) = τ̄i(t̄

j,i
l ) − τ̄i(t̄ j,im ) = ai∆τi(t̄

j,i
l ),

wherem ∈ {0, . . . , l − 1},

∆τj(t
j,i
l ) = τj(t

j,i
l ) − τj(t j,im ) = αj∆t j,il +∆ξj(t

j,i
l ),

∆τi(t̄
j,i
l ) = αi∆t̄ j,il +∆ξi(t̄

j,i
l ),

∆t j,il = t j,il − t j,im , ∆ξj(t
j,i
l ) = ξj(t

j,i
l ) − ξj(t

j,i
m ), ∆t̄ j,il = t̄ j,il − t̄ j,im =

∆t j,il +∆δ
j,i
l ,with∆δj,il = δ

j,i
l − δ

j,i
m , and∆ξi(t̄

j,i
l ) = ξi(t̄

j,i
l )− ξi(t̄

j,i
m );

by (3), we have∆δj,il = ∆ηi(t̄
j,i
l ), where∆ηi(t̄

j,i
l ) = ηi(t̄

j,i
l )− ηi(t̄

j,i
m ).

Here m denotes the index of the past time instant with respect
to which the time increment is calculated. In this paper we shall
consider the following three characteristic cases (whichwe denote
as AlgDrift.a, AlgDrift.b and AlgDrift.c (see Algorithm 1)):

(a) m = l − L, where L > 0 is a predefined integer (AlgDrift.a);
(b) m = ⌊νl⌋ (0 < ν < 1), where ⌊x⌋ denotes the largest integer

less than or equal to x (AlgDrift.b);
(c) m = l0, where l0 is a fixed integer (AlgDrift.c).

Remark 1. In AlgDrift.a and AlgDrift.c the required memory is
finite; in AlgDrift.a the memory requirement is determined by L (in
the algorithms from Schenato and Fiorentin (2011) and Stanković
et al. (2012), L = 1). In AlgDrift.b and AlgDrift.c the increment
length is unbounded. AlgDrift.c is based on the idea from Tian
(2015), Tian et al. (2016, 2017), and uses a fixed initial time instant
m = l0. However, in AlgDrift.b we have that liml→∞m = ∞ and
liml→∞(l − m) = ∞; it will be seen below that, as a consequence,
the corresponding algorithm has the highest convergence rate.

Using (4), we propose the following updating procedure for
parameter ai at node i, to be executed immediately after node i
receives the message from node j (j = 1, . . . , n, i ∈ N+

j ):

âi(t̄
j,i+
l ) = âi(t̄

j,i
l ) + εai (t̄

j,i
l )γijϕ̂a

i (t̄
j,i
l ), (5)

where γij are a priori chosen nonnegative weights (see the discus-
sion below), ϕ̂a

i (t̄
j,i
l ) = ∆τ̂j(t

j,i
l ) −∆τ̂i(t̄

j,i
l ),

∆τ̂j(t
j,i
l ) = ∆τ̄j(t

j,i
l )|aj=âj(t

j,i
l ), (6)

∆τ̂i(t̄
j,i
l ) = ∆τ̄i(t̄

j,i
l )|ai=âi(t̄

j,i
l ), (7)

âj(t
j,i
l ) and âi(t̄

j,i
l ) are the old estimates, âi(t̄

j,i+
l ) the new estimate,

while εai (t̄
j,i
l ) is a positive step size. The corresponding pseudocode

is presented as Algorithm 1. It will be assumed that the initial
estimates are âi(t̄

j,i
0 ) = 1.

In terms of the corrected drift ĝi(·) = âi(·)αi, (5) gives:

ĝi(t̄
j,i+
l ) = ĝi(t̄

j,i
l ) + εai (t̄

j,i
l )γijψ̂a

i (t̄
j,i
l ), (8)

where ψ̂a
i (t̄

j,i
l ) = αi{[ĝj(t

j,i
l ) − ĝi(t̄

j,i
l )]∆t j,il +

1
αj
ĝj(t

j,i
l )∆ξj(t

j,i
l ) −

1
αi
ĝi(t̄

j,i
l )∆ξi(t̄

j,i
l ) − ĝi(t̄

j,i
l )∆ηi(t̄

j,i
l )}.

Algorithm 1 AlgDrift.a, AlgDrift.b and AlgDrift.c
for All the nodes i ∈ N do

Initialize âi(t̄
j,i
0 ) = 1

end for
loop

if Tick t jb of a local communication clock of a node j ∈ N then
Read the current local time value τj(t

j
b)

Broadcast τj(t
j
b) and âj(t

j
b) to the out-neighbors N+

j
end if

end loop
loop

if A message received by a node i ∈ N from a node j ∈ N−

j (at
absolute time t̄ j,il ) then

if The first message from the node j then
Save the received initial local time of node j τj(t

j,i
0 )

Read and save the initial local time τi(t̄
j,i
0 )

else
Read the current local time value τi(t̄

j,i
l )

Calculate ∆τ̂j(t
j,i
l ) and ∆τ̂i(t̄

j,i
l ) according to (6) and (7),

where m = l − L for AlgDrift.a, m = ⌊νl⌋ for AlgDrift.b,
and m = 0 for AlgDrift.c
Calculate a new estimate of the drift correction parameter
according to (5)

end if
end if

end loop

Remark 2. The proposed Algorithm 1 is independent of both
offset and offset correction. It does not belong to the class of
CBTS algorithms (Tian et al., 2016): it is structurally different and
simpler, not requiring the step of relative drift estimation, which
introduces higher order dynamics and an additional nonlinearity.

2.3. Offset correction algorithm

The proposed recursion for updating parameter bi in (2) is based
on the following error function:

ϕ̄b
i (t̄

j,i
l ) = τ̄j(t

j,i
l ) − ajTj(t

j,i
l )

− (τ̄i(t̄
j,i
l ) − aiTi(t̄

j,i
l )) + ci, (9)

j = 1, . . . , n, i ∈ N+

j , where

Tj(t
j,i
l ) = ∆τj(t

j,i
l )|m=0, Ti(t̄

j,i
l ) = ∆τi(t̄

j,i
l )|m=0, (10)

while ci is an additional delay compensation parameter.
Using (9), we come up with the following updates for bi and ci:

b̂i(t̄
j,i+
l ) = b̂i(t̄

j,i
l ) + εbi (t̄

j,i
l )γijϕ̂b

i (t̄
j,i
l ) (11)

ĉi(t̄
j,i+
l ) = ĉi(t̄

j,i
l ) − εbi (t̄

j,i
l )γijϕ̂b

i (t̄
j,i
l ) (12)

where ϕ̂b
i (t̄

j,i
l ) = τ̂j(t

j,i
l ) − âj(t

j,i
l )Tj(t

j,i
l ) −(τ̂i(t̄

j,i
l ) − âi(t̄

j,i
l )Ti(t̄

j,i
l )) +

ĉi(t̄
j,i
l ), with

τ̂j(t
j,i
l ) = âj(t

j,i
l )τj(t

j,i
l ) + b̂j(t

j,i
l ), (13)

τ̂i(t̄
j,i
l ) = âi(t̄

j,i
l )τi(t̄

j,i
l ) + b̂i(t̄

j,i
l ). (14)

The initial estimates are supposed to be b̂i(t̄
j,i
0 ) = 0 and ĉi(t̄

j,i
0 ) = 0.

The estimates of the drift correction parameters ai can be gener-
ated by any appropriate algorithm; when it is generated by (5), the
result is the new time synchronization algorithm.
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In terms of ĝi(·) = âi(·)αi and f̂i(·) = âi(·)βi + b̂i(·), (11) and (12)
become:

f̂i(t̄
j,i+
l ) +∆ĝi(t̄

j,i+
l ) = f̂i(t̄

j,i
l ) + εbi (t̄

j,i
l )γijψ̂b

i (t̄
j,i
l ), (15)

ĉi(t̄
j,i+
l ) = ĉi(t̄

j,i
l ) − εbi (t̄

j,i
l )γijψ̂b

i (t̄
j,i
l ), (16)

where ∆ĝi(t̄
j,i+
l ) =

βi
αi

[ĝi(t̄
j,i
l ) − ĝi(t̄

j,i+
l )] and ψ̂b

i (t̄
j,i
l ) = [ĝj(t

j,i
l ) −

ĝi(t̄
j,i
l )]t j,i0 + f̂j(t

j,i
l ) −f̂i(t̄

j,i
l ) −ĝi(t̄

j,i
l )[δ̄i,j + ηi(t̄

j,i
0 )] +ĉi(t̄

j,i
l ) +

1
αj
ĝj(t

j,i
l )

ξj(t
j,i
0 ) −

1
αi
ĝi(t̄

j,i
l )ξi(t̄

j,i
0 ).

A consensus-based modification of (12) and (16) is obtained by
replacing ĉi(t̄

j,i
l ) at the right hand side of (12) and (16) by the

following convex combination

ĉconi (t̄ j,il ) = σiĉi(t̄
j,i
l ) + (1 − σi)ĉj(t̄

j,i
l ), (17)

with tuning parameter 0 < σi ≤ 1. This modification is motivated
by a realistic assumption that the communication delays do not
differ very much, aiming at achieving lower dissipation of the
convergence points for f̂i(·) (see Remark 8). We refer to this algo-
rithm as AlgOffset.b. The pseudocode of AlgOffset.a and AlgOffset.b is
presented as Algorithm 2.

Algorithm 2 AlgOffset.a and AlgOffset.b
for All the nodes i ∈ N do

Initialize b̂i(t̄
j,i
0 ) = 0 and ĉi(t̄

j,i
0 ) = 0,

end for
loop

if Tick t jb of a local communication clock of a node j ∈ N then
Read the current local time value τj(t

j
b)

Broadcast τj(t
j
b), âj(t

j
b), b̂j(t

j
b) and ĉj(t

j
b) to the out-neighbors

N+

j
end if

end loop
loop

if A message received by a node i ∈ N from a node j ∈ N−

j (at
absolute time t̄ j,il ) then

Read the current local time value τi(t̄
j,i
l )

Calculate τ̂j(t
j,i
l ) and τ̂i(t̄

j,i
l ) using (13) and (14)

Calculate Tj(t
j,i
l ) and Ti(t̄

j,i
l ) using (10)

Calculate new estimates of the offset correction parameters
according to (11) and (12) (and (17) for the algorithm AlgOff-
set.b)

end if
end loop

Remark 3. The error function (9) is obtained from the basic
error function ϕb

i (t̄
j,i
l )0 = τ̄j(t

j,i
l ) − τ̄i(t̄

j,i
l ) (typically used in the

literature (Tian et al., 2016)), after two important modifications.
The first one introduces two easily computable terms Tj(t

j,i
l ) and

Ti(t̄
j,i
l ), the role ofwhich is to copewith the unboundedly increasing

term t j,il in the expression for ϕb
i (t̄

j,i
l )0 in such away that it becomes

replaced by the bounded term t j,i0 in ϕb
i (t̄

j,i
l ), while the second one

introduces a new parameter ĉi(t̄
j,i
l ), coping directly with the effects

of communication delays and enabling convergence of the offset
correction estimates.

Remark 4. The proposed time synchronization algorithm requires
small communication and computation efforts. At each tick t j,il , a
packet is sent by the jth node to its neighbors i ∈ N+

j , containing
the current local time τj(t

j,i
l ) and the current local drift and off-

set correction parameter estimates âj(t
j,i
l ), b̂j(t

j,i
l ) and ĉj(t

j,i
l ). After

receiving this packet, the neighbors calculate the corresponding

∆τ̂j(t
j,i
l ), ∆τ̂i(t̄

j,i
l ), τ̂j(t

j,i
l ), τ̂i(t̄

j,i
l ), Tj(t

j,i
l ) and Ti(t̄

j,i
l ), and update their

own parameter estimates according to (5), (11), (12) and (17). The
same procedure is repeated after each new tick of any of the nodes.

2.4. Global model

All communications in the network can be considered to be
driven by a global virtual communication clock, with the rate equal
to µc =

∑n
i=1µi, that ticks whenever any local communication

clock ticks (e.g., Aysal et al. (2009) and Nedić (2011)). We shall
assume that a unique iteration number k is assigned to each update
of local parameters, and, vice versa, that each k is connected to an
update of ith node at the continuous time instant t̄ j,il for some j and
l. In such a way, at a click of jth communication clock we have N(j)
consecutive updates or iterations, N(j) ≤ |N+

j |. Following analo-
gous approaches in Nedić (2011) and Tian et al. (2016), we replace
(with some abuse of notation) the variable t̄ j,il by k in all the above
defined functions of time, so that we have τi(t̄

j,i
l ) = τi(k), τ̄i(t̄

j,i
l ) =

τ̄i(k), ξi(t̄
j,i
l ) = ξi(k), etc.; accordingly, we also write τj(t

j,i
l ) = τj(k),

τ̄j(t
j,i
l ) = τ̄j(k), ξj(t

j,i
l ) = ξj(k), etc. In the case of delays, we write

δ̄j,i = δ̄j(k) and ηi(t̄
j,i
l ) = ηi(k).

Assume that k is connected to an update at node i, initiated by
a tick at node j. Let ĝ(k) = [ĝ1(k) . . . ĝn(k)]T , f̂ (k) = [f̂1(k) . . . f̂n(k)]T

and ĉ(k) = [ĉ1(k) . . . ĉn(k)]T , where ĝµ(k) = âµ(k)αµ, âµ(k) =

âµ(t̄
j,i
l ), f̂µ(k) = âµ(k)βµ + b̂µ(k), b̂µ(k) = b̂µ(t̄

j,i
l ) and ĉµ(k) =

ĉµ(t̄
j,i
l ), µ = 1, . . . , n, Then, (8) gives

ĝ(k + 1) = ĝ(k) + εa(k)Z(k)ĝ(k), (18)

where ĝ(k + 1) = [ĝ1(t̄
j,1+
l ) . . . ĝn(t̄

j,n+
l )]T , εa(k) = diag{εa1(k), . . . ,

εan(k)}, ε
a
i (k) = εai (t̄

j,i
l ) (see (5)), Z(k) = AΓ (k)∆t(k) + Ng (k),

A = diag{α1, . . . , αn}, Γ (k) = [Γ (k)µν], with Γ (k)ii = −γij and
Γ (k)ij = γij, with Γ (k)µν = 0 otherwise, ∆t(k) = t̄ j,il − t̄ j,im ,

while the noise term is defined as Ng (k) = −AΓd(k)∆ηd(k) +

AΓ (k)∆ξd(k)A−1, where Γd(k) = diag{diag{γ1j, . . . , γnj}ω(k)},
ω(k) = [ω1(k) . . . ωn(k)]T ,ωi(k) = 1,ωµ(k) = 0 forµ ̸= i,∆ηd(k) =

diag∆η(k), ∆η(k) = [∆η1(k) . . .∆ηn(k)]T , ∆ξd(k) = diag∆ξ (k)
and∆ξ (k) = [∆ξ1(k) . . .∆ξn(k)]T .

Similarly, from (15) and (16) we obtain

f̂ (k + 1) +∆ĝ(k + 1) = f̂ (k) + εb(k)Y (k) (19)

ĉ(k + 1) = ĉ(k) − εb(k)Y (k), (20)

where∆ĝ(k + 1) = diagω(k)(ĝ(k + 1) − ĝ(k)), Y (k) = Γ (k)f̂ (k) +

[t0(k)Γ (k) − Γd(k)δ̄d(k) − Γd(k)η0d(k) + Γ (k)ξ 0d (k)A
−1

]ĝ(k) +

Γd(k)ĉ(k), t0(k) = t j,i0 , δ̄d(k) = diag δ̄(k), δ̄(k) = [δ̄j,1 . . . δ̄j,n]T ,
η0d(k) = diag η0(k), η0(k) = [η01(k) . . . η

0
n(k)]

T , (η0i (k) = ηi(t̄
j,i
0 )),

ξ 0d (k) = diag ξ 0(k), ξ 0(k) = [ξ 01 (k) . . . ξ
0
n (k)]

T (ξ 0j (k) = ξj(t
j,i
0 ),

ξ 0i (k) = ξi(t̄
j,i
0 ); {t0(k)}, {η0(k)} and {ξ 0(k)} are random sequences

with finite sets of possible realizations composed of t j,i0 , ηi(t̄
j,i
0 ) and

ξj(t
j,i
0 ) (or ξi(t̄

j,i
0 )), obtained at each k by choosing j and i at random.

In AlgOffset.b, ĉ(k) is replaced by ĉcon(k) = C(k)ĉ(k), where
C(k) = [C(k)µν], with C(k)µµ = σµ and C(k)µj = 1 − σµ for all
µ ∈ N+

j , with C(k)µν = 0 otherwise.

3. Convergence analysis

3.1. Preliminaries

Within the exposed general setting, we additionally assume:
(A1) Graph G has a spanning tree.
(A2) {ξi(k)} and {ηi(k)} , i = 1, . . . , n, are mutually independent

zero mean i.i.d. random sequences, bounded w.p.1.
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(A3) The step sizes εai (k) and ε
b
i (k) are defined in the following

way:
εai (k) = εi(k)|ζ=ζ ′ for AlgDrift.a,
εai (k) = εi(k)|ζ=1+ζ ′ for AlgDrift.b and AlgDrift.c, and
εbi (k) = εi(k)|ζ=ζ ′′ for AlgOffset.a and AlgOffset.b,

where εi(k) = νi(k)−ζ , νi(k) =
∑k

m=1I{ node i received a message
at instant m}, representing the number of updates of node i up to
the instant k (I{·} denotes the indicator function), while 1

2 < ζ ′,

ζ ′′
≤ 1.

Remark 5. (A1) implies that graph G has a center node fromwhich
all the remaining nodes are reachable (Olfati-Saber, Fax, &Murray,
2007; Stanković, Stanković, & Johansson, 2015). (A2) is a standard
assumption; boundedness is introduced for the sake of making
derivations easier. (A3) is very important for practice: it eliminates
the need for a centralized clock which would define the common
step size for all the nodes as a function of k. The choice of the
exponent in the expression for εai (k) for AlgDrift.b and AlgDrift.c is
motivated by the properties of the random variable ∆t(k) which
diverges linearly to infinity (see Theorem 2). The choice of ζ ′ and
ζ ′′ is standard for stochastic approximation algorithms.

Asymptotical behavior of the step size is defined by the follow-
ing lemma. Proofs of all the lemmas and theorems are given in the
Appendix.

Lemma 1. Let (A1) and (A3) be satisfied, let pi be the unconditional
probability of node i to update its parameters at kth iteration, and let
ζ > 0. Then, for a given q′

∈ (0, 1
2 ), there exists an integer k̄ > 0 such

that w.p.1 for all k ≥ k̄

εi(k) =
1
kζ

(
N̄
pi

)ζ
+ ε̃i(k), (21)

where N̄ = Ej{E{N(j)|j}} represents the average number of updates
per one tick of the global virtual communication clock, and |ε̃i(k)| ≤

ε̃i
1

kζ+
1
2 −q′

, 0 < ε̃i < ∞, i = 1, . . . , n.

Properties of the matrix Γ (k) defined in the previous section
are essential for convergence of (18)–(20); its expectation Γ̄ =

E{Γ (k)} has the central role in the analysis. It has the form of a
weighted Laplacian matrix for G:

Γ̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−

∑
j,j̸=1

γ1jπ1j γ12π12 · · · γ1nπ1n

γ21π21 −

∑
j,j̸=2

γ2jπ2j · · · γ2nπ2n

. . .

γn1πn1 γn2πn2 · · · −

∑
j,j̸=n

γnjπnj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)

(γij = 0 when j ̸∈ N−

i ), where πij is unconditional probability
that the node j broadcasts and node i updates its parameters as a
consequence (πij = πjpij, where πj is the unconditional probability
for node j to broadcast).

According to (18) and Lemma 1, we shall focus on B(k) =

P−ζAΓ (k) and B̄ = E{B(k)} = P−ζAΓ̄ (P−ζ
= N̄ζdiag{p−ζ

1 , . . . ,

p−ζ
n }).

Lemma 2 (Stanković et al., 2015). Matrix B̄ has one eigenvalue
at the origin, and the remaining ones in the left half plane. Let
T =

[
1 Tn×(n−1)

]
, where Tn×(n−1) is such that span{Tn×(n−1)} =

span{B̄}, while 1 = [1 . . . 1]T . Then,

T−1B̄T =

[
0 01×(n−1)

0(n−1)×1 B̄∗

]
, (23)

where B̄∗ is Hurwitz.

Consequently, there exists Rg > 0 satisfying

Rg B̄∗
+ B̄∗TRg

= −Q g , (24)

for any given Q g > 0. It also follows from the derivation of (23)

that T−1B(k)T =

[
0 B1(k)

0(n−1)×1 B2(k)

]
, with E{B1(k)} = 0 and

E{B2(k)} = B̄∗.
Properties of the random variable ∆t(k) are important for un-

derstanding of the properties of (18).

Lemma3. E{∆t(k)} =
1
µj

l−m
pij

, var{∆t(k)} =
1
µ2
j

l−m
pij

, where l−m = L

for AlgDrift.a, l − m = ⌊(1 − ν)l⌋ for AlgDrift.b and l − m = l for
AlgDrift.c; for large l, we have l ∼ πijk.

3.2. Convergence of the drift correction algorithm

Coming back to (18), we first insert εa(k) from (21). Then, we

introduce g̃(k) = T−1ĝ(k) and decompose g̃(k) as g̃(k) = [g̃(k)[1]
...

g̃(k)[2]T ]T , where g̃(k)[1] = g̃1(k) and g̃(k)[2] = [g̃2(k) . . . g̃n(k)]T .
After neglecting the higher order terms from (21), we obtain

g̃(k + 1)[1] =g̃(k)[1] +
1
kζ

F1(k)∆t(k)g̃(k)[2]

+
1
kζ

H1(k)g̃(k) (25)

g̃(k + 1)[2] ={I +
1
kζ

[B̄∗
+ F2(k)]∆t(k)}g̃(k)[2]

+
1
kζ

H2(k)g̃(k), (26)

where matrices F1(k) and F2(k) are defined by T−1
[B(k) −

B̄∗
]T =

[
0 F1(k)

0(n−1)×1 F2(k)

]
, while H1(k) and H2(k) are defined by

T−1P−cNg (k)T =

[
H1(k)
H2(k)

]
.

We now have the main convergence result for the drift correc-
tion algorithm.

Theorem 1. Let assumptions (A1)–(A3) be satisfied. Then, g̃(k)[1]
from (25) converges to a random variable χ∗ with bounded second
moment, and g̃(k)[2] from (26) to zero in the mean square sense and
w.p.1; in other words, ĝ(k) generated by (18) converges for all three
choices of m to ĝ∞ = χ∗1 in the mean square sense and w.p.1.

The rate of convergence of the drift estimation scheme is of
utmost importance not only for the convergence of corrected local
clocks to a common virtual clock, but also for the convergence of
the offset estimation algorithm. Asymptotic rate of convergence
to consensus of the algorithm (18) will be studied through the
behavior of g̃(k)[2] in (26), using the methodology of Chen (2002,
Chap. 3).

Theorem2. Let (A1)–(A3) hold. Then, z(k) = kζdg̃(k)[2], where d > 0
and g̃(k)[2] is defined by (26), converges to zero in the mean square
sense and w.p.1, when ζ ′ < 1 for:
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– ζd < ζ ′
−

1
2 (AlgDrift.a),

– ζd < 1
2 + ζ ′ (AlgDrift.b) and

– ζd < ζ ′ (AlgDrift.c),
and when ζ ′

= 1 for:
– d < min( 12 , 2qr) (AlgDrift.a),
– d < min( 34 , qr) (AlgDrift.b) and
– d < min( 12 , qr) (AlgDrift.c),

where r =
λmin(Q g )
λmax(Rg )

, q =
L

maxi,j(µjpij)
for AlgDrift.a, q =

1−ν
µc

for
AlgDrift.b and q =

1
µc

for AlgDrift.c.

Remark 6. The above result indicates that the AlgDrift.b gives
the best performance: in the case when ζ ′ < 1, the important
condition ζd > 1 is achieved, enabling convergence of local
corrected clocks to a common virtual clock (see Corollary 1). This is
a consequence of the variable left end of the intervals [m, l], which
introduces a white noise term in the recursion (8) (see the proof
of Theorem 2); at the same time, unbounded increase of interval
length l − m ensures an effectively increasing signal-to-noise
ratio, together with appropriate averaging. Theoretically, AlgDrift.c
with fixed m does not allow this effect. However, in practice, it is
sufficient to choose l−m = L large enough and to apply AlgDrift.a,
avoiding unbounded increase of memory inherent to AlgDrift.b. It
will be demonstrated in Section 4 by simulation that, practically,
the best results can be obtained by AlgDrift.a for Lmoderately high.

Notice that the convergence rate ζd > 1 is not achievable by
structurally different CBTS algorithms discussed in Schenato and
Fiorentin (2011), Tian (2015), Tian et al. (2016, 2017).

An important conclusion resulting from Theorems 1 and 2 is
that

ĝ(k) = χ (k)1 + ĝ(k)[2], w.p.1 (27)

where χ (k) = g̃(k)[1] and ĝ(k)[2] = Tn×(n−1)g̃(k)[2], with χ (k) =

χ∗
+ o(1) and ∥ĝ(k)[2]∥ = o( 1

kζd
). The last relation is fundamental

for the convergence analysis of the offset correction algorithm
given below.

3.3. Convergence of the offset correction algorithm

We start the analysis by introducing the following expressions
in (19) and (20):

Γ (k) = Γ̄ + Γ̃ (k), Γd(k) = Γ̄d + Γ̃d(k),

ξ 0(k) = ξ̄ 0 + ξ̃ 0(k), η0(k) = η̄0 + η̃0(k), (28)
δ̄(k) = δ̄0 + δ̃(k), t0(k) = t̄0 + t̃0(k),

where Γ̄ = E{Γ (k)}, Γ̄d = E{Γd(k)}, ξ̄ 0 = E{ξ 0(k)} =
∑n

j=1

ξ (t j,i0 )πj, ξ̄
0
d = diag ξ̄ 0, η̄0 = E{η0(k)} =

∑n
j=1η(t̄

j,i
0 )πj, δ̄

0
=

E{δ̄(k)} =
∑n

j=1[δ̄
1,j
0 . . . δ̄

n,j
0 ]

Tπj and t̄0 = E{t0(k)} =
∑n

j=1t
j,i
0 πj.

Therefore, {Γ̃ (k)}, {Γ̃d(k)}, {ξ̃ 0(k)}, {η̃0(k)}, {δ̃0(k)} and {t̃0(k)} are
zero mean i.i.d. random sequences (due to randomness in deter-
mining the transmitting node for a given k).

Theorem 3. Let assumptions (A1)–(A3) be satisfied and let ĝ(k) be
generated by AlgDrift.awith ζ ′

∈ ( 34 , 1), and by AlgDrift.b or AlgDrift.c
with ζ ′ < 1. Then, f̂ (k), generated by AlgOffset.a using (19), converges
to f̂ ∗ and ĉ(k) from (20) converges to ĉ∗ in the mean square sense and
w.p.1 for all ζ ′′

∈ ( 12 , 1] in the case of AlgDrift.b and AlgDrift.c, and
for all ζ ′′

∈ ( 12 , 1], ζ
′′ > 3

2 − ζ ′, in the case of AlgDrift.a; f̂ ∗ and ĉ∗

satisfy the equation

[Γ̄
...Γ̄d]ĥ∗

= 0, (29)

where ĥ∗
= [(f̂ ∗

+ χ∗ξ̄ 0d A
−11)T

...(ĉ∗
− χ∗A(η̄0 + δ̄))T ]T .

Remark 7. The rate of convergence of ĝ(k) to consensus influences
f̂ (k) in (19) directly, through the term ∆ĝ(k + 1), and indirectly,
through the remaining terms depending on ĝ(k). According to
Theorem 3, all the above proposed algorithms for drift correction
can be utilized for offset correction under appropriate assump-
tions. Notice that the results of Theorem 3 also hold if we use any
ĝ(k) providing sufficient convergence rate to consensus, according
to (27).

Theorem 4. Let the assumptions of Theorem 3 hold. Then f̂ (k) and
ĉ(k), generated by the algorithmAlgOffset.b ((19), (20)with consensus
iterations on ĉ(k) using (17)), converge in the mean square sense and
w.p.1 to f̂ ∗ and ĉ∗

= ĉcon1, respectively (ĉcon is a scalar), where f̂ ∗

and ĉcon satisfy the equation Mcon
1 ĥcon

= 0, where

Mcon
1 =

⎡⎢⎢⎣
Γ̄ vec{Γ̄d}

−

n∑
i=1

φ̄iΓ̄
(i)

−

n∑
i=1

φ̄ivec{Γ̄d}i

⎤⎥⎥⎦ , (30)

ĥcon
= [(f̂ ∗

+ χ∗ξ̄ 0d A
−11)T

...ĉcon −
∑n

i=1φ̄iχ
∗(Aη̄0 + Aδ̄)i]T , with

φ̄ = [φ̄1 . . . φ̄n], φ̄C̄ = φ̄ and C̄ = E{C(k)}; Γ̄ (i) denotes i-th row
of the matrix Γ̄ , and vec{Γ̄d}i i-th element of vec{Γ̄d}.

Remark 8. Possible convergence points of the proposed offset
correction algorithms depend not only on the network and noise
properties, but also on the convergence point of the drift estima-
tion algorithm. In general, the corrected offsets do not converge to
the same point for all the nodes. However, a comparison between
(29) and (30) indicates clearly that AlgOffset.b can achieve lower
dispersion of the components of f̂ ∗ within ĥcon due to lower num-
ber of degrees of freedom. Simulation results presented in Section 4
confirm this statement.

3.4. Special cases

When communication delays and measurement noise can be
neglected, the algorithm AlgOffset.b ((18)–(20) with (17)) is able
to achieve consensus on both corrected drifts ĝi(k) and corrected
offsets f̂i(k) (which follows directly from (30)). However, according
to Theorem 3, AlgOffset.a still does not guarantee convergence of
f̂ (k) to consensus, due to additional degrees of freedom in (29).

When the stochastic terms ξ (·) and η(·) are equal to zero, it is
possible to achieve exponential convergence rate by adopting con-
stant step size in AlgDrift.a, AlgOffset.a and AlgOffset.b, and εai (k) =

ε′νi(k)−1 in AlgDrift.b and AlgDrift.c. However, the offset correction
algorithm again does not provide consensus, in general.

When, in addition, the delay is equal to zero, it is possible to
achieve exponential convergence to consensus for both drifts and
offsets, using AlgDrift.a for drift estimation and (11) for offset
estimation, where simply ϕ̂b

i (t̄
j,i
l ) = τ̂j(t

j,i
l )− τ̂i(t̄

j,i
l ). This result was

obtained for the first time in Stanković et al. (2012) for pseudo
periodic communication sequences.

3.5. Convergence to a common virtual clock

As pointed out, the general aim of clock synchronization is
convergence of local corrected times to a common virtual time. In
view of the above results, we have:

Corollary 1. Let (A1)–(A3) be satisfied, with ζ ′ < 1. Then, for
AlgDrift.b and either AlgOffset.a or AlgOffset.b, supi,j ∆τ̂i,j(k) =

τ̂i(k) − τ̂j(k) is bounded in the mean square sense and w.p.1.
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(a) AlgDrift.awith L = 1. (b) AlgDrift.awith L = 100.

(c) AlgDrift.bwith ν = 1/2. (d) AlgDrift.c.

Fig. 1. Corrected drifts: in spite of the theoretically proved asymptotic superiority of AlgDrift.b, AlgDrift.a with L = 100 practically achieves the best rate of convergence to
consensus and noise immunity.

Remark 9. As

∆τ̂i,j(k) = [ĝi(k) − ĝj(k)]t(k) + f̂i(k) − f̂j(k), (31)

we have, according to Theorem 2, that for ζ ′ < 1 the first term at
the right-hand side of (31) tends to zero in the case of AlgDrift.b.
For AlgDrift.a and AlgDrift.c convergence of∆τ̂i,j(k) is theoretically
not achievable; however, AlgDrift.a with L large enough will work
in practice (see Section 4). Notice that the differences f̂i(k) − f̂j(k)
remain bounded in the mean square sense and w.p.1., having in
mind that the offsets f̂i(k) are bounded by virtue of Theorems 3 and
4 (the latter statement does not hold for the algorithm proposed
in Tian (2017)).

3.6. Tuning network weights; Flooding scheme

Coefficient γij in (5) and (11) is the weight of the update at node
i, occurring as a consequence of a tick at node j, i, j = 1, . . . , n. If
one wishes to express high confidence in the precision of the clock
at node i, there are three basic implementations: 1) to increase
the Poisson rate µi, 2) to increase weights γji, j = 1, . . . , n, ; (3)
to decrease weights γij, j = 1, . . . , n. The first way clearly gives
more weight to the sender. The second way is related to node i
as a receiver, while the third way implies lower increments of the
local parameter changes. In the limit of the last case, node i does
not update its parameters (γij = 0, j = 1, . . . , n), and becomes
a reference node. The whole algorithm becomes in such a way an
algorithm of flooding type (Maroti, Kusy, Simon, & Ledeczi, 2004;
Su & Akyildiz, 2005; Wu, Chaudhari, & Serpedin, 2011).

Corollary 2. Let the assumptions of Theorem 1 be satisfied. Let node
λ be a center node in G, with the corrected drift ĝ∗

λ . Then, after
setting N−

λ = ∅ (or γλj = 0, j = 1, . . . , n), algorithm (5) provides
convergence of all the corrected drifts ĝi(k), i = 1, . . . , n, i ̸= λ, to ĝλ
in the mean square sense and w.p.1.

4. Simulations

In this section we present simulation results providing a prac-
tical insight into the proposed algorithm. The assumed network
topology corresponds to a modification of the Geometric Random
Graphs (Gupta & Kumar, 2006). The nodes represent randomly
spatially distributed agents within a square area. Initially, the
nodes are assumed to be connected if their Euclidean distance
is less than a predefined number: this results in an undirected
graph. The obtained graph is modified in such a way as to trans-
form roughly 10 percent of the original two-way communica-
tions into one-way communications, while satisfying assumption
(A1). Parameters αi and βi are randomly chosen in the intervals
(0.96, 1.04) and (−0.2, 0.2), respectively. Average communication
delays δ̄j,i have been chosen to be 0.1, while {η(k)} and {ξ (k)} have
been simulated as zero-meanGaussianwhite noise sequenceswith
standard deviation σ specified later. It has been adopted that ζ ′

=

ζ ′′
= 0.99 and that the communication dropouts occur according

to the probability pij = 0.9.
Typical behavior of the corrected drifts generated by AlgDrift.a

(L = 1 and L = 100), AlgDrift.b (ν =
1
2 ) and AlgDrift.c (l0 = 0)

in the presence of stochastic delays and measurement noise with
σ = 0.05 is presented in Fig. 1 for a network with ten nodes. Con-
vergence to consensus can be clearly observed. Analogous schemes
from the literature (e.g., Tian et al., 2016) cannot achieve such a
performance. The algorithm proposed in Schenato and Fiorentin
(2011) is very sensitive to noise and practically inapplicable un-
der the given conditions, while the algorithm from Tian (2015)
achieves results similar to the ones obtained by AlgDrift.c, but with
typically lower convergence rate. It should be noticed that the
best results are achieved by AlgDrift.a with L = 100; AlgDrift.b is
practically inferior on finite intervals, in spite of the asymptotic
results from Theorem 2. This indicates that the best choice of drift
estimation algorithm should be in practice connected to AlgDrift.a,
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(a) AlgOffset.a. (b) AlgOffset.b.

(c) AlgOffset.awith Ti = Tj = 0. (d) AlgOffset.a with ci = 0.

Fig. 2. Corrected offsets: AlgOffset.b, which includes consensus iterations on ĉ(k), has lower dispersion of the converged estimates than AlgOffset.a. Corrected offsets do not
converge if we set Ti = 0 (c) or ci = 0 (d), i = 1, . . . , n, illustrating the importance of the introduced modifications in the error function (9).

Fig. 3. Mean square disagreement for networks with 10, 20, 50 and 100 nodes.

with a suitably selected memory length L; it represents the best
compromise between the signal to noise ratio and computational
complexity.

Typical behavior of the proposed offset correction algorithms
AlgOffset.a andAlgOffset.b is illustrated in Fig. 2(a) and (b);AlgDrift.a
with L = 100 has been used for drift correction. The algorithm
AlgOffset.b provides lower dispersion of the asymptotic values of
the corrected offsets, as expected. Fig. 2(c) and (d) illustrate the
importance of introducing Tj(·), Ti(·) and ci in the definition of ϕ̄b

i (·)
in (9). Fig. 2(c) corresponds to Tj(·) = Ti(·) = 0, and Fig. 2(d) to
ci = 0. It is evident that the corrected offsets diverge in both cases,
indicating that themodifications introduced in (9) are essential for
offset correction.

In order to provide an insight into scalability of the proposed
algorithm, in Fig. 3 the mean square disagreement between the
nodes is presented for networks with 10, 20, 50 and 100 nodes
generated at random by the above described procedure. According
to, e.g., Borkar (1998), it is possible to distinguish two regions in the
represented curves. In the first region, the disagreement between
the nodes depends on the number of nodes approximately linearly
and the convergence rate is fast, nearly exponential. In the second
region, when k is large enough, νi(k)−ζ

′

becomes small; all curves
tend to zero, according to Theorem 1. The disagreement between
the nodes increases with the number of nodes, but at a rate much
slower than linear. As stated in Theorem 2, asymptotic convergence
rate is characterized by O(k−ζd), where the proportionality con-
stant depends not only on the eigenvalues of the matrix B̄, but also
on the noise level.

Fig. 4 illustrates the rate of convergence to a common virtual
clock (see Section 3.5): it represents themean square disagreement
multiplied by k2ρ , where the exponent ρ has been chosen to be 1,
1.1 and 1.2 for AlgDrift.b, and ρ = 1 for AlgDrift.c, as indicated in
the figure (the offsets are set to zero). The curve corresponding to
AlgDrift.c does not show convergence.

5. Conclusion

In this paper, a new distributed asynchronous algorithm has
been proposed for time synchronization in networks with random
communication delays, measurement noise and communication
dropouts. A new algorithm has been introduced for drift correction
parameter estimation, based on an error function derived from
specially defined local time increments. It has been proved, us-
ing the stochastic approximation arguments, that this algorithm
converges to consensus in the mean square sense and w.p.1 under
very general conditions. The algorithm achieves convergence rate
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Fig. 4. Rate of convergence to a common virtual clock: the mean square disagree-
ment multiplied by k2ρ , for ρ = 1, 1.1, 1.2 (for AlgDrift.b) and ρ = 1 (for AlgDrift.c).

superior to all similar schemes,which is important for convergence
of local corrected clocks to a common global clock. For offset
estimation, a new algorithm has been proposed using a specific
error function obtained by modifying local time differences. It has
been proved that the corrected offsets converge in themean square
sense and w.p.1. An efficient algorithm for practical applications
based on consensus on compensation parameters has also been
proposed. It has been also shown that the proposed algorithm can
be used as flooding algorithmwith one reference node. Simulation
results illustrate the presented theoretical results and confirm that
the proposed algorithmcan represents an efficient tool for practice,
outperforming all similar algorithms.

Appendix A. Proof of Lemma 1

According to (A1), pi > 0, i = 1, . . . , n. Let k̃ correspond to
the ticks of the global virtual communication clock. By Lemma 3
in Nedić (2011), for k̃ large enough, νi(k̃) = k̃pi + χi(k̃), where
|χi(k̃)| ≤ κ k̃

1
2 +q′

w.p.1, κ > 0. Therefore,

νi(k̃)−ζ = (k̃pi + ξi(k̃))−ζ = (k̃pi)−ζ [1 + O(
χi(k̃)

k̃
)]

Consequently, there exists ε̃i > 0 such that |
1

νi(k̃)ζ
−

1
(k̃pi)ζ

| ≤

ε̃′

i
1

k̃ζ+
1
2 −q′

w.p.1. The result of Lemma 1 follows after taking into

account that νi(k) = νi(k̃) for all iteration numbers k between
two consecutive updates at node i, and that k ∼ k̃N̄ for k̃ large
enough. Formally, E{N(j)|j}, the average number of updates for
a broadcast from node j, can be obtained from the transmission
probabilities pij, while N̄ =

∑n
j=1πjE{N(j)|j}. It is essential that

νi(k)−ζ = O(k−ζ ) + O(k−ζ− 1
2 +q′

), where q′ > 0 is small enough.

Appendix B. Proof of Theorem 1

Introduce Lyapunov functions V g (k) = E{(g̃(k)[1])2} and
W g (k) = E{g̃(k)[2]TRg g̃(k)[2]}, where Rg > 0 satisfies (24) for a
given Q g > 0.

Decompose g̃(k+ 1)[1] from (25) into the sum of zero input and
zero state responses, defined by

g̃1(k + 1)[1] = Π (k, 1)[1]g̃(1)[1] (B.1)

and

g̃2(k + 1)[1] =

k∑
σ=1

1
σ ζ
Π (k, σ + 1)[1][F1(σ )∆t(σ )

+ H1(σ )[2]]g̃(σ )[2], (B.2)

respectively, where Π (k, l)[1] =
∏k
σ=l(1 +

1
σ ζ

H1(σ )[1]), Π (k, k +

1)[1] = 1, and H1(k)[1] follows from the decomposition H1(k) =

[H1(k)[1]
...H1(k)[2]]. Therefore, V g (k) ≤ 2V g

1 (k) + 2V g
2 (k), where

V g
1 (k) = E{(g̃1(k)[1])2} and V g

2 (k) = E{(g̃2(k)[1])2}.
Analysis of V g

1 (k) starts from introducing
∑n

i=1|N
−

i | infinite
subsequences {κ ij(v)} of the set of nonnegative integers I+, i =

1, . . . , n, j ∈ N−

i , v = 0, 1, 2, . . . , where κ ij(v) for a given
v defines the instant k corresponding to an update at node i
realized as a consequence of a tick of node j (κ ij(v1) < κ ij(v2)
for v1 < v2 and ∪i,j{κ

ij(v)} = I+). Define Π (k, 1)[1]s =∏
σ∈{κ ij(v)},σ≤k(1 +

1
σ ζ

H1(σ )[1]), s = 1, . . . ,
∑

i|N
−

i |, i = 1, . . . , n,
j ∈ N−

i ; consequently,
∏

sΠ (k, 1)[1]s = Π (k, 1)[1]. According to
the definition of Ng (k) in (18), for AlgDrift.a and AlgDrift.b, the
zero mean random sequences {H1(σ )[1]}σ={κ ij(v)} are correlated
only with {H1(σ )[1]}σ={κ ij(v−1)} and {H1(σ )[1]}σ={κ ij(v+1)}, implying
that E{(Π (k, 1)[1]s )2} < ∞. For AlgDrift.c, we have H1(σ )[1] =

H̃1(σ )[1]−H̃1(σ0)[1], where H̃1(σ )[1] is zeromean i.i.d., and H̃1(σ0)[1]

a bounded random variable (σ0 = κ i,j(0)). Therefore, we have

E{(1 −
1

σ 1+ζ ′
H1(σ ))2|Fσ0} ≤ 1 − c1

1
σ 1+ζ ′

+ c2
1

σ 2(1+ζ ′)
, (B.3)

where Fσ0 is the minimal sigma algebra generated by the mea-
surements up to σ0. It follows that E{(Π (k, 1)[1]s )2} < ∞, implying
supkV

g
1 (k) < ∞.

In the analysis of V g
2 (k), we decompose for AlgDrift.a and Al-

gDrift.b the sum at the right hand side of (B.2) into
∑n

i=1|N
−

i |

partial sums with indices σ belonging to {κ ij(v)}, σ ≤ k. All these
sums contain weighted zeromean random variables F1(σ )∆t(σ )+
H1(σ )[2] whose correlation with g̃(σ ) can be neglected for k large
enough. As

∑
σ E{

1
σ2ζ F1(σ )2∆t(σ )2} ≤ ∞ for AlgDrift.a and Al-

gDrift.b, it follows, after some technicalities, that

V g
2 (k + 1) ≤ C1

k∑
σ=1

1
σ 1+q′′

W g (σ ), (B.4)

where C1 > 0 and q′′ > 0. For AlgDrift.c, the sum at the right hand
side of (B.2) contains the termsH1(σ )[2] = H̃1(σ )[2]−H̃1(σ0)[2], σ ∈

κ ij(v). Having in mind that {H̃1(σ )[2]} is zero mean, and H̃1(σ0)[2]

bounded w.p.1, for AlgDrift.c
∑

σ
1
σ2ζ E{∆t(k)2} < ∞ by Lemma 3

and
∑

σ
1
σ ζ
< ∞, so that we again obtain (B.4).

Consequently, there exists a constant C1 > 0 such that

V g (k + 1) ≤ C2[1 + max
1≤σ≤k

W g (σ )]. (B.5)

Analysis of W g (k) starts from rewriting (26) for {σ ∈ κ ij(v)} in
the following way

g̃(σ + 1)[2] = Π (σ , σ )[2]g̃(σ )[2] +
1
σ ζ

H2(σ )[1]g̃(σ )[1], (B.6)

where Π (σ , σ ) = I +
1
σ ζ

[(B̄∗
+ F2(σ ))∆t(σ ) + H2(σ )[2]], while

H2(σ )[1] and H2(σ )[2] follow from the decomposition H2(σ ) =

[H2(σ )[1]
...H2(σ )[2]] adapted to the decomposition of g̃(σ ).

We first observe that for any n-vector x and σ large enough

xTE{Π (σ , σ )[2]TRgΠ (σ , σ )[2]}x

≤ [1 −
2
σ ζ

′
q
λmin(Q g )
λmax(Rg )

+ O(
1
σ 2ζ ′

)]xTRgx, (B.7)

where 0 < λmin(Q g ), λmax(Rg ) < ∞ and q =
L

maxi,j(µjpij)
for

AlgDrift.a, q =
1−ν
µc

for AlgDrift.b and q =
1
µc

for AlgDrift.c. As q >
0 (Lemma 3), after standard technicalities based on the classical
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results on stochastic approximation (Chen, 2002; Kushner & Yin,
2003), it follows that

∏
σ∈{κ ij(v)}∥Π (σ , σ )∥→σ→∞0, i = 1, . . . , n,

j ∈ N−

i , in themean square sense andw.p.1, forAlgDrift.a,AlgDrift.b
and AlgDrift.c. Moreover, as {H2(σ )[1]} has the properties analogous
to those of {H1(σ )[1]}, it is possible to show, after technicalities
similar to those utilized above, that for k large enough

W g (k + 1) ≤ [1 − c1
1
kζ ′

]W g (k) + C3
1
kζ∗

V g (k), (B.8)

where 0 < c1, C3 < ∞, and
– ζ ∗

= 2ζ ′ for AlgDrift.a,
– ζ ∗

= 2(1 + ζ ′) for AlgDrift.b, and
– ζ ∗

= 1 + ζ ′ for AlgDrift.c.
Having in mind that

∑
∞

k=1k
−ζ∗

< ∞ in all three cases, the
methodology of Huang, Day, Nair, and Manton (2010) and Huang
and Manton (2010) can be applied, leading to the conclusion that
supkV g (k) < ∞. Therefore, g̃(k)[1] tends to a random variable χ∗

(E{χ∗2
} < ∞) and that g̃(k)[2] tends to zero in the mean square

sense and w.p.1. Consequently ĝ∞ = T

[
lim
k→∞

g̃(k)[1]

0

]
= χ∗1

Appendix C. Proof of Theorem 2

After introducing the expression for z(k) into (26), we use the
approximation (1+

1
k )
ζd

≈ 1+ ζd 1
k and obtain for k large enough

z(k + 1) = z(k) + {
1
kζ

[B̄∗
+ F2(k)]∆t(k)

+ ζd
1
k
I}z(k) +

1
kζ (1−d)H2(k)g̃(k). (C.1)

Observe that for ζ ′ < 1 the termproportional to 1
k can be neglected

for k large enough. Applying the result of Theorem 1 to (C.1), we
conclude from Theorem 1 that limk→∞z(k) = 0 in themean square
sense and w.p.1, provided, according to (B.8): (a) 2ζ ′(1 − d) > 1
for AlgDrift.a, (b) 2(1 + ζ ′)(1 − d) > 1 for AlgDrift.b and (c)
(1 + ζ ′)(1 − d) > ζ ′ for AlgDrift.c, wherefrom the first part of the
result directly follows. Notice that different conditions result from
different definitions of ζ and different properties of the sequence
{H2(k)}. Inequality for AlgDrift.c is more restrictive than the one for
AlgDrift.b as a consequence of the fact that {H2(k)} contains a term
depending on the initial time t0l , which is fixed and nonzero for
almost all realizations of the sequence ĝ(k).

For ζ ′
= 1, the terms proportional to 1

k and 1
kζ ′

are of the same
order of magnitude; as a result, the convergence conditions for
(C.1) depend on the properties of the matrix B̄∗. Hence the result.

Appendix D. Proof of Theorem 3

Let ĥ(k) = [(f̂ (k)+χ (k)ξ̄ 0d A
−11)T

...(ĉ(k)−χ (k)A(η̄0+ δ̄))T ]T . From
(19), (20) and (28) and Lemma 1, we obtain

ĥ(k + 1) =ĥ(k) +
1
kζ ′′

P−ζ ′′

d [M1(k)(ĥ(k) + u1(k)

+ u2(k)) + M2(k)Ĝ(k)] −
1
kζ

M3(k)ĝ(k), (D.1)

where u1(k) = o( 1
kζd

)[(A−1ξ̄ 0)T
...(A(η̄0 + δ̄))T ]T , u2(k) = [(ĝd(k)A−1

ξ̃ 0(k))T
...(ĝd(k)A(η̃0(k) + δ̃(k)))T ]T ,M1(k) = M̄1 + M̃1(k),with

M̄1 =

[
Γ̄ Γ̄d

−Γ̄ −Γ̄d

]
, M̃1(k) =

[
Γ̃ (k) Γ̃d(k)

−Γ̃ (k) −Γ̃d(k)

]
,

M2(k) = M̄2 + M̃2(k), M̄2 = diag{t̄0Γ̄ , t̄0Γ̄ }, M̃2(k) =

diag{t̃0(k)Γ (k) + t̄0Γ̄ , t̃0(k)Γ (k) + t̄0Γ̄ }, ĝd(k) = diag ĝ(k),

Ĝ(k) = [ĝ(k)T
...ĝ(k)T ]T and P−ζ ′′

d = diag{P−ζ ′′

, P−ζ ′′

}; the
last term in (D.1) follows from the term ∆ĝ(k + 1) =

ϵa(k)[AΓ (k)∆t(k) + Ng (k)]ĝ(k) in (19) and Lemma 1, so that

M3(k) =

[
P−ζ

[AΓ (k)∆t(k) + Ng (k)]
0

]
.

From (D.1) we realize that P−ζ ′′

d M̄1 has n eigenvalues at the
origin and n eigenvalues in the left half plane. Therefore, there
exists a nonsingular transformation S such that

S−1P−ζ ′′

d M̄1S =

[
0 0
0 M̄∗

]
, (D.2)

where M̄∗ is Hurwitz (Stanković et al., 2015). Introduce h̃(k) =

S−1ĥ(k), with h̃(k) = [h̃(k)[1]T
...h̃(k)[2]T ]

T

, where dim h̃(k)[1] =

dim h̃(k)[2] = n. From (D.1) we obtain:

h̃(k + 1)[1] =h̃(k)[1] +
1
kζ ′′

{Ψ (k)[1]h̃(k)

+ p(k)[1] + q(k)[1] + r(k)[1]} (D.3)

h̃(k + 1)[2] =h̃(k)[2] +
1
kζ ′′

{M̄∗h̃(k)[2] + Ψ (k)[2]h̃(k)

+ p(k)[2] + q(k)[2] + r(k)[2]}, (D.4)

where S−1P−ζ ′′

d M̃1(k)S =

[
Ψ (k)[1]

Ψ (k)[2]

]
,

S−1P−ζ ′′

d [M̃1(k)u1(k) + M1(k)u2(k) + M̃2(k)ĝ(k)] =

[
p(k)[1]

p(k)[2]

]
,

S−1P−ζ ′′

d [M̄1(k)u1(k) + M̄2ĝ(k)] =

[
q(k)[1]

q(k)[2]

]
, −S−1M3(k)ĝ(k) =[

r(k)[1]

r(k)[2]

]
.

Introduce two Lyapunov functions V h(k) = E{∥h̃(k)[1]∥2
} and

W h(k) = E{h̃(k)[2]TRh h̃(k)[2]}, where Rh > 0 satisfies the Lyapunov
equation RhM̄∗

+ M̄∗TRh
= −Q h, for any given Q h > 0 (according

to (D.2)).
At the first step, we set q(k)[1] = 0 and q(k)[2] = 0 and denote

the corresponding solutions of (D.3) and (D.4) by h̃1(k)[1] and
h̃1(k)[2], respectively. Then, we introduce V h

1 (k) = E{∥h̃1(k)[1]∥2
}

and W h
1 (k) = E{h̃1(k)[2]TRhh̃1(k)[2]}. It is straightforward to see

that the results from Huang and Manton (2010) can be directly
applied to (D.3) and (D.4) (Theorem 11 and Lemma 12 therein),
leading to the conclusion that supkV h

1 (k) < ∞ and that W h
1 (k)

tends to zero when k → ∞. It is essential for this conclusion
that the sequences {Ψ (k)[1]}, {Ψ (k)[2]}, {p(k)[1]} and {p(k)[2]} are
uncorrelated, that

∑
∞

k=1
1

k2ζ ′′
< ∞, and that λmin(Q h) > 0.

At the second step, consider the zero state responses h̃2(k)[1]
and h̃2(k)[2] of (D.3) and (D.4) to the inputs q(k)[1] and q(k)[2],
respectively. Let V h

2 (k) = E{∥h̃2(k)[1]∥2
} and W h

2 (k) = E{h̃2(k)[2]T

Rhh̃2(k)[2]}. By (27), we first conclude that M̄2ĝ(k) = M̄2ĝ(k)[2]
(having in mind Theorem 2 and (27)). From (D.3), we obtain

h̃2(k + 1)[1] = [I +
1
kζ ′′

Ψ (k)[1]1 ]h̃2(k)[1] +
1
kζ ′′

q(k)[1], (D.5)

whereΨ (k)[1]1 is an (n×n) submatrix ofΨ (k)[1]. From (D.5)we have
that E{h̃2(k + 1)[1]} = E{h̃2(k)[1]} +

1
kζ ′′

q(k)[1]; consequently,

V h
2 (k + 1) ≤(1 + c ′

1
k2ζ ′′

)V h
2 (k) + (

1
kζ ′′

q(k)[1])2

+ E{h̃2(k)[1]}
1
kζ ′′

q(k)[1], (D.6)
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(c ′ < ∞). Since q(k)[1] = o( 1
kζd

) w.p.1, by Theorem 2we can derive
that supkE{h̃2(k)[1]}2 < ∞. Consequently, supkV h

2 (k) < ∞ for all
ζ ′′ > 1 − ζd, because of the requirement that

∑
k

1
kζ ′′+ζd

< ∞.
When ζ ′ < 1, this result holds, according to Theorem 2, for all ζ ′′

∈

( 12 , 1] in the case of AlgDrift.b and AlgDrift.c, and for ζ ′′ > 3
2 − ζ ′

in the case of AlgDrift.a. Analysis of h̃2(k)[2] relies on the classical
results from stochastic approximation (Chen, 2002), wherefrom
we obtain that limk→∞W h

2 (k) = 0.
At the third step, consider the zero state responses h̃3(k)[1]

and h̃3(k)[2] of (D.3) and (D.4) to the inputs r(k)[1] and r(k)[2],
respectively. Let V h

3 (k) = E{∥h̃3(k)[1]∥2
} and W h

3 (k) =

E{h̃3(k)[2]TRhh̃3(k)[2]}. Let r1(k)[1] be the part of r(k)[1] follow-
ing from εa(k)AΓ (k)∆t(k)ĝ(k), and r2(k)[1] the part following
from εa(k)Ng (k)ĝ(k). Taking into account (27), one concludes that
r1(k)[1] ∼ o( 1

kζ ′+ζd
) and that {}r2(k)[1]} is a zeromean i.i.d. sequence

on any subsequence κ ij multiplied by 1
kζ . Therefore, V

h
3 (k) < ∞,

provided ζ ′
+ ζd > 1; this is fulfilled in the case of AlgDrift.a for

ζ ′ > 3
4 , and for any ζ ′

∈ ( 12 , 1] in the case ofAlgDrift.b andAlgDrift.c.
Reasoning similarly, we conclude that limk→∞W h

3 (k) = 0.
Therefore, supkV h(k) < ∞ and limk→∞W h(k) = 0. Using

the arguments exposed in Huang and Manton (2010), we further
obtain that h̃(k)[1] tends to a random n-vector h̃[1]∗, and that h̃(k)[2]
tends to zero in the mean square sense and w.p.1, implying that

ĥ∗
= limk→∞ĥ(k) = Sh̃∗, where h̃∗

= [h̃[1]∗T
...0T

1×n]
T . The result

of the theorem follows after taking into account that χ (k) → χ∗

w.p.1 and that

M̄1ĥ∗
= M̄1Sh̃∗

= Pζ
′′

d S
[
0 0
0 M̄∗

]
h̃∗

= 0,

according to (D.2) and the definition of ĥ∗.

Appendix E. Proof of Theorem 4

We shall pay attention only to the possible convergence points:
the rest can be derived by following methodologically the proof
of Theorem 3. Namely, according to Kushner and Yin (1987), we
formulate the ODE characterizing the asymptotic behavior of the
algorithm, and obtain that

Γ̄ f̂ ∗
− χ∗

[Γ̄d(δ̄ + η̄0) − Γ̄ ξ̄ 0] + Γ̄d1ĉcon = 0
n∑

i=1

φ̄i{Γ̄
(i) f̂ ∗

− χ∗
[(Γ̄d[δ̄ + η̄0])i − (Γ̄ ξ̄ 0)i]

+ (Γ̄d1)iĉcon} = 0, (E.1)

wherefrom the result directly follows.
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