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Abstract
We address the problem of estimating the occupancy lev-

els in rooms using the information available in standard
HVAC systems. Instead of employing dedicated devices, we
exploit the significant statistical correlations between the oc-
cupancy levels and the CO2 concentration, room tempera-
ture, and ventilation actuation signals in order to identify a
dynamic model. The building occupancy estimation problem
is formulated as a regularized deconvolution problem, where
the estimated occupancy is the input that, when injected into
the identified model, best explains the currently measured
CO2 levels. Since occupancy levels are piecewise constant,
the zero norm of occupancy is plugged into the cost func-
tion to penalize non-piecewise constant inputs. The problem
then is seen as a particular case of fused-lasso estimator by
relaxing the zero norm into the `1 norm. We propose both
online and offline estimators; the latter is shown to perform
favorably compared to other data-based building occupancy
estimators. Results on a real testbed show that the MSE of
the proposed scheme, trained on a one-week-long dataset, is
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half the MSE of equivalent Neural Network (NN) or Support
Vector Machine (SVM) estimation strategies.

1 Introduction
In recent years we have witnessed an emerging inter-

est in improving buildings energy efficiency by optimizing
the performance of Heating, Ventilation and Air Condition-
ing (HVAC) systems. A common opinion is that a key en-
abling factor to achieve this goal is to have reliable instru-
ments for detecting the occupancy levels in rooms [1, 2, 3].
In fact, the presence of occupants has a direct effect on the
air quality indexes (temperature, CO2 and humidity levels);
moreover, conditioning unused spaces usually translates into
energy waste.

Clearly, the simplest way to obtain information regard-
ing room occupancy is to employ dedicated hardware, such
as cameras and RFID tags. However, this usually requires
additional costs, poses privacy concerns, and might be in-
feasible in some old buildings. Furthermore, authors’ direct
experience indicates that the reliability of some standard off-
the-shelf devices may be insufficient for the employment in
HVAC control systems.

The natural question arising is what information on room
building occupancy can be successfully gathered using indi-
rectly the measurement devices usually present in standard
HVAC systems. In other words, it is interesting to under-
stand whether statistical processing of environmental signals
such as CO2 concentration, temperature and actuation sig-
nals may lead to occupancy estimators that are sufficiently
valid to substitute hardware-based people counters. In this
paper we precisely address this problem, and focus on how
to accurately estimate the number of occupants in a room by
processing CO2, temperature and HVAC actuation levels.

Literature review: there exists a quite rich literature on
methods and devices for the inference of occupancy levels
in rooms and buildings. A first categorization divides it in
two main branches: hardware-based approaches and model-
based approaches.

The first category comprises strategies based on dedicated
hardware such as cameras, RFIDs, etc. [4, 5, 6, 7, 8, 9,
10, 11]. As mentioned before, these methods present some
drawbacks that might make them non-suitable in certain sce-
narios. Instead, the second category of methods adopts pro-
cedures that indirectly infer occupancy levels using suitable
models of the dynamics for some available environmental



signals. These techniques typically exploit models that re-
late the occupancy patterns to the measured environmental
signals; the occupancy levels are then estimated by applying
proper inverse mappings starting from the available measure-
ments. This category of methods can be furthermore divided
in two classes: physics-based methods, where the model
is derived exploiting knowledge of the underlying physical
laws, and identification-based methods, where the model is
derived using data-driven techniques.

As for the physics-based procedures, the rationale is usu-
ally to connect number of occupants, CO2 concentration,
temperature and humidity with mass balance equations or
first principles considerations [12, 13, 14, 15]. Opposed to
the previous methods, identification-based approaches con-
struct models from data-sets of past measured data. Success-
ful approaches exploit machine learning techniques such as
Support Vector Machines (SVMs), Neural Networks (NNs)
and Hidden Markov Models (HMMs), using CO2-based fea-
tures (i.e., averages of the signals in time, first and second
order temporal differences) [16, 17].

Statement of contributions: we propose a novel strat-
egy that, with respect to the literature analyzed before,
fall into the family of the identification-based approaches.
More precisely, we identify Linear Time Invariant (LTI) dy-
namic models exploiting Prediction Error Method (PEM) ap-
proaches. Notice that identification of systems under feed-
back is not an easy task. In particular, we analyze the perfor-
mance of two different identification algorithms, relying on
parametric and nonparametric techniques respectively. Once
the model is obtained, the building occupancy estimation is
formulated as a deconvolution problem, i.e., an inverse prob-
lem where the input of a system is estimated from measured
output data. In particular, we leverage the fact that the occu-
pancy signal is piecewise constant and integer. This estima-
tion problem is formulated in both an online and an offline
version; while the first one has evident application in HVAC
control systems, the second one can be exploited for deduc-
ing occupancy pattern models in large buildings.

The proposed scheme assumes the availability of mea-
surements of temperature, CO2 concentration and HVAC ac-
tuation levels at any time. This appears reasonable since this
is exactly the information processed by standard Indoor Air
Quality (IAQ) management systems. Indeed, these systems
generally measure temperature and CO2 levels to decide the
heating, venting and cooling actuation levels. Furthermore,
to identify the LTI model, we assume knowledge of the true
occupancy levels for a short and well-defined period of time.
We remark that no a-priori knowledge on the characteristics
of the room is assumed.

As part of our work, we assess the importance of consid-
ering the HVAC actuation levels for occupancy estimation
purposes. More precisely, we numerically evaluate the vari-
ation of the performance of the estimators when the amount
of fresh air inlet in the room is neglected. As expected, ex-
ploitation of this information is beneficial for the quality of
the estimation process. We eventually compare our approach
with SVM-and NN-based algorithms, to understand to what
extent the novel procedures improve the current state of the
art. The approach is evaluated on real testbed and outcomes

show that the proposed approach can reach, after a training
period of one week, an estimation accuracy of ∼88%.

Structure of the manuscript: Section 2 defines the math-
ematical problem under consideration, and the methodology
used to solve it. Sections 3 and 4 describe the two main parts
of the novel estimators, namely how to build the model of the
room from a training set, and how to exploit the model for
estimation purposes. Section 5 reports the SVM- and NN-
based schemes used for comparison purposes. Section 6 de-
scribes the performance indexes considered, the experimen-
tal setup and the results of the estimation processes. Sec-
tion 7 then wraps our conclusions, remarks, and ideas for
future directions of development.

2 Problem definition and methodology
We consider the following schematic representation of the

dynamic behavior of the concentration of the CO2 and tem-
perature in a room under well-mixed air assumptions, i.e.,
in a room where these quantities are assumed to be spatially
constant.

G(s)
c (CO2)

t (temperature)

(ventilation) v
(occupancy) o

disturbances

In the above scheme c(k) represents the concentration of
CO2, t(k) the temperature, v(k) the amount of injected fresh
air (venting) and o(k) the occupancy, every one at time k.
G(s) represents a linear time-invariant system, i.e., a dy-
namic map transforming disturbances, ventilation and build-
ing occupancy levels into temperature and CO2 concentra-
tion signals. We assume to be able to collect samples of
these quantities (except for the disturbances) at specific time
instants, and no knowledge of the model G(s).

We are then interested in defining an effective model-
based estimator of o(k) which exploits the measurements
c(k),c(k−1), . . ., t(k), t(k−1), . . ., v(k),v(k−1), . . .. To this
end, we define two different phases.
Training phase. Here we assume to be able to measure Ttr

samples of c(k), t(k), v(k), and, thanks to a temporary
people counter, also o(k). With this information we
build an estimate Ĝ(s) of G(s) (see next Section).

Test phase (either online or offline). Here we assume to
be able to measure only c(k), t(k), and v(k). With this
information, and exploiting the estimated model of the
room Ĝ(s), we build an estimate ô(k) of o(k). When the
estimation problem is solved on a fixed dataset of size
Tts, we shall say that we are employing an offline esti-
mator. On the other hand, an online estimator is defined
when ô(k) is estimated at each time instant.

The first problem is said to be a system identification prob-
lem, while the second is usually called a deconvolution prob-
lem. In the following sections we introduce our approaches
for solving these two problems.

3 Identification of the model of the room
Assume we are in training phase, and thus to aim at build-

ing an estimate Ĝ(s) of G(s) starting from a dataset of mea-
surements of c(k), t(k), v(k), and o(k).



As in [18, 19, 20, 21, 22], we assume the environmental
signals to be stationary and the dynamics of the room to be
LTI, and thus of the form[
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t(k)

]
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(
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(1)

where wc(k), wt(k) are white Gaussian noises and
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are matrix transfer functions where, without loss of general-
ity, all the entries are assumed to be polynomials of the same
order.

To estimate the transfer functions HHHc
(
q−1
)

and HHHt
(
q−1
)
,

that fully represent the (discretized) model of the system, we
consider a classical PEM paradigm, i.e., we consider a one-
step-ahead predictor of the form

[
ĉ(k|k−1)
t̂(k|k−1)

]
=

[
ĤHHc
(
q−1
)

ĤHHt
(
q−1
)]
c(k−1)

t(k−1)
v(k−1)
o(k−1)

 (2)

and then obtain ĤHHc
(
q−1
)

and ĤHHt
(
q−1
)

as those transfer
functions that minimize the variance of the prediction errors
c(k)− ĉ(k|k− 1) and t(k)− t̂(k|k− 1) on the data collected
during the training phase. From (2) it follows that the pre-
dictors ĉ(k|k−1) and t̂(k|k−1) exploit the same information
of the past; moreover, statistical analysis reveals that the sig-
nal mostly correlated with the occupancy is the CO2 level.
Thus, in the following we will consider only ĉ(k|k− 1) and
thus focus on the identification of ĤHHc

(
q−1
)
. To this end we

consider the two following alternative PEM-based identifi-
cation approaches:

parametric identification (P). Here the model is deter-
mined by parameters entering in HHHc

(
q−1
)

and HHHt
(
q−1
)

within a certain model structure, determined either
by using model selection criteria such as AIC and
BIC [23], or by adopting some physics-based consid-
erations. As suggested in [13, 22], here we consider
the latter strategy and exploit Autoregressive exoge-
nous (ARX) models [23], where Hv

c , Ho
c , Ht

c and Hc
c

are polynomials of order 1;

nonparametric identification (NP). Here, instead of im-
posing the order of the polynomials Hv

c , Ho
c , Ht

c and
Hc

c and then searching for their optimal coefficients, we
identify the corresponding impulse responses that best
describe the evolution of the system during the training
phase. Then, the coefficients of these impulse response
(truncated to a fixed large number p) are used to form
the aforementioned polynomials (see [24, 25] for more
details).

Independently of the considered PEM method used, with
the proposed identification step we obtain a predictor of the

form
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is the matrix of the identified polynomials.

4 Deconvolution of the occupancy levels
Assume that we are in the test phase, where direct mea-

surements of the building occupancy level o(k) are no more
available. Below we describe how, given estimates of the
room dynamics model Ĥc

c , Ĥt
c, Ĥv

c , Ĥo
c obtained before, it is

possible to build a function of the measurements c(k), v(k),
and t(k) that works as an estimator ô(k) of o(k).

Let then

e(k) := c(k)− ĉ(k|k−1) (5)

be the prediction error of the CO2 level, Gaussian by hypoth-
esis [26]. Substituting (3) into (5) and rearranging properly
one finds

Ĥo
c
(
z−1
)
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= c(k)−
[
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c
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c
(
q−1
)

Ĥv
c
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) ][c(k−1)

t(k−1)
v(k−1)

]
−e(k),

(6)
an identity where the unknowns are only o(k) and e(k), since

c̃(k) := c(k)−
[
Ĥc

c
(
z−1) Ĥt

c
(
q−1) Ĥv

c
(
q−1) ][c(k−1)

t(k−1)
v(k−1)

]
can be computed given the available information.

With this new definition (6) can be rewritten as

c̃(k) = Ĥo
c
(
q−1)o(k−1)+ e(k). (7)

The above equation reformulates the problem of estimating
the unknown o(·) as a deconvolution problem, i.e., of esti-
mating the unknown occupancy signal as that input that best
describes the observed output, given the knowledge of the
transfer function of the system [27]. Since e(k) is assumed
to be white and Gaussian, the natural approach to this prob-
lem would be to employ a Least-Squares (LS) estimator of
o(·), since this would minimize the overall variance of the
estimation error [23, Chap. 7]. However, the estimates ob-
tained in this way are usually unsatisfactory, since they do
not really reflect a suitable building occupancy pattern. For
this reason, we consider a cost function for the deconvolu-
tion problem that takes into account the prior information on
the building occupancy signal, that is:
• o(k) is a non-negative integer signal;

• o(k) is piecewise constant.
We thus formulate the deconvolution problem as “find that
least-changing positive piecewise constant input signal that



minimizes the mismatch between the estimated and mea-
sured outputs of the system”. As underlined by the structure
of this section, this problem can be solved both offline and
online.
4.1 Offline estimation of the building occu-

pancy levels
Starting from the previous findings and assumptions, the

offline estimation problem, which is motivated by situations
where one wants to construct models of building occupancy
flows in buildings, can be formulated as follows.

Let the polynomial Ĥo
c
(
q−1
)

be Ĥo
c
(
q−1
)
= h0+h1q−1+

. . .+hpq−p, where p = 1 when ARX model is adopted, and
let the test set be indexed by the time instants 0, . . . ,Tts. Con-
sider the auxiliary notation

Ĥ :=

hp · · · h0 0
. . . . . .

0 hp · · · h0

 ∈ RTts−p×Tts

ooo :=

 o(0)
...

o(Tts−1)

 , c̃cc :=

c̃(p+1)
...

c̃(Tts)


∆o(i) := o(i)−o(i−1), ∆ooo :=

[
∆o(1), . . . ,∆o(Tts−1)

]
.

The offline estimation problem can then be expressed math-
ematically as

ôoo = arg min
õoo∈NTts

+

∥∥c̃cc− Ĥ õoo
∥∥2

2 +λ
∥∥∆õoo

∥∥
0, (8)

where:
• ôoo is a Tts-dimensional vector with the estimated values

of building occupancy at the time instants 0, . . . , Tts−1;

• the first summand on the RHS represents the LS esti-
mator of the building occupancy, that tries to match the
estimated and measured outputs of the system;

• ‖·‖0, the zero norm, counts the number of variations
of the candidate inputs, thus penalizing non-piecewise
constant candidate inputs;

• λ is a regularization parameter that trades off the two
previous terms and that is discussed in details in Sec-
tion 4.3.

Unfortunately problem (8) is a non-convex non-linear in-
teger program, and cannot be solved efficiently even by
the most advanced numerical optimization procedures. To
circumvent this computational drawback, we pose two re-
laxations. First, we substitute the zero norm with the `1-
norm [28, Sec. 3.4]; then, we extend the domain of the plau-
sible inputs to RTts

+ instead of NTts
+ . Hence, we formulate the

problem of estimating the building occupancy levels as

ôoo =

⌊
arg min

õoo∈RTts
+

∥∥∥c̃cc− Ĥ õoo
∥∥∥2

2
+λ
∥∥∆õoo

∥∥
1

⌉
, (9)

where the b·e denotes the vector-wise rounding operator.
Problem (9) can also be seen as a particular case of fused-

lasso estimator [29], where the solution is searched among
sparse and smooth regressor vectors.
4.2 Online estimation of the building occu-

pancy levels
As mentioned before, the online estimation problem is

motivated by situations where current building occupancy
levels are used for actively controlling HVAC systems,
e.g., [30]. It can be derived from the previously introduced
offline estimator (9) by introducing some modifications. In
particular, instead of using a fixed dataset (the test set), at
each time instant we employ N data samples of each sig-
nals, from k−N +1 to k, with N > p. Then, by introducing
Ĥ ∈ RN−p×N similarly as before, and

ooo :=

 o(0)
...

o(N−1)

 , c̃cc :=

c̃(p+1)
...

c̃(N)


∆o(i) := o(i)−o(i−1), ∆ooo :=

[
∆o(1), . . . ,∆o(N−1)

]
,

the estimate of the room occupancy at time k−1 is given by

ôoo(k−1) =

⌊
arg min

õoo∈RN
+

∥∥∥c̃cc− Ĥ õoo
∥∥∥2

2
+λ
∥∥∆õoo

∥∥
1

⌉
. (10)

In (10), ôoo(k− 1) is an N-dimensional vector with the esti-
mated values of occupancy at the time instants k−1, . . . , k−
N; one can consider only its first entry, i.e., ô(k−1).

The parameter N plays an important role in (10), since it
defines the amount of data employed for estimating ôoo(k−1)
(and in particular ô(k− 1)) at each time instant. Clearly, a
large value of N yields more accurate estimates, since more
information is used. In fact, note that the ratio between the
number of data samples and the number of estimated values,
given by N−p

N , tends to 1 as N grows large. However, a large
value of N brings computational issues which could make the
computation of (10) too slow for online operations. Thus, a
good choice of N should be made by considering both these
aspects; this is discussed in details in Section 6.3.
4.3 Finding the optimal regularization pa-

rameter λ
The solutions to Problems (9) and (10) depend on the

choice of the regularization parameter λ. This weighting
factor is indeed a design parameter that plays a crucial role
in the estimation process, as it tunes the typical variability
of the room occupancy signal. In other words, large val-
ues of λ penalize changes in the value of estimated occu-
pancy, leading to estimates that are constant for long periods
of times. On the other hand, small values of λ lead to oc-
cupancy estimates that vary frequently and behave similarly
to the outcomes of the LS estimator (which is obtained by
setting λ = 0).

A reasonable choice of λ is given by the value of such pa-
rameter that gives the best estimation performance during the
training phase. In other words, the estimation of λ is com-
puted first by plugging into (9) the measurements of c(k),
t(k) and v(k) collected during the training phase. Then, let-
ting ôoo(λ) be solution of (9) applied to the training set with



that particular λ, we compute the optimal regularization pa-
rameter as

λ̂ = arg min
λ∈R+

‖ôoo(λ)−ooo‖2
2 , (11)

where ooo is the vector of the occupancy levels measured dur-
ing the training phase.
5 Alternative methods

The algorithm proposed above is based on the assumption
of having LTI models. If such hypothesis is neglected, some
alternative methods can be utilized. Here we consider two of
them for comparison purposes.
5.1 Estimation of building occupancy levels

using Support Vector Machine (SVM)
In their basic form, SVMs perform classification tasks

as follows: given a dataset D of samples (xxxk,yk) for k =
0, . . . ,N with xxxk ∈ Rn and yk ∈ {−1,+1}, try to find a hy-
perplane in Rn+1) that: (i) separates the points of the form
(xxxk,+1) from those of the form (xxxk,−1); (ii) maximizes the
minimum distance from the xxxi’s. This concept can then be
extended to cope with non-linear separation rules and multi-
classes classification tasks [31, Part II].

SVMs have already been exploited for building occu-
pancy estimation tasks, e.g., in [16, 17]. The classical ap-
proach is to let xxxk contain functions of the current and past
CO2, temperature and ventilation levels (e.g., the average
of c(k), . . . ,c(k− n)). yk is instead chosen to represent the
building occupancy level o(k). Once this mapping has been
performed, it is possible to train a general multi-class SVM
on the couples (xxxk,yk) forming the training set. After this
one can then estimate the unknown building occupancy by
applying the estimated SVM on the xxxk forming the test set.

The SVM implemented in our tests that led to the best es-
timation error performance is a C-SVM exploiting a polyno-
mial kernel of order 3. As features, it considers current and
past values of the temperature, CO2, and ventilation levels
up to 1 hour in the past, and their first and second derivatives
in time.
5.2 Neural Network (NN)

The Neural Networks (NNs) considered here correspond
to maps of the form [32, Sec. 44]

yk = Ψ′′
(
∑

i
ω′′i hi (xxxk)+θ′′

)
, hi (xxxk) = Ψ′i

(
∑

j
ω′jxk, j +θ′i

)
with yk and xxxk having the same meanings of Section 5.1. The
structure of the functions Ψ′′, Ψ′i, hi is a design parameter,
but usually they remind how biological neurons electrically
react to external stimuli. Once the design parameters have
been chosen, training the network corresponds to search that
particular set of weights www for which the corresponding NN
best fits the training examples. Once this function has been
learned, it can be used for prediction purposes as did in the
SVM case.

The NN implemented in our tests that led to the best esti-
mation error performance is a complete feedforward network
with Sigmoid activation rules and one hidden layer com-
posed by 8 neurons. It considers the same features exploited
to train the SVM based estimator.

6 Experiments
6.1 Description of the experimental setup

Tests have been performed in July 2013 in one of the
rooms of the ACL-HVAC testbed, a fully instrumented facil-
ity located in the basement of the Q-building on KTH cam-
pus (see http://hvac.ee.kth.se/ for more information).
The information collected, available at http://hvac.ee.
kth.se/datasets.html, comprises two weeks of measure-
ments of CO2 and temperature levels from HDH sensors, and
of venting, cooling, and heating actuation levels from the
PLCs controlling the IAQ of the room. Building occupancy
levels were manually registered for the whole period, with a
time accuracy of 1 minute. To uniform the sampling times
of the various signals (5 minutes), or in case of missing mea-
surements, the information was resampled using linear inter-
polation schemes. The first week was used as a training set,
while the second week was used as a test set.

Figure 1. The room where the dataset was collected. It is
located in the basement of the Q-building on KTH cam-
pus, Stockholm, Sweden.

Figure 2. Schematic representation of the HVAC system
for the control of the IAQ of the room shown in Figure 1.

6.2 Definition of the performance indexes
We consider four performance indexes:
• the Mean Squared Error (MSE) (12), characterizing the

absolute estimation errors;

• the accuracy (14), reporting how many times the esti-
mator returns the correct value;

• the false positive / false negative occupancy detection
rates (17), describing the ability of discriminating the
presence / absence of occupants in terms of false posi-
tives (when the room is estimated to be occupied while



it is not) and false negatives (when the room is esti-
mated to be empty while it is not).

More formally, let ooo and ôoo be true and estimated realiza-
tions, respectively. Then the MSE associated to the couple
ooo, ôoo is simply

MSE(ôoo) :=
1
N

N

∑
t=1

(ô(k)−o(k))2 , (12)

where N = Tts in the offline estimator. To define the other
performance indexes we then transform the signals ooo, ôoo
with codomain N+ (number of occupants) to signals with
codomain {0,1} (room is non occupied, room is occupied)
through indicator functions, i.e., through

1(o(k)) :=
{

1 if o(k)> 0
0 otherwise

, 1(ooo) :=

1(o(1))...
1(o(N))

 .
(13)

Given (13), the accuracy of the estimate ôoo is

Acc(ôoo) :=
N−∑N

k=11(o(k)− ô(k))
N

. (14)

To define the false positive / negative rates we introduce

Nθ := {t s.t. 1(o(k)) = θ} , (15)

dividing the time indexes in two sets: N0, for the k’s for
which the room was not occupied, and N1, for the k’s for
which the room was occupied. With this it is possible to
capture the mistakes “the room is estimated to be occupied
while it is empty”, “the room is considered empty while it is
occupied” with

β̂(θ) :=
1∣∣Nθ
∣∣ ∑

k∈Nθ

1(ô(k)) , (16)

where we remark that the summation is performed over the
set Nθ. With (16) we then define the false positive and false
negative rates as

FP(ôoo) := β̂(0), FN(ôoo) := 1− β̂(1). (17)

6.3 Summary of the results
6.3.1 Comparison of the offline strategies

In this section we compare four estimators, all trained us-
ing the training set described in Section 6.1: the parametric
and nonparametric strategies considered in Sections 3 and 4,
indicated with the acronyms “P” and “NP”, and the machine-
learning based algorithms of Section 5, indicated with the
acronyms “SVM” and “NN”. Figure 3 shows the realiza-
tions of the estimates of the various strategies when applied
to the corresponding test set, while Table 1 summarizes the
achieved numerical performance.

We highlight the favorable properties of the
deconvolution-based approaches with respect to the al-
ternative methods considered above. We also notice that
the performance of the parametric and nonparametric
approaches are very close, fact that suggests that knowing
accurately the physics of the room under consideration is
eventually not required, as long as we consider building

occupancy estimation problems. On the other hand, the
parametric approach has generally smaller computational
requirements, thus it seems appropriate to use prior in-
formation on the physics of the problem whenever this is
available.

Algorithm MSE Accuracy FP FN

P 0.114 0.880 0.008 0.018
NP 0.126 0.882 0.007 0.010

SVM 0.342 0.826 0.018 0.277
NN 0.268 0.811 0.067 0.095

Table 1. Summary of the performance achieved by the
considered estimators in the test set.

6.3.2 Evaluation of the sensitivity to the design pa-
rameter λ

As mentioned in Section 4.3, the regularization parame-
ter λ enters in the design of the estimator by dictating the
typical variability of the estimated occupancy patterns. Our
approach is to use, during the test phase, that particular λ∗
that leads to the best estimation performance in the training
set. Since the best λ in the test set may be different from
the best λ in the training set, it is important to evaluate the
effects of this unavoidable mismatch.

Figure 4 then plots the dependency of the MSE index on
λ for both the parametric and nonparametric strategies and
both the training and test set. It can then be noticed that
the dependency on λ is weak: this is favorable, because it
indicates that mismatches on λ are not going to disrupt the
estimation performance.
6.3.3 Evaluation of the sensitivity to the design pa-

rameter N for the online estimation strategies
The length of the estimation window N plays also a design

parameter role, since it trades-off computational require-
ments with information: the larger the window, indeed, the
more holistic the deconvolution-based estimators are about
the dynamics of the system. The intuition then suggests that
there is a certain value for this horizon s.t. adding more infor-
mation does not improve the estimation performance. This
horizon is the one for that old dynamics do not influence the
current estimates. The results shown in Figure 5 indicate that
this length is, in our experiments, of about 5 days.
6.3.4 Evaluation of the importance of the knowledge

of the actuation levels
When the occupancy levels are estimated using additional

sensors that do not communicate with the central HVAC con-
trol systems, one has no information about how much air
is injected in the rooms by the conditioning system. In our
case, instead, we have access to this information: indeed our
vision is that estimations should be performed by the control
system itself, using its own information without exploiting
additional sensors. A question is then: what is the value of
the information on the HVAC system actuation levels? In
our specific case (and without claims for generality), the an-
swer is given in Table 2, reporting the performance indexes
obtained by offline deconvolution-based estimators that ne-
glect the signals v(k). The outcome is that neglecting the
ventilation levels lead to from two-fold to five-fold increases
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Figure 3. Realizations of the estimation processes for the test set considered in our experiments.

of the MSE, False Positive (FP) and False Negative (FN) lev-
els, and a diminishing of approximatively 6% of the accuracy
of the estimates.
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Figure 4. Sensitivity of the offline deconvolution-based
estimators to the choice of the design parameter λ.
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Algorithm MSE Accuracy FP FN

P 0.238 0.820 0.042 0.036
NP 0.235 0.821 0.034 0.045

Table 2. Estimation performance of the deconvolution-
based offline estimators that neglect the ventilation levels
v(k). Compare with Table 1 to evaluate the importance
of the knowledge of the air conditioning actuation levels.

7 Conclusions
We proposed a scheme for the estimation of building oc-

cupancy levels in closed environments, exploiting informa-
tion that is generally available to Heating, Ventilation and
Air Conditioning (HVAC) controllers. The aim was to un-
derstand if such information is sufficient to perform mean-
ingful estimates of how the building occupancy changes in
time.

The main assumption made is that the estimator can, for
learning purposes and for a short period of time, access to
direct measurements of the true occupancy levels. Another
hypothesis is that the estimator uses the HVAC system actua-
tion levels, in addition to the classical environmental signals
such as CO2 and temperatures.

The estimation strategy exploits dynamic Linear Time In-
variant (LTI) models that are obtained by either parametric or
nonparametric identification techniques. Based on the iden-
tified system, the room occupancy estimation problem is for-
mulated as a regularized deconvolution problem that plugs
prior information on the features of the building occupancy
signal.

Numerically, the proposed algorithm returned the correct
occupancy level in more than 88% of the times, reported the
room as empty while it was occupied only in 1% of the times,
and occupied while it was empty the 0.7% of the times.
When compared with Support Vector Machine (SVM)-based
and Neural Network (NN)-based estimators exploiting the
very same information, our approach proved to have the best
performance indexes.



The proposed technique was also used to evaluate the im-
portance of considering HVAC system actuation levels for
occupancy estimation purposes. We showed that, by neglect-
ing these signals, we obtained a worsening of the estimates
quantifiable in doubling the Mean Squared Error (MSE) in-
dexes and diminishing the accuracy by roughly 6%.

The idea considered in this paper can be extended towards
the construction of occupancy estimators for whole build-
ings, and thus for the identification of building occupancy
pattern models. Moreover, since the dynamics are assumed
linear, it may be possible to adapt the models identified in
a single room to other rooms of the same building, by an
opportune rescaling of the identified impulse responses ac-
counting variations in the structural properties of rooms.

Another appealing idea is to exploit blind system iden-
tification techniques to estimate both the system dynamics
and the building occupancy at the same time, thus removing
the assumption on the availability of the building occupancy
signal for a given period.
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