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Abstract— This paper considers the distributed optimization
problem of minimizing a global cost function formed by a
sum of local smooth cost functions by using local information
exchange. Various distributed optimization algorithms have
been proposed for solving such a problem. A standard condition
for proving the linear convergence for existing distributed algo-
rithms is the strong convexity of the cost functions. However, the
strong convexity may not hold for many practical applications,
such as least squares and logistic regression. In this paper, we
propose a distributed primal-dual gradient descent algorithm
and establish its linear convergence under the condition that the
global cost function satisfies the Polyak-t.ojasiewicz condition.
This condition is weaker than strong convexity and the global
minimizer is not necessarily unique. The theoretical result is
illustrated by numerical simulations.

I. INTRODUCTION

Distributed optimization has a long history, which can be
traced back at least to [1]—[3]. It has gained renewed interests
in recent years due to its wide applications in power systems,
machine learning, and sensor networks, just to name a few
(4], [5].

When the cost functions are convex, various distributed
optimization algorithms have been developed in discrete and
continuous time. Most existing algorithms are in discrete
time and are based on consensus and the distributed gra-
dient descent method [6]-[9]. Distributed gradient descent
algorithms have at most sub-linear convergence rate for
diminishing stepsizes. With a fixed stepsize, the distributed
gradient descent algorithms converge faster, but only to a
neighborhood of an optimal point [10], [11]. Recent accel-
erated algorithms with fixed stepsizes use some historical
information in the updates [12]-[20].

Among these distributed optimization algorithms, a stan-
dard assumption for proving linear convergence is that
(local or global) cost functions are strongly convex. For
example, in [14]-[17], the authors assumed that each local
cost function is strongly convex. Unfortunately, in many
practical applications, such as least squares and logistic
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regression, the cost functions are not strongly convex [21]—
[23]. Therefore, the recent literature focuses on investigating
alternatives to strong convexity. There are some results in
centralized optimization. For instance, in [21], the authors
derived the linear convergence of several centralized first-
order methods for solving the smooth convex constrained
optimization problem under the quadratic functional growth
condition and in [22], the authors showed the linear conver-
gence of centralized proximal-gradient methods for solving
the smooth optimization problem under the assumption that
the cost function satisfies the Polyak—t.ojasiewicz condition.

However, to the best of our knowledge, there are only
limited results in distributed optimization. In [12], the authors
proposed the distributed exact first-order algorithm (EXTRA)
to solve the smooth convex optimization problem and proved
the linear convergence under the assumptions that the global
cost function is restricted strongly convex and the optimal set
is a singleton. In [24], the authors established the exponential
convergence of a continuous-time distributed primal-dual
gradient descent algorithm for solving the smooth convex
optimization problem under the assumption that the primal-
dual gradient map is metrically subregular which is weaker
than strict or strong convexity. In [25], the authors proposed
the zeroth-order gradient tracking algorithm and established
the linear convergence under the assumption that the cost
function satisfies the Polyak—t.ojasiewicz condition. In [26],
the authors proposed a continuous-time distributed primal-
dual gradient descent algorithm to solve the smooth non-
convex optimization problem and proved the exponential
convergence under the assumptions that the global cost
function satisfies the restricted secant inequality condition
and the set of the gradients of each local cost function at
optimal points is a singleton.

In this paper, we consider the distributed optimization
problem. We propose a distributed primal-dual gradient de-
scent algorithm and establish its linear convergence under the
condition that the global cost function satisfies the Polyak—
Lojasiewicz condition. This condition is weaker than the
(restrict) strong convexity condition assumed in [12]-[18]
since it does not require convexity and the global minimizer
is not necessarily unique. This condition is also weaker
than the restricted secant inequality condition assumed in
[26]. Moreover, this condition is different from the metric
subregularity criterion assumed in [24].

The rest of this paper is organized as follows. Section II
introduces some preliminaries. Section III presents problem
formulation and assumptions. The main results are stated
in Section IV. Simulations are given in Section V. Finally,
concluding remarks are offered in Section VI.



Notations: [n| denotes the set {1,...,n} for any positive
integer n. col(zy,...,2) is the concatenated column vec-
tor of vectors z; € RPi, i € [k]. 1,, (0,) denotes the
column one (zero) vector of dimension n. I, is the n-
dimensional identity matrix. Given a vector [z1,...,2,]" €
R™, diag([x1,...,2,]) is a diagonal matrix with the i-th
diagonal element being ;. The notation A ® B denotes the
Kronecker product of matrices A and B. null(A) is the null
space of matrix A. Given two symmetric matrices M, N,
M > N means that M — N is positive semi-definite. p(-)
stands for the spectral radius for matrices and po(-) indicates
the minimum positive eigenvalue for matrices having positive
eigenvalues. || - || represents the Euclidean norm for vectors
or the induced 2-norm for matrices. For any square matrix
A, :L"HQA = 2" Az. Given a differentiable function f, Vf
denotes the gradient of f.

II. PRELIMINARIES

In this section, we present some definitions from algebraic
graph theory, smooth functions, and the Polyak—t.ojasiewicz
condition.

A. Algebraic Graph Theory

Let G = (V,&, A) denote a weighted undirected graph
with the set of vertices (nodes) V = [n], the set of links
(edges) £ C V x V, and the weighted adjacency matrix A =
AT = (a;;) with nonnegative elements a;;. A link of G is
denoted by (i,7) € &£ if a;; > 0, ie., if vertices ¢ and j
can communicate with each other. It is assumed that a;; =
0 for all i € [n]. Let N; = {j € [n] : a;; > 0} and

deg; = > a;; denotes the neighbor set and weighted degree
j=1

of vertex i, respectively. The degree matrix of graph G is
Deg = diag([deg;, - - - ,deg,,]). The Laplacian matrix is L =
(L;j) = Deg —A. A path of length k between vertices ¢ and
Jj is a subgraph with distinct vertices ig = 4,...,ix, = j € [n]
and edges (i;,%;41) € £, j = 0,...,k — 1. An undirected
graph is connected if there exists at least one path between
any two distinct vertices. If the graph G is connected, then its
Laplacian matrix L is positive semi-definite and null(L) =
{1,}, see [27].

B. Smooth Function
Definition 1. The function f(x): RP — R is smooth with
constant Ly > 0 if it is differentiable and

IVf(x) = VIl < Lylle = yll, Yo,y eRP. (1)

From Lemma 1.2.3 in [28], an immediate consequence of
(1) is the following inequality:

L
F@) = F@) = (v = 2) V@) < Sy - 2|, Ve,y €RP.
2)
C. Polyak—tLojasiewicz Condition

Let f(z) : RP — R be a differentiable function. Let
X* = argmin,cp, f(x) and f* = mingere f(x). Moreover,
we assume that f* > —oo.

Definition 2. The function f satisfies the Polyak—t.ojasiewicz
condition with constant v > 0 if

IVI@I = (@)~ 5, vee R @)

It is straightforward to see that every (essentially or
weakly) strongly convex function satisfies the Polyak—
Lojasiewicz condition. The Polyak—t.ojasiewicz condition
implies that every stationary point is a global minimizer, i.e.,
X* = {z € R?: Vf(z) = 0,}. But unlike the (essentially or
weakly) strong convexity, the Polyak—Ft.ojasiewicz condition
(3) alone does not even imply the convexity of f. Moreover,
it does not imply that X* is a singleton either.

In some practical applications, the cost functions may
be not strongly convex but satisfy the Polyak—fLojasiewicz
condition. For example, the cost function in least squares
problems has the form

f(z)

where A € R™*P and b € R™. Note that if A has full
column rank, then f(z) is strongly convex. However, if A
is rank deficient, then f(x) is not strongly convex, but it
is convex and satisfies the Polyak—f.ojasiewicz condition.
Examples of nonconvex functions which satisfy the Polyak—
Lojasiewicz condition can be found in [22], [29].

Although it is difficult to precisely characterize the general
class of functions for which the Polyak—t.ojasiewicz condi-
tion is satisfied, in [22], one important special case was given
as follows:

1
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Lemma 1. Let f(x) = g(Ax), where ¢ : RP — R is a
strongly convex function and A € RP*P s a matrix, then f
satisfies the Polyak—Lojasiewicz condition.

Moreover, from Theorem 2 in [22] we know that the
following property holds.

Lemma 2. Suppose that the function f satisfies the Polyak—
Lojasiewicz condition (3) and Px-(x), YV € RP is well
defined, where Px«(x) is the projection of x onto the set
X*, e, Px-(z) = argmin, cx- [z — y||* then

f(@) = f* > 2v||Px-(2) — 2|2, Vo € R

From Theorem 1.5.5 in [30], we know that Px~(-) is well
defined if X* is closed and convex.

III. PROBLEM FORMULATION AND ASSUMPTIONS
Consider a network of n agents, each of which has a local
cost function f; : R? — R. All agents collaborate together
to solve the following optimization problem

min f(z) = Z fi(z). €]
i=1

rERP
The communication among agents is described by a weighted
undirected graph G. Let X* and f* denote the optimal set
and the minimum function value of the optimization problem
(4), respectively. The following assumptions are made.



Assumption 1. The undirected graph G is connected.

Assumption 2. The optimal set X* is nonempty and f* >
—00.

Assumption 3. Each local cost function is smooth with
constant Ly > 0.

Assumption 4. The global cost function f(x) satisfies the
Polyak—tojasiewicz condition with constant v > 0.

Remark 1. It should be highlighted that the convexity of the
cost functions and the boundedness of their gradients are
not assumed. Assumptions 1-3 are standard. Assumption 4
is weaker than the assumption that the global or each local
cost function is strongly convex, commonly assumed in the
literature, since it does not implies convexity and global
optimal solution is not necessarily unique.

IV. DISTRIBUTED PRIMAL-DUAL GRADIENT DESCENT
ALGORITHM

In this section, we propose a distributed primal-dual gra-
dient descent algorithm and analyse its convergence rate.

For simplicity, denote = col(z1,...,z,), f(x) =
S, fi(z;), and L = L ® I,. The optimization problem
(4) is equivalent to the following constrained optimization

problem:
min

L f(z) = ;fi(l'i)

s.t. x; =xj, Yi,j € [n].

&)

Noting that the Laplacian matrix L is positive semi-definite
and null(L) = {1,} when G is connected, we know that
the optimization problem (5) is equivalent to the following
constrained optimization problem:

min f(x)
x € R" (6)
s.t. LY?g =0,,.

Here, we use L'/2x = 0,,, rather than Lz = 0, as the
constraint since it is also equivalent to x = 1,, ® x and it
has a good property which will be shown later in Remark 3.

Let u € R" denote the dual variable, then the augmented
Lagrangian function associated with (6) is

A@,u) = f(@) + S2 Lo+ fu L2, ()

where a > 0 and $ > 0 are constants.
Based on the primal-dual gradient method, a distributed
first-order algorithm to solve (6) is
X1 =z, — n(aLay + BLY >uy, + Vf(x)),
Ukl =Up + nﬁLl/ka, Vg, ug € R™,

(8a)
(8b)
where n > 0 is a fixed stepsize. Denote v, =
col(vi,...,v,) = L'?uy, then the algorithm (8) can be
rewritten as
@1 = — n(alxy + o + V f(zk)),
Vi1 =V + nBLxy, Vo € R", vy = 0.

(9a)
(9b)

Remark 2. Compared with the EXTRA proposed in [12]
x, =Waxg —nVf(xg), Vg € R,
1 =(Tnp + W)z — Wap_1 — n(V (@) — VF(ze-1)),

it is straightforward to verify that the algorithm (9) is equiv-
alent o the EXTRA with mixing matrices W = L,,,, — naL
and W =1,,, — naL + n*B*L.

Note that the distributed algorithm (9) can also be written
agent-wise.

Ti g1 =Tik — N Z Lijxjk + Bvik + Vfi(wik)),

j=1
(10a)
Vi k41 =Vik + 105 Z Lijwjk,
j=1
Vo € RP, vig=0,, Vi€ [n]. (10b)

The following theorem establishes the convergence results
for the distributed primal-dual gradient descent algorithm
(10).

Theorem 1. Each agent i € [n] runs the distributed primal-
dual gradient descent algorithm (10).

(i) If Assumptions 14 hold, 8+ k1 < a < k2f, B >
max{rs, k4, K5}, and 0 < n < min{i, 2}, then | —
zx||?, i € [n] and f(Zy) — f* linearly converge to 0 with a

rate no less than 1 — €, where Tj, = +(1,) @L,)xy, € = o,

1 3
K1 =—— (44 =L3),
ottt
K9 >].7
K1
Ko ————
3 Kjg—l’
1 8 .
Ry *Z(3+(9+8ﬁg+m)2),
1 1 ,
ks =2(ko + ——)L2% + 2((ko + ——=)2L% + L2)=,
5 1
er =max{p(L) + (20° + 5%)p*(L) + 5 L7, 26° + 5},
1 1.1 1 o
e2="—=(z+ +—)L%,
=175 o T
1 1 o L (1+Lf)
e =—(1+ ——+=)L3 + 221
et Lo AT T
. 14
€4 =min{l — ney, %},
a+p 1
€5 = + .
T8 T 2p0(L)

(ii) Moreover, if the projection operator Px~(-) is well
defined, then ||z;  — Px-(Z)||?, i € [n] linearly converges
to 0 with a rate no less than 1 — .

Proof : The proof is given in Appendix B. [ ]

Remark 3. If we use Lx = 0, as the constraint in (6),
then we could construct an alternative distributed primal-



dual gradient descent algorithm
i =tk — 1> Lij(axn + Bvjx) + V fi(wir),
j=1
(11a)

n

Vi k41 =Vik + UﬁZLijl“j,k,in,o, vi0 € RP. (11b)
=1

Similar results as shown in Theorem I could be obtained. We
omit the details due to the space limitation. Different from the
requirement that v; o = 0, in the algorithm (10), v; o can be
arbitrarily chosen in the algorithm (11). In other words, the
algorithm (11) is robust to the initial condition v; o. However,
the algorithm (11) requires additional communication of v; j,
in (11a), compared to the algorithm (10).

Remark 4. The linear convergence for the distributed first-
order algorithms proposed in [12]-[18], [26] was also estab-
lished. However, in [13]-[17], it was assumed that each local
cost function is strongly convex. In [12], [18], it was assumed
that the global cost function is restricted strongly convex
and X* is a singleton. In [26], it was assumed that the
global cost function satisfies the restricted secant inequality
condition and the set of the gradients of each local cost func-
tion at optimal points is a singleton. In contrast, the linear
convergence result established in Theorem 1 only requires the
assumption that the global cost function satisfies the Polyak—
Ltojasiewicz condition, but the convexity assumption on cost
functions and the singleton assumption on the optimal set and
the set of the gradients of each local cost function at optimal
points are not required. Moreover, it should be highlighted
that when executing algorithm (10) the Polyak—Lojasiewicz
constant v is not needed, while this constant needs to be
known in advance for executing the algorithm proposed in
[25]. However, the algorithm proposed in [25] is gradient-
free. It is our ongoing work to extend the algorithm (10) to
a gradient-free algorithm.

V. SIMULATIONS

In this section, we evaluate the performance of the pro-
posed distributed primal-dual gradient descent algorithm (10)
in solving the phase retrieval problem considered in [25].
All settings for cost functions and the communication graph
are adopted from [25] for the purpose of comparison. We
implement the distributed first-order algorithm (10) with
a = = 10and n = 0.03. We also implement the distributed
first-order algorithm proposed in [16], which is the first-order
version of the zeroth-order algorithm proposed in [25], with
n = 0.03. The evolutions of > ., ||z, —Zx||* and V f(Zy)
for these algorithms with the same initial conditions are
plotted in Fig. 1 and Fig. 2, respectively. We see that the
primal-dual gradient descent algorithm (10) exhibits better
performance than the algorithm proposed in [16].

VI. CONCLUSIONS

In this paper, we proposed a distributed primal-dual gra-
dient descent algorithm and derived its linear convergence
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rate under the condition that the global cost function satisfies
the Polyak—t.ojasiewicz condition. This condition relaxes the
standard strong convexity condition commonly assumed in
the literature. Interesting directions for future work include
proving the linear convergence rate for larger stepsizes,
extending the first-order algorithm to the zeroth-order al-
gorithm, considering asynchronous and dynamic network
setting, and studying constraints.
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APPENDIX

A. Useful Lemma
The following results are used in the proofs.

Lemma 3. (Lemmas 1 and 2 in [18]) Let L be the Laplacian
matrix of the connected graph G and K, = 1,, — %lnlz.
Then L and K, are positive semi-definite, null(L) =
null(K,) ={1,}, L < p(L)IL,, p(K,) =1,
K,L=LK, =L,
0 < po(L)Ky < L < p(L)Ky.

12)
13)

Moreover, there exists an orthogonal matrix [r R] € R"*™
with r = %LL and R € R"("=1) such that

RAT'R'L = LRAT'RT = K,,, (14)
1
——K, <RAT'R" < ——K,, (15)
p(L) ! p2(L)
where Ay = diag([Aa,...,An]) with 0 < Ay < --- < A,

being the eigenvalues of the Laplacian matrix L.

B. Proof of Theorem 1

For space purposes, the detail reasoning of some steps in
this proof is omitted, but can be found in [31].

(i) Denote K = K, ®1,, H = %(17112 ®1,), Q=
Rf}flRT QIp, T = 1p @ Tp, Vg = %(11 QL,)vg, gk =
Vf(xk), gn = Hgr, g) = V[(Zx), and g = Hg} =
L1, ® Vf(zp)).

From (9b), we know that

Vg1 = Ug. (16)

Then, from (16), 2?21 v;0 = 0p, and (9a), we know that
U, = 0, and

Tpr1 = T — NGk- (17)

Noting that V f is Lipschitz-continuous with constant
Ly > 0 as assumed in Assumption 3 and p(H) = 1, we
have that

lgps1 — gnll® < Li|@rea — @el)® = n°Li|gel?,  (18)
lgh — gill® < L3 ||y, — mil|* = L3 | =] %, (19)
Igp — arll” = 1 H (g — gi)I?

<llgp — gell® < L} |k k- (20)



From Assumption 4 and (3), we have that

1 2v
=~V f (@

Ol > —(f(@) - ) @D

g1I?
Denote Vlk = %HmkH%{, ‘/27]@: = %H’Uk + %gg||2Q+%K,
Vak _ka(vk+ng) Vi = f(@n) = f* = f(@e) — [,
and V, = ZZ 1 Vik. Then, from (17)-(21), we have

Vi k+1

1
< S llekllz = Nl

2,2
aL-1K-3197 ],

2—4(1+3n) L3 K

(22)

1 1
— By K (v + 5gk) + lloe + 51520 1o
Va k41

1 1 1
< gllowe+ *92”2)-&-%K + ), (BK +aL)(vy + 392)

1
+ [l n2B(BL+aL?) T llvr + gk” L (Q+SK)

n 1 1
"gr + 35y * )%

V3 k1

gkl (23)

1 1
<y K(v, + ng) naz, L(vy, + 592)

+ k]2

(BL+3K)+n2( % —af+p2) L2+ % (1+2n) L2 K

(ﬁ+@+ )

||Uk+ ng2 _E_g_#)lgﬂ

7llaxl?
(24)

Vi k+1
= « 1 _
< f@) = =50 2L g) | grll® + llak

— L (f @) = £).

2
112K
(25)
From (22)-(25), we have
Vi1

1
< Vi = lklfng, —pena, — ok + ngHE]Mg—n2M4

777/ *
= (e = m*ea) |gell® — o - (F(28) = ), (26)
where

1

M, =(a - B)L — 5(2 +3L}K,
ﬁ2L+(2a + B*)L? + 5L ’K,
o 1
M; =(8 - 5 - ﬁ)K %Qv
1
M, =(26% + K.
From 8+ k1 <« and k1 = pzéL) 4+ %L}), we have

1
~(2+3L%) >1

(= B)p2(L) — 5 (27)

From (8 > k4, we have

1 Ko 1
————— >1 28
=373 " Bnm @
From a < k93 and 3 > k5, we have
1 1.1 1 e
== — (=4 —— + )2
=17 255 T mm TN
1 1.1 1 5 1
21—%(5 oL )+52)Lf2§- (29)
From (29), and 0 < n < E—i, we have
nes —nes > 0. (30)
From (13), (15), a < kof3, (27), and (28), we have
M, =(a — B)L — %(2 +3L5)K
1
>(a=B)pa(L)K - 5(2+ 3LHK > K, (31
M, =B%L + (20* + B?)L* + gLch <aK, (32
1 a 1
M3:(5*§*W)K*%Q
1 %) 1
————)K-—-K>K 33
M, =(23% + 7)K <eaK. (34)

Denote Vi, = ||z || % + ||vk + 5905 + f(Zx) — f*. Then,
from (26) and (30)—(34), we have

Vit < Vi — neaVi. (35)

From the Cauchy-Schwarz inequality, we have

e6Vi < Vi < &5V, (36)

where eg = min{ﬁ, QT_OF}

From (35), (36), and 0 < n < é, we have

Vi1 <Vi — %Vk =(1—¢)V

€)F V4.

Hence, from (36) and (37), for all ¢ € [n], we have
ik — 2k + () — £ < @il + f(28) — f*

N 1 1
<<=V < —(1-e"W.
€6 €6

<(1- (37)

(38)

In other words, ||z; ;. —Z||?, i € [n] and f(Z))— f* linearly
converge to 0 with a rate no less than 1 —e.

(ii) If the projection operator Px«(-) is well defined,
then from Lemma 2 and (38), we know that |z;) —
Px+(Zr)||?, @ € [n] linearly converge to 0 with a rate no
less than 1 —e.



